जीरो-ऑर्डर होल्ड: Difference between revisions

From Vigyanwiki
(Created page with "{{Use American English|date = March 2019}} {{Short description|Model of signal reconstruction in digital-to-analog (DAC) converters}} {{One source|date=August 2021}} जीर...")
 
No edit summary
Line 1: Line 1:
{{Use American English|date = March 2019}}
 
{{Short description|Model of signal reconstruction in digital-to-analog (DAC) converters}}
{{Short description|Model of signal reconstruction in digital-to-analog (DAC) converters}}
{{One source|date=August 2021}}
जीरो-ऑर्डर होल्ड (ZOH) पारंपरिक [[डिज़िटल से एनालॉग कन्वर्टर]] (DAC) द्वारा किए गए व्यावहारिक सिग्नल पुनर्निर्माण का गणितीय मॉडल है। अर्थात्, यह प्रत्येक नमूना मान को नमूना अंतराल के लिए पकड़कर [[असतत-समय संकेत]] को निरंतर-समय संकेत में परिवर्तित करने के प्रभाव का वर्णन करता है। विद्युत संचार में इसके कई अनुप्रयोग हैं।
जीरो-ऑर्डर होल्ड (ZOH) एक पारंपरिक [[डिज़िटल से एनालॉग कन्वर्टर]] (DAC) द्वारा किए गए व्यावहारिक सिग्नल पुनर्निर्माण का एक गणितीय मॉडल है। अर्थात्, यह प्रत्येक नमूना मान को एक नमूना अंतराल के लिए पकड़कर एक [[असतत-समय संकेत]] को निरंतर-समय संकेत में परिवर्तित करने के प्रभाव का वर्णन करता है। विद्युत संचार में इसके कई अनुप्रयोग हैं।


==समय-डोमेन मॉडल==
==समय-डोमेन मॉडल==
Line 8: Line 7:
[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 1. ZOH के टाइम-डोमेन विश्लेषण में उपयोग किया जाने वाला टाइम-शिफ्टेड और टाइम-स्केल्ड रेक्ट फ़ंक्शन।]]
[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 1. ZOH के टाइम-डोमेन विश्लेषण में उपयोग किया जाने वाला टाइम-शिफ्टेड और टाइम-स्केल्ड रेक्ट फ़ंक्शन।]]
[[Image:Zeroorderhold.signal.svg|thumb|चित्रा 2. टुकड़े-टुकड़े-निरंतर संकेत एक्स<sub>ZOH</sub>(टी)।]]
[[Image:Zeroorderhold.signal.svg|thumb|चित्रा 2. टुकड़े-टुकड़े-निरंतर संकेत एक्स<sub>ZOH</sub>(टी)।]]
[[Image:Sampled.signal.svg|thumb|चित्र 3. एक मॉड्यूलेटेड डिराक कंघी x<sub>s</sub>(टी)।]]एक शून्य-ऑर्डर होल्ड एक नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है, प्रति समय अंतराल टी में एक नमूना मानते हुए:
[[Image:Sampled.signal.svg|thumb|चित्र 3. मॉड्यूलेटेड डिराक कंघी x<sub>s</sub>(टी)।]]एक शून्य-ऑर्डर होल्ड नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है, प्रति समय अंतराल टी में नमूना मानते हुए:
<math display="block">x_{\mathrm{ZOH}}(t)\,= \sum_{n=-\infty}^{\infty} x[n]\cdot \mathrm{rect} \left(\frac{t-T/2 -nT}{T} \right) </math>
<math display="block">x_{\mathrm{ZOH}}(t)\,= \sum_{n=-\infty}^{\infty} x[n]\cdot \mathrm{rect} \left(\frac{t-T/2 -nT}{T} \right) </math>
कहाँ <math>\mathrm{rect}(\cdot) </math> आयताकार फलन है.
कहाँ <math>\mathrm{rect}(\cdot) </math> आयताकार फलन है.
Line 16: Line 15:
==फ़्रीक्वेंसी-डोमेन मॉडल==
==फ़्रीक्वेंसी-डोमेन मॉडल==


