लॉजिस्टिक फ़ंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|S-shaped curve}}
{{Short description|S-shaped curve}}
{{For|the recurrence relation|Logistic map}}
{{For|पुनरावृत्ति संबंध|लॉजिस्टिक मानचित्र}}


[[File:Logistic-curve.svg|thumb|320px|right|मानक लॉजिस्टिक फलन जहां <math>L=1,k=1,x_0=0</math>]]एक लॉजिस्टिक फलन या लॉजिस्टिक वक्र समीकरण के साथ सामान्य एस-आकार का वक्र ([[सिग्मॉइड फ़ंक्शन|सिग्मॉइड फलन]] ) है
[[File:Logistic-curve.svg|thumb|320px|right|मानक लॉजिस्टिक फलन जहां <math>L=1,k=1,x_0=0</math>]]एक लॉजिस्टिक फलन या लॉजिस्टिक वक्र समीकरण के साथ सामान्य एस-आकार का वक्र ([[सिग्मॉइड फ़ंक्शन|सिग्मॉइड फलन]] ) है
Line 163: Line 163:


=== चिकित्सा में: ट्यूमर के विकास का मॉडलिंग ===
=== चिकित्सा में: ट्यूमर के विकास का मॉडलिंग ===
{{See also|Gompertz curve#Growth of tumors}}
{{See also|गोम्पर्ट्ज़ वक्र या ट्यूमर का विकास}}
लॉजिस्टिक कर्व का अन्य अनुप्रयोग चिकित्सा में है, जहां ट्यूमर के विकास को मॉडल करने के लिए लॉजिस्टिक डिफरेंशियल समीकरण का उपयोग किया जाता है। इस एप्लिकेशन को पारिस्थितिकी के ढांचे में उपर्युक्त उपयोग का विस्तार माना जा सकता है ([[सामान्यीकृत लॉजिस्टिक वक्र]] भी देखें, जो अधिक मापदंडों की अनुमति देता है)। से निरूपित करना <math>X(t)</math> समय पर ट्यूमर का आकार <math>t</math>, इसकी गतिशीलता द्वारा नियंत्रित होती है
लॉजिस्टिक कर्व का अन्य अनुप्रयोग चिकित्सा में है, जहां ट्यूमर के विकास को मॉडल करने के लिए लॉजिस्टिक डिफरेंशियल समीकरण का उपयोग किया जाता है। इस एप्लिकेशन को पारिस्थितिकी के ढांचे में उपर्युक्त उपयोग का विस्तार माना जा सकता है ([[सामान्यीकृत लॉजिस्टिक वक्र]] भी देखें, जो अधिक मापदंडों की अनुमति देता है)। से निरूपित करना <math>X(t)</math> समय पर ट्यूमर का आकार <math>t</math>, इसकी गतिशीलता द्वारा नियंत्रित होती है


Line 181: Line 181:


