जीरो-ऑर्डर होल्ड: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 1. जेडओएच के टाइम-डोमेन विश्लेषण में उपयोग किया जाने वाला टाइम-शिफ्टेड और टाइम-स्केल्ड रेक्ट फलन ।]] | [[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 1. जेडओएच के टाइम-डोमेन विश्लेषण में उपयोग किया जाने वाला टाइम-शिफ्टेड और टाइम-स्केल्ड रेक्ट फलन ।]] | ||
[[Image:Zeroorderhold.signal.svg|thumb|चित्रा 2. पीसवाइज -कांस्टेंट संकेत ''x''<sub>ZOH</sub>(''t'').।]] | [[Image:Zeroorderhold.signal.svg|thumb|चित्रा 2. पीसवाइज -कांस्टेंट संकेत ''x''<sub>ZOH</sub>(''t'').।]] | ||
[[Image:Sampled.signal.svg|thumb|चित्र 3. मॉड्यूलेटेड डिराक कोंब ''x''<sub>s</sub>(''t'').।]]एक शून्य-ऑर्डर होल्ड नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है | [[Image:Sampled.signal.svg|thumb|चित्र 3. मॉड्यूलेटेड डिराक कोंब ''x''<sub>s</sub>(''t'').।]]एक शून्य-ऑर्डर होल्ड नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है प्रति समय अंतराल ''T'' में नमूना मानते हुए: | ||
<math display="block">x_{\mathrm{ZOH}}(t)\,= \sum_{n=-\infty}^{\infty} x[n]\cdot \mathrm{rect} \left(\frac{t-T/2 -nT}{T} \right) </math> | <math display="block">x_{\mathrm{ZOH}}(t)\,= \sum_{n=-\infty}^{\infty} x[n]\cdot \mathrm{rect} \left(\frac{t-T/2 -nT}{T} \right) </math> | ||
जहाँ <math>\mathrm{rect}(\cdot) </math> आयताकार फलन है. | जहाँ <math>\mathrm{rect}(\cdot) </math> आयताकार फलन है. | ||
Line 15: | Line 15: | ||
==आवृत्ति -डोमेन मॉडल== | ==आवृत्ति -डोमेन मॉडल== | ||
जेडओएच के आउटपुट के लिए उपरोक्त समीकरण को एलटीआई प्रणाली सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। रेक्ट फलन | जेडओएच के आउटपुट के लिए उपरोक्त समीकरण को एलटीआई प्रणाली सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। रेक्ट फलन के समान आवेग प्रतिक्रिया के साथ रैखिक समय-अपरिवर्तनीय फ़िल्टर, और इनपुट नमूने मान के लिए स्केल किए गए डायराक डेल्टा फलन का अनुक्रम है। इसके बाद फ़िल्टर का विश्लेषण आवृत्ति डोमेन में किया जा सकता है, जो कि अन्य पुनर्निर्माण विधियों जैसे कि नाइक्विस्ट-शैनन सैंपलिंग प्रमेय द्वारा सुझाए गए व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला या नमूना मूल्यों के बीच प्रथम-क्रम होल्ड या रैखिक इंटरपोलेशन के साथ तुलना के लिए आवृत्ति डोमेन में विश्लेषण किया जा सकता है। | ||
इस विधि में, डायराक आवेगों का एक क्रम, ''x''<sub>s</sub>(t), जो अलग-अलग नमूनों, x[n] का प्रतिनिधित्व करता है, को निरंतर-समय संकेत, x(t) को पुनर्प्राप्त करने के लिए [[लो पास फिल्टर|लो]] -पास फ़िल्टर किया जाता है। | इस विधि में, डायराक आवेगों का एक क्रम, ''x''<sub>s</sub>(t), जो अलग-अलग नमूनों, x[n] का प्रतिनिधित्व करता है, को निरंतर-समय संकेत, x(t) को पुनर्प्राप्त करने के लिए [[लो पास फिल्टर|लो]] -पास फ़िल्टर किया जाता है। | ||
तथापि डीएसी वास्तविकता में ऐसा नहीं करता है, डीएसी आउटपुट को ऐसी विशेषताओं के साथ एक रैखिक, समय-अपरिवर्तनीय फ़िल्टर में डायराक आवेगों, ''x''<sub>s</sub>(''t''), के काल्पनिक अनुक्रम को प्रयुक्त | तथापि डीएसी वास्तविकता में ऐसा नहीं करता है, डीएसी आउटपुट को ऐसी विशेषताओं के साथ एक रैखिक, समय-अपरिवर्तनीय फ़िल्टर में डायराक आवेगों, ''x''<sub>s</sub>(''t''), के काल्पनिक अनुक्रम को प्रयुक्त करके मॉडल किया जा सकता है (जो, एलटीआई प्रणाली के लिए), पूरी तरह से आवेग प्रतिक्रिया द्वारा वर्णित हैं) जिससे प्रत्येक इनपुट आवेग के परिणामस्वरूप आउटपुट में सही निरंतर पल्स हो। | ||
ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, किन्तु रेक्ट फलन | ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, किन्तु रेक्ट फलन के अतिरिक्त डेल्टा फलन का उपयोग करें: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
x_s(t) & = \sum_{n=-\infty}^{\infty} x[n] \cdot \delta\left(\frac{t - nT}{T}\right) \\ | x_s(t) & = \sum_{n=-\infty}^{\infty} x[n] \cdot \delta\left(\frac{t - nT}{T}\right) \\ | ||
Line 28: | Line 28: | ||
<math>T | <math>T | ||
</math> द्वारा स्केलिंग जो डेल्टा फलन | </math> द्वारा स्केलिंग जो डेल्टा फलन को समय-स्केल करने से स्वाभाविक रूप से उत्पन्न होता है, जिसका परिणाम ''x<sub>s</sub>''(''t'') का औसत मान होता है जो कि नमूनों के औसत मान के समान है, जिससे आवश्यक लोपास फ़िल्टर में 1 का डीसी लाभ हो। जिसमे कुछ लेखक इस स्केलिंग का उपयोग करते हैं,<ref>{{cite book | title = डिजिटल ऑडियो के सिद्धांत| author = Ken C. Pohlmann | publisher = McGraw-Hill | year = 2000 | edition = fifth | ISBN = 0-07-144156-5}}</ref> जबकि अनेक अन्य समय-स्केलिंग और ''T'' को छोड़ देते हैं, जिसके परिणामस्वरूप ''T'' के डीसी लाभ के साथ कम-पास फ़िल्टर मॉडल बनता है, और इसलिए समय की माप की इकाइयों पर निर्भर होता है। | ||
[[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 4. शून्य-क्रम धारण | [[Image:Zeroorderhold.impulseresponse.svg|thumb|चित्र 4. शून्य-क्रम धारण ''h''<sub>ZOH</sub>(''t'') की आवेग प्रतिक्रिया। यह चित्र 1 के रेक्ट फलन के समान है, सिवाय इसके कि अब इसे 1 के क्षेत्र के लिए स्केल किया गया है, इसलिए फ़िल्टर का डीसी लाभ 1 होगा।]]शून्य-ऑर्डर होल्ड काल्पनिक [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] या [[एलटीआई प्रणाली]] है जो मॉड्यूलेटेड डायराक आवेगों ''x<sub>s</sub>''(''t'') के अनुक्रम को परिवर्तित करती है। पीसवाइज -कांस्टेंट संकेत के लिए (चित्र 2 में दिखाया गया है): | ||
<math display="block">x_{\mathrm{ZOH}}(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \mathrm{rect} \left(\frac{t - nT}{T} - \frac{1}{2} \right) </math> | <math display="block">x_{\mathrm{ZOH}}(t) = \sum_{n=-\infty}^{\infty} x[n] \cdot \mathrm{rect} \left(\frac{t - nT}{T} - \frac{1}{2} \right) </math> | ||
जिसके परिणामस्वरूप प्रभावी आवेग प्रतिक्रिया होती है (चित्र 4 में दिखाया गया है): | जिसके परिणामस्वरूप प्रभावी आवेग प्रतिक्रिया होती है (चित्र 4 में दिखाया गया है): | ||
Line 41: | Line 41: | ||
<math display="block">H_{\mathrm{ZOH}}(f) = \mathcal{F} \{ h_{\mathrm{ZOH}}(t) \} = \frac{1 - e^{-i 2 \pi fT}}{i 2 \pi fT} = e^{-i \pi fT} \mathrm{sinc}(fT) </math> | <math display="block">H_{\mathrm{ZOH}}(f) = \mathcal{F} \{ h_{\mathrm{ZOH}}(t) \} = \frac{1 - e^{-i 2 \pi fT}}{i 2 \pi fT} = e^{-i \pi fT} \mathrm{sinc}(fT) </math> | ||