ZOH के आउटपुट के लिए उपरोक्त समीकरण को LTI सिस्टम सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। एक रेक्ट फ़ंक्शन के बराबर आवेग प्रतिक्रिया के साथ रैखिक समय-अपरिवर्तनीय फ़िल्टर, और इनपुट नमूने के लिए स्केल किए गए डायराक डेल्टा फ़ंक्शन का अनुक्रम है। मूल्य. इसके बाद फ़िल्टर का विश्लेषण फ़्रीक्वेंसी डोमेन में किया जा सकता है, अन्य पुनर्निर्माण विधियों जैसे कि नाइक्विस्ट-शैनन सैंपलिंग प्रमेय द्वारा सुझाए गए व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला, या जैसे कि नमूना मूल्यों के बीच प्रथम-क्रम होल्ड या रैखिक इंटरपोलेशन के साथ तुलना के लिए।
ZOH के आउटपुट के लिए उपरोक्त समीकरण को LTI सिस्टम सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। रेक्ट फ़ंक्शन के बराबर आवेग प्रतिक्रिया के साथ रैखिक समय-अपरिवर्तनीय फ़िल्टर, और इनपुट नमूने के लिए स्केल किए गए डायराक डेल्टा फ़ंक्शन का अनुक्रम है। मूल्य. इसके बाद फ़िल्टर का विश्लेषण फ़्रीक्वेंसी डोमेन में किया जा सकता है, अन्य पुनर्निर्माण विधियों जैसे कि नाइक्विस्ट-शैनन सैंपलिंग प्रमेय द्वारा सुझाए गए व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला, या जैसे कि नमूना मूल्यों के बीच प्रथम-क्रम होल्ड या रैखिक इंटरपोलेशन के साथ तुलना के लिए।


इस विधि में, [[डिराक डेल्टा फ़ंक्शन]] का एक क्रम, x<sub>s</sub>(टी), असतत नमूनों का प्रतिनिधित्व करते हुए, एक्स[एन], एक निरंतर-समय संकेत, एक्स(टी) को पुनर्प्राप्त करने के लिए [[लो पास फिल्टर]] किया गया है।
इस विधि में, [[डिराक डेल्टा फ़ंक्शन]] का क्रम, x<sub>s</sub>(टी), असतत नमूनों का प्रतिनिधित्व करते हुए, एक्स[एन], निरंतर-समय संकेत, एक्स(टी) को पुनर्प्राप्त करने के लिए [[लो पास फिल्टर]] किया गया है।


भले ही DAC वास्तव में ऐसा नहीं करता है, DAC आउटपुट को डायराक आवेगों के काल्पनिक अनुक्रम को लागू करके मॉडल किया जा सकता है, x<sub>s</sub>(टी), एक एलटीआई प्रणाली के लिए | ऐसी विशेषताओं के साथ रैखिक, समय-अपरिवर्तनीय फ़िल्टर (जो, एक एलटीआई प्रणाली के लिए, [[आवेग प्रतिक्रिया]] द्वारा पूरी तरह से वर्णित है) ताकि प्रत्येक इनपुट आवेग के परिणामस्वरूप आउटपुट में सही निरंतर पल्स हो।
भले ही DAC वास्तव में ऐसा नहीं करता है, DAC आउटपुट को डायराक आवेगों के काल्पनिक अनुक्रम को लागू करके मॉडल किया जा सकता है, x<sub>s</sub>(टी), एलटीआई प्रणाली के लिए | ऐसी विशेषताओं के साथ रैखिक, समय-अपरिवर्तनीय फ़िल्टर (जो, एलटीआई प्रणाली के लिए, [[आवेग प्रतिक्रिया]] द्वारा पूरी तरह से वर्णित है) ताकि प्रत्येक इनपुट आवेग के परिणामस्वरूप आउटपुट में सही निरंतर पल्स हो।


ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, लेकिन रेक्ट फ़ंक्शंस के बजाय डेल्टा फ़ंक्शंस का उपयोग करें:
ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, लेकिन रेक्ट फ़ंक्शंस के बजाय डेल्टा फ़ंक्शंस का उपयोग करें:
Line 27: Line 26:
& {} = T \sum_{n=-\infty}^{\infty} x[n] \cdot \delta(t - nT).
& {} = T \sum_{n=-\infty}^{\infty} x[n] \cdot \delta(t - nT).
\end{align}</math>
\end{align}</math>
द्वारा स्केलिंग <math>T</math>, जो डेल्टा फ़ंक्शन को समय-स्केल करने से स्वाभाविक रूप से उत्पन्न होता है, का परिणाम x का औसत मान होता है<sub>s</sub>(टी) नमूनों के औसत मूल्य के बराबर है, ताकि आवश्यक लोपास फ़िल्टर में 1 का डीसी लाभ हो। कुछ लेखक इस स्केलिंग का उपयोग करते हैं,<ref>{{cite book | title = डिजिटल ऑडियो के सिद्धांत| author = Ken C. Pohlmann | publisher = McGraw-Hill | year = 2000 | edition = fifth | ISBN = 0-07-144156-5}}</ref> जबकि कई अन्य समय-स्केलिंग और टी को छोड़ देते हैं, जिसके परिणामस्वरूप टी के डीसी लाभ के साथ एक कम-पास फ़िल्टर मॉडल बनता है, और इसलिए समय की माप की इकाइयों पर निर्भर होता है।
द्वारा स्केलिंग <math>T</math>, जो डेल्टा फ़ंक्शन को समय-स्केल करने से स्वाभाविक रूप से उत्पन्न होता है, का परिणाम x का औसत मान होता है<sub>s</sub>(टी) नमूनों के औसत मूल्य के बराबर है, ताकि आवश्यक लोपास फ़िल्टर में 1 का डीसी लाभ हो। कुछ लेखक इस स्केलिंग का उपयोग करते हैं,<ref>{{cite book | title = डिजिटल ऑडियो के सिद्धांत| author = Ken C. Pohlmann | publisher = McGraw-Hill | year = 2000 | edition = fifth | ISBN = 0-07-144156-5}}</ref> जबकि कई अन्य समय-स्केलिंग और टी को छोड़ देते हैं, जिसके परिणामस्वरूप टी के डीसी लाभ के साथ कम-पास फ़िल्टर मॉडल बनता है, और इसलिए समय की माप की इकाइयों पर निर्भर होता है।