=== चिकित्सा में: महामारी का मॉडलिंग ===
=== चिकित्सा में: महामारी का मॉडलिंग ===
{{main|Compartmental models in epidemiology}}
{{main|एपिडेमियोलॉजी  में कंपार्टमेंटल मॉडल}}
एक नया संक्रामक रोगज़नक़ जिसके प्रति जन संख्या में कोई प्रतिरक्षा नहीं है, समान्यत: शुरुआती चरणों में तेजी से फैल जाएगा, जबकि अतिसंवेदनशील व्यक्तियों की आपूर्ति प्रचुर मात्रा में है। SARS-CoV-2 वायरस, जो [[COVID-19]] का कारण बनता है, ने 2020 की शुरुआत में कई देशों में संक्रमण के दौरान तेजी से वृद्धि प्रदर्शित की।<ref>[https://www.worldometers.info/coronavirus/ Worldometer: COVID-19 CORONAVIRUS PANDEMIC]</ref> अतिसंवेदनशील मेजबानों की कमी (संक्रमण के निरंतर प्रसार के माध्यम से जब तक कि यह झुंड प्रतिरक्षा के लिए सीमा पार नहीं कर लेता) या शारीरिक दूरी के उपायों के माध्यम से संभावित मेजबानों की पहुंच में कमी सहित कारक, तेजी से दिखने वाले महामारी वक्रों को पहले रैखिक कर सकते हैं (लघुगणक की नकल कर सकते हैं) लॉजिस्टिक ट्रांज़िशन को सबसे पहले पियरे फ़्राँस्वा वेरहल्स्ट ने नोट किया था|पियरे-फ़्राँस्वा वेरहल्स्ट, जैसा कि ऊपर बताया गया है) और फिर अधिकतम सीमा तक पहुँचना।<ref>{{Cite arXiv |eprint = 2004.02406|last1 = Villalobos-Arias|first1 = Mario|title = Using generalized logistics regression to forecast population infected by Covid-19|year = 2020|class = q-bio.PE}}</ref>
एक नया संक्रामक रोगज़नक़ जिसके प्रति जन संख्या में कोई प्रतिरक्षा नहीं है, समान्यत: शुरुआती चरणों में तेजी से फैल जाएगा, जबकि अतिसंवेदनशील व्यक्तियों की आपूर्ति प्रचुर मात्रा में है। SARS-CoV-2 वायरस, जो [[COVID-19]] का कारण बनता है, ने 2020 की शुरुआत में कई देशों में संक्रमण के दौरान तेजी से वृद्धि प्रदर्शित की।<ref>[https://www.worldometers.info/coronavirus/ Worldometer: COVID-19 CORONAVIRUS PANDEMIC]</ref> अतिसंवेदनशील मेजबानों की कमी (संक्रमण के निरंतर प्रसार के माध्यम से जब तक कि यह झुंड प्रतिरक्षा के लिए सीमा पार नहीं कर लेता) या शारीरिक दूरी के उपायों के माध्यम से संभावित मेजबानों की पहुंच में कमी सहित कारक, तेजी से दिखने वाले महामारी वक्रों को पहले रैखिक कर सकते हैं (लघुगणक की नकल कर सकते हैं) लॉजिस्टिक ट्रांज़िशन को सबसे पहले पियरे फ़्राँस्वा वेरहल्स्ट ने नोट किया था|पियरे-फ़्राँस्वा वेरहल्स्ट, जैसा कि ऊपर बताया गया है) और फिर अधिकतम सीमा तक पहुँचना।<ref>{{Cite arXiv |eprint = 2004.02406|last1 = Villalobos-Arias|first1 = Mario|title = Using generalized logistics regression to forecast population infected by Covid-19|year = 2020|class = q-bio.PE}}</ref>
एक लॉजिस्टिक फलन , या संबंधित फलन (उदाहरण के लिए [[गोम्पर्ट्ज़ फ़ंक्शन|गोम्पर्ट्ज़ फलन]] ) का उपयोग आमतौर पर वर्णनात्मक या घटनात्मक तरीके से किया जाता है क्योंकि वे न केवल प्रारंभिक घातीय वृद्धि के लिए उपयुक्त होते हैं, बल्कि महामारी के अंतिम स्तर के लिए भी उपयुक्त होते हैं क्योंकि जन संख्या झुंड प्रतिरक्षा विकसित करती है। . यह महामारी के वास्तविक मॉडल के विपरीत है जो महामारी की गतिशीलता (जैसे संपर्क दर, ऊष्मायन समय, सामाजिक दूरी, आदि) के आधार पर विवरण तैयार करने का प्रयास करता है। हालाँकि, कुछ सरल मॉडल विकसित किए गए हैं, जो लॉजिस्टिक समाधान देते हैं।<ref>{{cite journal |last1=Postnikov |first1=Eugene B. |date=June 2020 |title=Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest SIR model provide quantitative parameters and predictions? |url= |journal=Chaos, Solitons & Fractals |volume=135 |page=109841 |doi=10.1016/j.chaos.2020.109841 |pmid=32501369 |pmc=7252058 <!--|access-date=July 20, 2020-->|bibcode=2020CSF...13509841P }}</ref><ref>{{cite web |last1=Saito |first1=Takesi |s2cid=220068969 |date=June 2020 |title=A Logistic Curve in the SIR Model and Its Application to Deaths by COVID-19 in Japan |url= https://www.medrxiv.org/content/10.1101/2020.06.25.20139865v2|website=medRxiv |doi=10.1101/2020.06.25.20139865 |access-date=July 20, 2020}}</ref><ref name="Reiser2020">{{cite arXiv|eprint=2006.01550 |last1=Reiser |first1=Paul A. |title=संशोधित एसआईआर मॉडल एक लॉजिस्टिक समाधान प्रदान कर रहा है|year=2020 |class=q-bio.PE }}</ref>
एक लॉजिस्टिक फलन , या संबंधित फलन (उदाहरण के लिए [[गोम्पर्ट्ज़ फ़ंक्शन|गोम्पर्ट्ज़ फलन]] ) का उपयोग आमतौर पर वर्णनात्मक या घटनात्मक तरीके से किया जाता है क्योंकि वे न केवल प्रारंभिक घातीय वृद्धि के लिए उपयुक्त होते हैं, बल्कि महामारी के अंतिम स्तर के लिए भी उपयुक्त होते हैं क्योंकि जन संख्या झुंड प्रतिरक्षा विकसित करती है। . यह महामारी के वास्तविक मॉडल के विपरीत है जो महामारी की गतिशीलता (जैसे संपर्क दर, ऊष्मायन समय, सामाजिक दूरी, आदि) के आधार पर विवरण तैयार करने का प्रयास करता है। हालाँकि, कुछ सरल मॉडल विकसित किए गए हैं, जो लॉजिस्टिक समाधान देते हैं।<ref>{{cite journal |last1=Postnikov |first1=Eugene B. |date=June 2020 |title=Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest SIR model provide quantitative parameters and predictions? |url= |journal=Chaos, Solitons & Fractals |volume=135 |page=109841 |doi=10.1016/j.chaos.2020.109841 |pmid=32501369 |pmc=7252058 <!--|access-date=July 20, 2020-->|bibcode=2020CSF...13509841P }}</ref><ref>{{cite web |last1=Saito |first1=Takesi |s2cid=220068969 |date=June 2020 |title=A Logistic Curve in the SIR Model and Its Application to Deaths by COVID-19 in Japan |url= https://www.medrxiv.org/content/10.1101/2020.06.25.20139865v2|website=medRxiv |doi=10.1101/2020.06.25.20139865 |access-date=July 20, 2020}}</ref><ref name="Reiser2020">{{cite arXiv|eprint=2006.01550 |last1=Reiser |first1=Paul A. |title=संशोधित एसआईआर मॉडल एक लॉजिस्टिक समाधान प्रदान कर रहा है|year=2020 |class=q-bio.PE }}</ref>
Line 193: Line 193:
[[File:COVID_19_Outbreak.jpg|right|thumb|400x400px|कोविड-19 से गंभीर रूप से प्रभावित 40 देशों के बाह्य संक्रमण पथ और 14 मई तक भव्य (जनसंख्या) औसत]]महामारी विज्ञान मॉडलिंग में सामान्यीकृत लॉजिस्टिक फलन जैसे विकास फलन का उपयोग करने के लाभों में से [[बहुस्तरीय मॉडल]] ढांचे के लिए इसका अपेक्षाकृत आसान अनुप्रयोग है, जहां विभिन्न भौगोलिक क्षेत्रों की जानकारी को साथ एकत्रित किया जा सकता है।
[[File:COVID_19_Outbreak.jpg|right|thumb|400x400px|कोविड-19 से गंभीर रूप से प्रभावित 40 देशों के बाह्य संक्रमण पथ और 14 मई तक भव्य (जनसंख्या) औसत]]महामारी विज्ञान मॉडलिंग में सामान्यीकृत लॉजिस्टिक फलन जैसे विकास फलन का उपयोग करने के लाभों में से [[बहुस्तरीय मॉडल]] ढांचे के लिए इसका अपेक्षाकृत आसान अनुप्रयोग है, जहां विभिन्न भौगोलिक क्षेत्रों की जानकारी को साथ एकत्रित किया जा सकता है।