जहाँ <math>\mathrm{sinc}(x) </math> (सामान्यीकृत) [[सिन फ़ंक्शन|सिन फलन]] | जहाँ <math>\mathrm{sinc}(x) </math> (सामान्यीकृत) [[सिन फ़ंक्शन|सिन फलन]] है <math>\frac{\sin(\pi x)}{\pi x}</math> जो कि समान्यत: डिजिटल सिग्नल प्रोसेसिंग में उपयोग किया जाता है। | ||
जेडओएच का [[लाप्लास परिवर्तन]] [[स्थानांतरण प्रकार्य]] s = i 2 π f को प्रतिस्थापित करके पाया जाता है: | जेडओएच का [[लाप्लास परिवर्तन]] [[स्थानांतरण प्रकार्य]] s = i 2 π f को प्रतिस्थापित करके पाया जाता है: |
Revision as of 20:51, 8 August 2023
जीरो-ऑर्डर होल्ड (जेडओएच) पारंपरिक डिज़िटल से एनालॉग कन्वर्टर (डीएसी) द्वारा किए गए व्यावहारिक सिग्नल पुनर्निर्माण का गणितीय मॉडल है। अर्थात्, यह प्रत्येक नमूना मान को नमूना अंतराल के लिए पकड़कर असतत-समय संकेत को निरंतर-समय संकेत में परिवर्तित करने के प्रभाव का वर्णन करता है। जिससे विद्युत संचार में इसके अनेक अनुप्रयोग हैं।
समय-डोमेन मॉडल
एक शून्य-ऑर्डर होल्ड नमूना अनुक्रम x[n] से निम्नलिखित निरंतर-समय तरंग का पुनर्निर्माण करता है प्रति समय अंतराल T में नमूना मानते हुए:
फलन चित्र 1 में दर्शाया गया है, और चित्र 2 में दर्शाया गया पीसवाइज -कांस्टेंट संकेत है।
आवृत्ति -डोमेन मॉडल
जेडओएच के आउटपुट के लिए उपरोक्त समीकरण को एलटीआई प्रणाली सिद्धांत के आउटपुट के रूप में भी तैयार किया जा सकता है। रेक्ट फलन के समान आवेग प्रतिक्रिया के साथ रैखिक समय-अपरिवर्तनीय फ़िल्टर, और इनपुट नमूने मान के लिए स्केल किए गए डायराक डेल्टा फलन का अनुक्रम है। इसके बाद फ़िल्टर का विश्लेषण आवृत्ति डोमेन में किया जा सकता है, जो कि अन्य पुनर्निर्माण विधियों जैसे कि नाइक्विस्ट-शैनन सैंपलिंग प्रमेय द्वारा सुझाए गए व्हिटेकर-शैनन इंटरपोलेशन फॉर्मूला या नमूना मूल्यों के बीच प्रथम-क्रम होल्ड या रैखिक इंटरपोलेशन के साथ तुलना के लिए आवृत्ति डोमेन में विश्लेषण किया जा सकता है।
इस विधि में, डायराक आवेगों का एक क्रम, xs(t), जो अलग-अलग नमूनों, x[n] का प्रतिनिधित्व करता है, को निरंतर-समय संकेत, x(t) को पुनर्प्राप्त करने के लिए लो -पास फ़िल्टर किया जाता है।
तथापि डीएसी वास्तविकता में ऐसा नहीं करता है, डीएसी आउटपुट को ऐसी विशेषताओं के साथ एक रैखिक, समय-अपरिवर्तनीय फ़िल्टर में डायराक आवेगों, xs(t), के काल्पनिक अनुक्रम को प्रयुक्त करके मॉडल किया जा सकता है (जो, एलटीआई प्रणाली के लिए), पूरी तरह से आवेग प्रतिक्रिया द्वारा वर्णित हैं) जिससे प्रत्येक इनपुट आवेग के परिणामस्वरूप आउटपुट में सही निरंतर पल्स हो।
ऊपर दिए गए नमूना मानों से निरंतर-समय सिग्नल को परिभाषित करके प्रारंभ करें, किन्तु रेक्ट फलन के अतिरिक्त डेल्टा फलन का उपयोग करें:
शून्य-ऑर्डर होल्ड काल्पनिक फ़िल्टर (सिग्नल प्रोसेसिंग) या एलटीआई प्रणाली है जो मॉड्यूलेटेड डायराक आवेगों xs(t) के अनुक्रम को परिवर्तित करती है। पीसवाइज -कांस्टेंट संकेत के लिए (चित्र 2 में दिखाया गया है):
जेडओएच का लाप्लास परिवर्तन स्थानांतरण प्रकार्य s = i 2 π f को प्रतिस्थापित करके पाया जाता है:
यह भी देखें
- नाइक्विस्ट-शैनन नमूनाकरण प्रमेय
- प्रथम-क्रम होल्ड
- विवेकीकरण या असतत कार्य रैखिक स्टेट अंतरिक्ष मॉडल का विवेकीकरण (शून्य-क्रम धारण मानकर)
संदर्भ
- ↑ Ken C. Pohlmann (2000). डिजिटल ऑडियो के सिद्धांत (fifth ed.). McGraw-Hill. ISBN 0-07-144156-5.