[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्रा 4. शून्य-ऑर्डर होल्ड एच की आवेग प्रतिक्रिया<sub>ZOH</sub>(टी)। यह चित्र 1 के रेक्ट फ़ंक्शन के समान है, सिवाय इसके कि अब इसे 1 के क्षेत्र के लिए स्केल किया गया है, इसलिए फ़िल्टर का डीसी लाभ 1 होगा।]]शून्य-ऑर्डर होल्ड काल्पनिक [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] या [[एलटीआई प्रणाली]] है जो मॉड्यूलेटेड डायराक आवेगों के अनुक्रम को परिवर्तित करती है।<sub>s</sub>(टी) टुकड़े-टुकड़े-स्थिर संकेत के लिए (चित्र 2 में दिखाया गया है):
[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्रा 4. शून्य-ऑर्डर होल्ड एच की आवेग प्रतिक्रिया<sub>ZOH</sub>(टी)। यह चित्र 1 के रेक्ट फ़ंक्शन के समान है, सिवाय इसके कि अब इसे 1 के क्षेत्र के लिए स्केल किया गया है, इसलिए फ़िल्टर का डीसी लाभ 1 होगा।]]शून्य-ऑर्डर होल्ड काल्पनिक [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] या [[एलटीआई प्रणाली]] है जो मॉड्यूलेटेड डायराक आवेगों के अनुक्रम को परिवर्तित करती है।<sub>s</sub>(टी) टुकड़े-टुकड़े-स्थिर संकेत के लिए (चित्र 2 में दिखाया गया है):
<math display="block">x_{\mathrm{ZOH}}(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \mathrm{rect} \left(\frac{t - nT}{T} - \frac{1}{2} \right) </math>
<math display="block">x_{\mathrm{ZOH}}(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \mathrm{rect} \left(\frac{t - nT}{T} - \frac{1}{2} \right) </math>
जिसके परिणामस्वरूप एक प्रभावी आवेग प्रतिक्रिया होती है (चित्र 4 में दिखाया गया है):
जिसके परिणामस्वरूप प्रभावी आवेग प्रतिक्रिया होती है (चित्र 4 में दिखाया गया है):
<math display="block">h_{\mathrm{ZOH}}(t)\,=  \frac{1}{T} \mathrm{rect} \left(\frac{t}{T}-\frac{1}{2} \right)
<math display="block">h_{\mathrm{ZOH}}(t)\,=  \frac{1}{T} \mathrm{rect} \left(\frac{t}{T}-\frac{1}{2} \right)
  = \begin{cases}
  = \begin{cases}
Line 44: Line 43:
ZOH का [[लाप्लास परिवर्तन]] [[स्थानांतरण प्रकार्य]] s = i 2 π f को प्रतिस्थापित करके पाया जाता है:
ZOH का [[लाप्लास परिवर्तन]] [[स्थानांतरण प्रकार्य]] s = i 2 π f को प्रतिस्थापित करके पाया जाता है:
<math display="block">H_{\mathrm{ZOH}}(s) = \mathcal{L} \{ h_{\mathrm{ZOH}}(t) \} \,= \frac{1 - e^{-sT}}{sT} \ </math>
<math display="block">H_{\mathrm{ZOH}}(s) = \mathcal{L} \{ h_{\mathrm{ZOH}}(t) \} \,= \frac{1 - e^{-sT}}{sT} \ </math>
तथ्य यह है कि व्यावहारिक डिजिटल-टू-एनालॉग कन्वर्टर्स (डीएसी) [[डायराक डेल्टा]], एक्स के अनुक्रम को आउटपुट नहीं करते हैं<sub>s</sub>(टी) (यदि आदर्श रूप से कम-पास फ़िल्टर किया जाता है, तो नमूना लेने से पहले अद्वितीय अंतर्निहित बैंडलिमिटेड सिग्नल प्राप्त होगा), लेकिन इसके बजाय आयताकार दालों का अनुक्रम आउटपुट होता है, एक्स<sub>ZOH</sub>(टी) (एक टुकड़ावार स्थिर कार्य), इसका मतलब है कि डीएसी की प्रभावी आवृत्ति प्रतिक्रिया पर जेडओएच का अंतर्निहित प्रभाव होता है, जिसके परिणामस्वरूप उच्च आवृत्तियों पर लाभ का हल्का [[धड़ल्ले से बोलना]] होता है (नाइक्विस्ट में 3.9224 डीबी हानि) आवृत्ति, sync(1/2) = 2/π) के लाभ के अनुरूप। यह गिरावट एक पारंपरिक डीएसी की होल्ड प्रॉपर्टी का परिणाम है, और यह उस नमूने और होल्ड के कारण नहीं है जो पारंपरिक [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]] (एडीसी) से पहले हो सकता है।
तथ्य यह है कि व्यावहारिक डिजिटल-टू-एनालॉग कन्वर्टर्स (डीएसी) [[डायराक डेल्टा]], एक्स के अनुक्रम को आउटपुट नहीं करते हैं<sub>s</sub>(टी) (यदि आदर्श रूप से कम-पास फ़िल्टर किया जाता है, तो नमूना लेने से पहले अद्वितीय अंतर्निहित बैंडलिमिटेड सिग्नल प्राप्त होगा), लेकिन इसके बजाय आयताकार दालों का अनुक्रम आउटपुट होता है, एक्स<sub>ZOH</sub>(टी) (एक टुकड़ावार स्थिर कार्य), इसका मतलब है कि डीएसी की प्रभावी आवृत्ति प्रतिक्रिया पर जेडओएच का अंतर्निहित प्रभाव होता है, जिसके परिणामस्वरूप उच्च आवृत्तियों पर लाभ का हल्का [[धड़ल्ले से बोलना]] होता है (नाइक्विस्ट में 3.9224 डीबी हानि) आवृत्ति, sync(1/2) = 2/π) के लाभ के अनुरूप। यह गिरावट पारंपरिक डीएसी की होल्ड प्रॉपर्टी का परिणाम है, और यह उस नमूने और होल्ड के कारण नहीं है जो पारंपरिक [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]] (एडीसी) से पहले हो सकता है।