=== रसायन विज्ञान में: प्रतिक्रिया मॉडल ===
=== रसायन विज्ञान में: प्रतिक्रिया मॉडल                                             ===
[[ऑटोकैटलिसिस]] में अभिकारकों और उत्पादों की सांद्रता लॉजिस्टिक फलन का पालन करती है।
[[ऑटोकैटलिसिस]] में अभिकारकों और उत्पादों की सांद्रता लॉजिस्टिक फलन का पालन करती है।
ईंधन सेल कैथोड में [[प्लैटिनम समूह]] धातु-मुक्त (पीजीएम-मुक्त) ऑक्सीजन कटौती प्रतिक्रिया (ओआरआर) उत्प्रेरक का क्षरण लॉजिस्टिक क्षय फलन का अनुसरण करता है,<ref>{{cite journal |last1=Yin |first1=Xi |last2=Zelenay |first2=Piotr |title=पीजीएम-मुक्त ओआरआर उत्प्रेरक के क्षरण तंत्र के लिए काइनेटिक मॉडल|journal=ECS Transactions |date=13 July 2018 |volume=85 |issue=13 |pages=1239–1250 |doi=10.1149/08513.1239ecst|osti=1471365 |s2cid=103125742 |url=https://www.osti.gov/biblio/1471365 }}</ref> ऑटोकैटलिटिक डिग्रेडेशन तंत्र का सुझाव देना।
ईंधन सेल कैथोड में [[प्लैटिनम समूह]] धातु-मुक्त (पीजीएम-मुक्त) ऑक्सीजन कटौती प्रतिक्रिया (ओआरआर) उत्प्रेरक का क्षरण लॉजिस्टिक क्षय फलन का अनुसरण करता है,<ref>{{cite journal |last1=Yin |first1=Xi |last2=Zelenay |first2=Piotr |title=पीजीएम-मुक्त ओआरआर उत्प्रेरक के क्षरण तंत्र के लिए काइनेटिक मॉडल|journal=ECS Transactions |date=13 July 2018 |volume=85 |issue=13 |pages=1239–1250 |doi=10.1149/08513.1239ecst|osti=1471365 |s2cid=103125742 |url=https://www.osti.gov/biblio/1471365 }}</ref> ऑटोकैटलिटिक डिग्रेडेशन तंत्र का सुझाव देना।