==यह भी देखें==
==यह भी देखें==

Revision as of 20:18, 8 August 2023

जीरो-ऑर्डर होल्ड (ZOH) पारंपरिक डिज़िटल से एनालॉग कन्वर्टर (DAC) द्वारा किए गए व्यावहारिक सिग्नल पुनर्निर्माण का गणितीय मॉडल है। अर्थात्, यह प्रत्येक नमूना मान को नमूना अंतराल के लिए पकड़कर असतत-समय संकेत को निरंतर-समय संकेत में परिवर्तित करने के प्रभाव का वर्णन करता है। विद्युत संचार में इसके कई अनुप्रयोग हैं।

समय-डोमेन मॉडल

चित्र 1. ZOH के टाइम-डोमेन विश्लेषण में उपयोग किया जाने वाला टाइम-शिफ्टेड और टाइम-स्केल्ड रेक्ट फ़ंक्शन।
चित्रा 2. टुकड़े-टुकड़े-निरंतर संकेत एक्सZOH(टी)।
चित्र 3. मॉड्यूलेटेड डिराक कंघी xs(टी)।

एक शून्य-ऑर्डर होल्ड नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है, प्रति समय अंतराल टी में नमूना मानते हुए:

कहाँ आयताकार फलन है.

कार्यक्रम चित्र 1 में दर्शाया गया है, और चित्र 2 में दर्शाया गया टुकड़ा-वार-निरंतर संकेत है।

फ़्रीक्वेंसी-डोमेन मॉडल

ZOH के आउटपुट के लिए उपरोक्त समीकरण को LTI सिस्टम सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। रेक्ट फ़ंक्शन के बराबर आवेग प्रतिक्रिया के साथ रैखिक समय-अपरिवर्तनीय फ़िल्टर, और इनपुट नमूने के लिए स्केल किए गए डायराक डेल्टा फ़ंक्शन का अनुक्रम है। मूल्य. इसके बाद फ़िल्टर का विश्लेषण फ़्रीक्वेंसी डोमेन में किया जा सकता है, अन्य पुनर्निर्माण विधियों जैसे कि नाइक्विस्ट-शैनन सैंपलिंग प्रमेय द्वारा सुझाए गए व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला, या जैसे कि नमूना मूल्यों के बीच प्रथम-क्रम होल्ड या रैखिक इंटरपोलेशन के साथ तुलना के लिए।

इस विधि में, डिराक डेल्टा फ़ंक्शन का क्रम, xs(टी), असतत नमूनों का प्रतिनिधित्व करते हुए, एक्स[एन], निरंतर-समय संकेत, एक्स(टी) को पुनर्प्राप्त करने के लिए लो पास फिल्टर किया गया है।

भले ही DAC वास्तव में ऐसा नहीं करता है, DAC आउटपुट को डायराक आवेगों के काल्पनिक अनुक्रम को लागू करके मॉडल किया जा सकता है, xs(टी), एलटीआई प्रणाली के लिए | ऐसी विशेषताओं के साथ रैखिक, समय-अपरिवर्तनीय फ़िल्टर (जो, एलटीआई प्रणाली के लिए, आवेग प्रतिक्रिया द्वारा पूरी तरह से वर्णित है) ताकि प्रत्येक इनपुट आवेग के परिणामस्वरूप आउटपुट में सही निरंतर पल्स हो।

ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, लेकिन रेक्ट फ़ंक्शंस के बजाय डेल्टा फ़ंक्शंस का उपयोग करें:

द्वारा स्केलिंग , जो डेल्टा फ़ंक्शन को समय-स्केल करने से स्वाभाविक रूप से उत्पन्न होता है, का परिणाम x का औसत मान होता हैs(टी) नमूनों के औसत मूल्य के बराबर है, ताकि आवश्यक लोपास फ़िल्टर में 1 का डीसी लाभ हो। कुछ लेखक इस स्केलिंग का उपयोग करते हैं,[1] जबकि कई अन्य समय-स्केलिंग और टी को छोड़ देते हैं, जिसके परिणामस्वरूप टी के डीसी लाभ के साथ कम-पास फ़िल्टर मॉडल बनता है, और इसलिए समय की माप की इकाइयों पर निर्भर होता है।

चित्रा 4. शून्य-ऑर्डर होल्ड एच की आवेग प्रतिक्रियाZOH(टी)। यह चित्र 1 के रेक्ट फ़ंक्शन के समान है, सिवाय इसके कि अब इसे 1 के क्षेत्र के लिए स्केल किया गया है, इसलिए फ़िल्टर का डीसी लाभ 1 होगा।

शून्य-ऑर्डर होल्ड काल्पनिक फ़िल्टर (सिग्नल प्रोसेसिंग) या एलटीआई प्रणाली है जो मॉड्यूलेटेड डायराक आवेगों के अनुक्रम को परिवर्तित करती है।s(टी) टुकड़े-टुकड़े-स्थिर संकेत के लिए (चित्र 2 में दिखाया गया है):

जिसके परिणामस्वरूप प्रभावी आवेग प्रतिक्रिया होती है (चित्र 4 में दिखाया गया है):
प्रभावी आवृत्ति प्रतिक्रिया आवेग प्रतिक्रिया का निरंतर फूरियर रूपांतरण है।

कहाँ (सामान्यीकृत) सिन फ़ंक्शन है आमतौर पर डिजिटल सिग्नल प्रोसेसिंग में उपयोग किया जाता है।

ZOH का लाप्लास परिवर्तन स्थानांतरण प्रकार्य s = i 2 π f को प्रतिस्थापित करके पाया जाता है:

तथ्य यह है कि व्यावहारिक डिजिटल-टू-एनालॉग कन्वर्टर्स (डीएसी) डायराक डेल्टा, एक्स के अनुक्रम को आउटपुट नहीं करते हैंs(टी) (यदि आदर्श रूप से कम-पास फ़िल्टर किया जाता है, तो नमूना लेने से पहले अद्वितीय अंतर्निहित बैंडलिमिटेड सिग्नल प्राप्त होगा), लेकिन इसके बजाय आयताकार दालों का अनुक्रम आउटपुट होता है, एक्सZOH(टी) (एक टुकड़ावार स्थिर कार्य), इसका मतलब है कि डीएसी की प्रभावी आवृत्ति प्रतिक्रिया पर जेडओएच का अंतर्निहित प्रभाव होता है, जिसके परिणामस्वरूप उच्च आवृत्तियों पर लाभ का हल्का धड़ल्ले से बोलना होता है (नाइक्विस्ट में 3.9224 डीबी हानि) आवृत्ति, sync(1/2) = 2/π) के लाभ के अनुरूप। यह गिरावट पारंपरिक डीएसी की होल्ड प्रॉपर्टी का परिणाम है, और यह उस नमूने और होल्ड के कारण नहीं है जो पारंपरिक एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण (एडीसी) से पहले हो सकता है।

यह भी देखें

  • नाइक्विस्ट-शैनन नमूनाकरण प्रमेय
  • प्रथम-क्रम होल्ड
  • विवेकीकरण#असतत कार्य|रैखिक राज्य अंतरिक्ष मॉडल का विवेकीकरण (शून्य-क्रम धारण मानकर)

संदर्भ

  1. Ken C. Pohlmann (2000). डिजिटल ऑडियो के सिद्धांत (fifth ed.). McGraw-Hill. ISBN 0-07-144156-5.