=== भौतिकी में: फर्मी-डिराक वितरण ===
=== भौतिकी में: फर्मी-डिराक वितरण                                             ===
लॉजिस्टिक फलन थर्मल संतुलन में प्रणाली की ऊर्जा अवस्थाओं पर फर्मियन के सांख्यिकीय वितरण को निर्धारित करता है। विशेष रूप से, यह संभावनाओं का वितरण है कि फर्मी फलन | फर्मी-डिराक आंकड़ों के अनुसार, प्रत्येक संभावित ऊर्जा स्तर पर फर्मियन का कब्जा है।
लॉजिस्टिक फलन थर्मल संतुलन में प्रणाली की ऊर्जा अवस्थाओं पर फर्मियन के सांख्यिकीय वितरण को निर्धारित करता है। विशेष रूप से, यह संभावनाओं का वितरण है कि फर्मी फलन | फर्मी-डिराक आंकड़ों के अनुसार, प्रत्येक संभावित ऊर्जा स्तर पर फर्मियन का कब्जा है।


=== भौतिक विज्ञान में: चरण आरेख ===
=== भौतिक विज्ञान में: चरण आरेख                                           ===
[[ प्रसार बंधन | प्रसार बंधन]] देखें।
[[ प्रसार बंधन | प्रसार बंधन]] देखें।



Revision as of 22:33, 3 August 2023

मानक लॉजिस्टिक फलन जहां

एक लॉजिस्टिक फलन या लॉजिस्टिक वक्र समीकरण के साथ सामान्य एस-आकार का वक्र (सिग्मॉइड फलन ) है

जहाँ

, फ़ंक्शन के मध्यबिंदु का मान;
, फलन के मानों का सर्वोच्च;
, लॉजिस्टिक विकास दर या वक्र की स्थिरता


को से वास्तविक संख्याओं के क्षेत्र में x के मानों के लिए, दाईं ओर दिखाया गया S-वक्र प्राप्त होता है, जब x के समीप पहुंचता है तो का ग्राफ के समीप पहुंचता है और जब x के समीप पहुंचता है तो शून्य के समीप पहुंचता है।

लॉजिस्टिक फलन जीव विज्ञान (विशेष रूप से पारिस्थितिकी), जैवगणित, रसायन विज्ञान, जनसांख्यिकी, अर्थशास्त्र, भूविज्ञान, गणितीय मनोविज्ञान, संभाव्यता, समाजशास्त्र, राजनीति विज्ञान, भाषा विज्ञान, सांख्यिकी और कृत्रिम तंत्रिका नेटवर्क सहित कई क्षेत्रों में अनुप्रयोग पाता है। लॉजिस्टिक फलन का सामान्यीकरण अतिपरवलयात्मक कार्य है।

मानक लॉजिस्टिक फलन, जहां , को कभी-कभी केवल सिग्मॉइड भी कहा जाता है।[1] लॉगिट का विपरीत होने के कारण इसे कभी-कभी एक्ज़िट भी कहा जाता है।[2][3]


इतिहास

लॉजिस्टिक वक्र की मूल छवि, जिसे वर्हुल्स्ट ने लघुगणकीय वक्र (आधुनिक शब्दों में, घातीय वक्र) कहा है, के विपरीत है।

लॉजिस्टिक फलन को 1838 और 1847 के बीच पियरे फ्रांकोइस वेरहल्स्ट द्वारा तीन पत्रों की श्रृंखला में प्रस्तुत किया गया था, जिन्होंने इसे एडोल्फ क्वेटलेट के मार्गदर्शन में घातीय वृद्धि मॉडल को समायोजित करके जनसंख्या वृद्धि के मॉडल के रूप में तैयार किया था।[4] वेरहल्स्ट ने पहली बार 1830 के दशक के मध्य में इस फलन को तैयार किया, 1838 में संक्षिप्त नोट प्रकाशित किया,[5] फिर विस्तारित विश्लेषण प्रस्तुत किया और 1844 में फलन को नाम दिया (प्रकाशित 1845);[lower-alpha 1][6] तीसरे पेपर ने बेल्जियम की जनसंख्या वृद्धि के उनके मॉडल में सुधार शब्द को समायोजित किया गया था।[7]

वृद्धि का प्रारंभिक चरण लगभग घातांकीय (ज्यामितीय) होता है; फिर, जैसे ही संतृप्ति प्रारंभ होती है, विकास धीमा होकर रैखिक (अंकगणितीय) हो जाता है, और परिपक्वता पर, विकास रुक जाता है। वेरहल्स्ट ने लॉजिस्टिक शब्द के चयन की व्याख्या नहीं की (French: लॉजिस्टिक), किन्तु यह संभवतः लघुगणकीय वक्र के विपरीत है,[8][lower-alpha 2] और अंकगणित और ज्यामितीय के अनुरूप उनका विकास मॉडल अंकगणितीय वृद्धि और ज्यामितीय वृद्धि (जिसके वक्र को वह आधुनिक शब्द घातीय वक्र के अतिरिक्त लघुगणकीय वक्र कहते हैं) की चर्चा से पहले है, और इस प्रकार लॉजिस्टिक विकास को संभवतः सादृश्य द्वारा नाम दिया गया है, लॉजिस्टिक से होता है Ancient Greek: λογῐστῐκός, romanized: logistikós, ग्रीक गणित का पारंपरिक प्रभाग[lower-alpha 3] यह शब्द सैन्य और प्रबंधन शब्द लॉजिस्टिक्स से असंबंधित है, जो इसके अतिरिक्त से है French: logis चूँकि कुछ का मानना ​​है कि ग्रीक शब्द ने लॉजिस्टिक्स को भी प्रभावित किया है; विवरण के लिए Logistics § Origin देखें।

गणितीय गुण

मानक लॉजिस्टिक फलन पैरामीटर , , , के साथ लॉजिस्टिक फलन है, जो उत्पन्न करता है

वास्तव में, घातीय फलन की प्रकृति के कारण, वास्तविक संख्याओं की एक छोटी श्रृंखला पर x के लिए मानक लॉजिस्टिक फलन की गणना करना अधिकांशतः पर्याप्त होता है, जैसे कि [−6, +6] में निहित सीमा क्योंकि यह जल्दी से 0 और 1 के अपने संतृप्ति मूल्यों के बहुत समीप पहुंच जाता है।

लॉजिस्टिक फलन में समरूपता गुण होता है

इस प्रकार, विचित्र कार्य है.

लॉजिस्टिक फलन ऑफसेट और स्केल्ड हाइपरबोलिक स्पर्शरेखा फलन है:

या
यह इस प्रकार है


व्युत्पन्न

लॉजिस्टिक फलन और इसके पहले 3 डेरिवेटिव

मानक लॉजिस्टिक फलन में सरलता से गणना की गई व्युत्पन्न होती है। व्युत्पन्न को लॉजिस्टिक वितरण के घनत्व के रूप में जाना जाता है:

लॉजिस्टिक वितरण का माध्य x है0 और विचरण π{{i sup|2}3 कि2

अभिन्न

इसके विपरीत, इसके प्रतिअवकलन की गणना प्रतिस्थापन द्वारा की जा सकती है, क्योंकि , इसलिए (एकीकरण के स्थिरांक को छोड़कर)

कृत्रिम तंत्रिका नेटवर्क में, इसे सॉफ्टप्लस फलन के रूप में जाना जाता है और (स्केलिंग के साथ) रैंप फलन का सहज सन्निकटन है, जैसे लॉजिस्टिक फलन (स्केलिंग के साथ) हेविसाइड स्टेप फलन का सहज सन्निकटन है।

लॉजिस्टिक अंतर समीकरण

मानक लॉजिस्टिक फलन सरल प्रथम-क्रम गैर-रेखीय साधारण अंतर समीकरण का समाधान है

सीमा नियम के साथ . यह समीकरण लॉजिस्टिक मानचित्र का सतत संस्करण है। ध्यान दें कि पारस्परिक लॉजिस्टिक फलन सरल प्रथम-क्रम रैखिक साधारण अंतर समीकरण का समाधान है।[9]


गुणात्मक वास्तव को चरण रेखा के संदर्भ में सरलता से समझा जा सकता है: जब फलन 1 होता है तो व्युत्पन्न 0 होता है; और 0 और 1 के बीच के लिए व्युत्पन्न धनात्मक है, और 1 से ऊपर या 0 से कम के लिए ऋणात्मक है (चूँकि ऋणात्मक जन संख्या समान्यत: भौतिक मॉडल के अनुरूप नहीं होती है)। इससे 0 पर एक अस्थिर संतुलन और 1 पर एक स्थिर संतुलन उत्पन्न होता है, और इस प्रकार 0 से अधिक और 1 से कम किसी भी फलन मान के लिए, यह 1 तक बढ़ जाता है।

लॉजिस्टिक समीकरण बर्नौली विभेदक समीकरण का विशेष स्थिति है और इसका निम्नलिखित समाधान है:

एकीकरण के स्थिरांक को चुनने से लॉजिस्टिक वक्र की परिभाषा का अन्य प्रसिद्ध रूप मिलता है:

अधिक मात्रात्मक रूप से, जैसा कि विश्लेषणात्मक समाधान से देखा जा सकता है, लॉजिस्टिक वक्र ऋणात्मक तर्क के लिए प्रारंभिक घातीय वृद्धि दिखाता है, जो 0 के समीप तर्क के लिए स्लोप 1/4 की रैखिक वृद्धि तक पहुंचता है, फिर तेजी से घटते अंतर के साथ 1 तक पहुंचता है।

लॉजिस्टिक फलन प्राकृतिक लॉगिट फलन का विपरीत है

और इस प्रकार बाधाओं के लघुगणक को संभाव्यता में बदल देता है। दो विकल्पों के लॉग-संभावना अनुपात से रूपांतरण भी लॉजिस्टिक वक्र का रूप लेता है।

ऊपर प्राप्त अंतर समीकरण एक सामान्य अंतर समीकरण का एक विशेष स्थिति है जो केवल के लिए सिग्मॉइड फलन को मॉडल करता है। कई मॉडलिंग अनुप्रयोगों में, अधिक सामान्य रूप है [10]

वांछनीय हो सकता है. इसका समाधान स्थानांतरित और स्केल्ड सिग्मॉइड है .

हाइपरबोलिक-स्पर्शरेखा संबंध लॉजिस्टिक फलन के व्युत्पन्न के लिए दूसरे रूप की ओर ले जाता है:

जो लॉजिस्टिक फलन को लॉजिस्टिक वितरण में जोड़ता है।

(0, 1/2) के बारे में घूर्णी समरूपता

लॉजिस्टिक फलन का योग और ऊर्ध्वाधर अक्ष के बारे में इसका प्रतिबिंब, , है

इस प्रकार लॉजिस्टिक फलन बिंदु (0, 1/2) के बारे में घूर्णनशील रूप से सममित है।[11]


अनुप्रयोग

लिंक[12] यादृच्छिक चर के वितरण-मुक्त संचय के लिए वाल्ड के समीकरण या वाल्ड के अनुक्रमिक विश्लेषण के सिद्धांत का विस्तार बनाया गया जब तक कि धनात्मक या ऋणात्मक सीमा पहले समान या पार नहीं हो जाती। लिंक[13] पहले धनात्मक सीमा को , लॉजिस्टिक फलन के समान या उससे अधिक करने की संभावना प्राप्त करता है। यह पहला प्रमाण है कि लॉजिस्टिक फलन का आधार स्टोकेस्टिक प्रक्रिया हो सकती है। लिंक[14] लॉजिस्टिक प्रयोगात्मक परिणामों के उदाहरणों की सदी और इस संभावना और सीमाओं पर अवशोषण के समय के बीच नया व्युत्पन्न संबंध प्रदान करता है।

पारिस्थितिकी में: जनसंख्या वृद्धि मॉडलिंग

पियरे-फ़्रांस्वा वेरहल्स्ट (1804-1849)

लॉजिस्टिक समीकरण का विशिष्ट अनुप्रयोग जनसंख्या वृद्धि का सामान्य मॉडल है (जनसंख्या गतिशीलता भी देखें), मूल रूप से 1838 में पियरे फ्रांकोइस वेरहल्स्ट के कारण, जहां प्रजनन की दर उपस्थित जनसंख्या और राशि दोनों के लिए आनुपातिक है उपलब्ध संसाधनों का, शेष सब समान वेरहल्स्ट समीकरण को तब प्रकाशित किया गया था जब वेरहल्स्ट ने थॉमस माल्थस का जनसंख्या के सिद्धांत पर निबंध पढ़ा था, जो सरल (अप्रतिबंधित) घातीय वृद्धि के माल्थसियन विकास मॉडल का वर्णन करता है। वेरहल्स्ट ने जीव विज्ञान जनसंख्या की आत्म-सीमित वृद्धि का वर्णन करने के लिए अपना लॉजिस्टिक समीकरण निकाला गया था। इस समीकरण को 1911 में एंडरसन ग्रे मैकेंड्रिक या ए द्वारा फिर से खोजा गया था। शोरबा में बैक्टीरिया की वृद्धि के लिए जी. मैकेंड्रिक और गैर-रेखीय पैरामीटर अनुमान के लिए तकनीक का उपयोग करके प्रयोगात्मक रूप से परीक्षण किया गया।[15] 1920 में जॉन्स हॉपकिन्स विश्वविद्यालय के रेमंड पर्ल (1879-1940) और लोवेल रीड (1888-1966) द्वारा पुनः खोज के बाद इस समीकरण को कभी-कभी वेरहल्स्ट-पर्ल समीकरण भी कहा जाता है।[16] अन्य वैज्ञानिक, अल्फ्रेड जे. लोटका ने 1925 में फिर से समीकरण निकाला इसे जनसंख्या वृद्धि का नियम कहा जाता है ।

मान लीजिए कि जनसंख्या के आकार का प्रतिनिधित्व करता है ( का उपयोग अधिकांशतः पारिस्थितिकी में किया जाता है) और समय का प्रतिनिधित्व करता है, इस मॉडल को अंतर समीकरण द्वारा औपचारिक रूप दिया गया है:

जहां स्थिरांक जनसंख्या वृद्धि दर को परिभाषित करता है और वहन क्षमता है.

समीकरण में, प्रारंभिक, अबाधित विकास दर को पहले पद द्वारा प्रतिरूपित किया जाता है। दर का मान समय की एक इकाई में जनसंख्या की आनुपातिक वृद्धि को दर्शाता है। बाद में, जैसे-जैसे जनसंख्या बढ़ती है, दूसरे पद का मापांक (जिसका गुणनफल होता है) लगभग पहले जितना बड़ा हो जाता है, क्योंकि जनसंख्या के कुछ सदस्य कुछ महत्वपूर्ण संसाधनों के लिए प्रतिस्पर्धा करके एक-दूसरे के साथ हस्तक्षेप करते हैं, जैसे भोजन या रहने की जगह. इस विरोधी प्रभाव को टोंटी कहा जाता है, और इसे पैरामीटर के मान द्वारा प्रतिरूपित किया जाता है। प्रतिस्पर्धा संयुक्त विकास दर को कम कर देती है, जब तक कि का मान बढ़ना संवर्त नहीं हो जाता (इसे जनसंख्या की परिपक्वता कहा जाता है)। समीकरण का हल प्रारंभिक जनसंख्या होने के साथ) है

जहाँ

जहां , का सीमित मान है, उच्चतम मान जिस तक जनसंख्या अनंत समय में पहुंच सकती है (या परिमित समय में पहुंचने के समीप आ सकती है)। इस बात पर जोर देना महत्वपूर्ण है कि वहन क्षमता प्रारंभिक मान से स्वतंत्र रूप से और उस स्थिति में भी तक पहुंचती है।

पारिस्थितिकी में, प्रजातियों को कभी-कभी उन चयनात्मक प्रक्रियाओं के आधार पर -रणनीतिकार या -रणनीतिकार के रूप में संदर्भित किया जाता है जिन्होंने उनके जीवन इतिहास रणनीतियों को आकार दिया है। परिवर्तनीय आयामों को चुनना जिससे जनसंख्या को वहन क्षमता की इकाइयों में माप सकते है, और समय को की इकाइयों में माप सके, आयाम रहित अंतर समीकरण देता है


अभिन्न

लॉजिस्टिक फलन के पारिस्थितिक रूप के प्रतिव्युत्पन्न की गणना के बाद से, प्रतिस्थापन द्वारा की जा सकती है।


समय-भिन्न वहन क्षमता

चूँकि पर्यावरणीय परिस्थितियाँ वहन क्षमता को प्रभावित करती हैं, परिणामस्वरूप यह समय-भिन्न हो सकता है, के साथ, निम्नलिखित गणितीय मॉडल की ओर ले जाता है:

एक विशेष रूप से महत्वपूर्ण स्थिति वहन क्षमता का है जो समय-समय पर अवधि के साथ बदलता रहता है :

यह दिखाया जा सकता है[17] कि ऐसे स्थिति में, प्रारंभिक मान से स्वतंत्र रूप से , एक अद्वितीय आवधिक समाधान की ओर प्रवृत्त होगा, जिसकी अवधि है।

का एक विशिष्ट मान एक वर्ष है: ऐसे स्थिति में मौसम की स्थिति में आवधिक बदलाव को प्रतिबिंबित कर सकता है।

एक और रौचक सामान्यीकरण यह विचार करना है कि वहन क्षमता से पहले के समय में जनसंख्या का कार्य है, जिस तरह से जनसंख्या अपने पर्यावरण को संशोधित करती है उसमें देरी को पकड़ती है।। इससे लॉजिस्टिक विलंब समीकरण बनता है,[18] जिसका बहुत समृद्ध वास्तव है, कुछ पैरामीटर रेंज में अस्थिरता के साथ-साथ शून्य तक मोनोटोनिक क्षय, चिकनी घातांकीय वृद्धि, विरामित असीमित वृद्धि (अथार्त , एकाधिक एस-आकार), विरामित वृद्धि या स्थिर स्तर पर प्रत्यावर्तन, दोलन दृष्टिकोण स्थिर स्तर तक, स्थायी दोलन, परिमित-समय की विलक्षणताएं और साथ ही परिमित-समय की मृत्यु है ।

सांख्यिकी और मशीन लर्निंग में

लॉजिस्टिक फलन का उपयोग सांख्यिकी में कई भूमिकाओं में किया जाता है। उदाहरण के लिए, वे लॉजिस्टिक वितरण के संचयी वितरण फलन हैं, और उन्हें थोड़ा सरल बनाया गया है, जिसका उपयोग शतरंज खिलाड़ी को एलो रेटिंग प्रणाली में अपने प्रतिद्वंद्वी को हराने के अवसर को मॉडल करने के लिए किया जाता है। अब और अधिक विशिष्ट उदाहरण अनुसरण करते है।

लॉजिस्टिक रिग्रेशन

लॉजिस्टिक फलन का उपयोग लॉजिस्टिक रिग्रेशन में संभाव्यता को मॉडल करने के लिए किया जाता है घटना या अधिक व्याख्यात्मक चर से प्रभावित हो सकती है: उदाहरण मॉडल होगा

जहाँ व्याख्यात्मक चर है, और फिट किए जाने वाले मॉडल पैरामीटर हैं, और मानक लॉजिस्टिक फलन है।

लॉजिस्टिक रिग्रेशन और अन्य लॉग-रैखिक मॉडल भी आमतौर पर यंत्र अधिगम में उपयोग किए जाते हैं। एकाधिक इनपुट के लिए लॉजिस्टिक फलन का सामान्यीकरण सॉफ्टमैक्स सक्रियण फलन है, जिसका उपयोग बहुराष्ट्रीय लॉजिस्टिक प्रतिगमन में किया जाता है।

लॉजिस्टिक फलन का अन्य अनुप्रयोग तीव्र मॉडल में है, जिसका उपयोग आइटम प्रतिक्रिया सिद्धांत में किया जाता है। विशेष रूप से, रैश मॉडल श्रेणीगत चर के संग्रह के आधार पर कॉन्टिनम (सिद्धांत) पर वस्तुओं या व्यक्तियों के स्थानों की अधिकतम संभावना अनुमान के लिए आधार बनाता है, उदाहरण के लिए वर्गीकृत किए गए प्रतिक्रियाओं के आधार पर सातत्य पर व्यक्तियों की क्षमताएं सही और गलत के रूप में।

तंत्रिका नेटवर्क

लॉजिस्टिक फलन का उपयोग अधिकांशतः तंत्रिका नेटवर्क में मॉडल में गैर-रैखिकता लाने या निर्दिष्ट अंतराल (गणित) के भीतर संकेतों को क्लैंप करने के लिए किया जाता है। लोकप्रिय कृत्रिम न्यूरॉन अपने इनपुट संकेतों के रैखिक संयोजन की गणना करता है, और परिणाम के लिए सक्रियण फलन के रूप में सीमित लॉजिस्टिक फलन लागू करता है; इस मॉडल को शास्त्रीय परसेप्ट्रॉन के सुचारु संस्करण के रूप में देखा जा सकता है।

सक्रियण या स्क्वैशिंग कार्यों के लिए सामान्य विकल्प, तंत्रिका नेटवर्क की प्रतिक्रिया को सीमित रखने के लिए बड़े परिमाण के लिए क्लिप करने के लिए उपयोग किया जाता है[19] है

जो लॉजिस्टिक फलन है।

इन संबंधों के परिणामस्वरूप कृत्रिम न्यूरॉन्स के साथ कृत्रिम तंत्रिका नेटवर्क का सरलीकृत कार्यान्वयन होता है। अभ्यासकर्ता सावधान करते हैं कि सिग्मोइडल फलन जो मूल के बारे में विचित्र फलन हैं (उदाहरण के लिए हाइपरबोलिक स्पर्शरेखा) पश्चप्रचार के साथ नेटवर्क को प्रशिक्षित करते समय तेजी से अभिसरण की ओर ले जाते हैं।[20] लॉजिस्टिक फलन स्वयं अन्य प्रस्तावित सक्रियण फलन , सॉफ्टप्लस का व्युत्पन्न है।

चिकित्सा में: ट्यूमर के विकास का मॉडलिंग

लॉजिस्टिक कर्व का अन्य अनुप्रयोग चिकित्सा में है, जहां ट्यूमर के विकास को मॉडल करने के लिए लॉजिस्टिक डिफरेंशियल समीकरण का उपयोग किया जाता है। इस एप्लिकेशन को पारिस्थितिकी के ढांचे में उपर्युक्त उपयोग का विस्तार माना जा सकता है (सामान्यीकृत लॉजिस्टिक वक्र भी देखें, जो अधिक मापदंडों की अनुमति देता है)। से निरूपित करना समय पर ट्यूमर का आकार , इसकी गतिशीलता द्वारा नियंत्रित होती है

जो इस प्रकार का है

जहाँ ट्यूमर की प्रसार दर है.

यदि कीमोथेरेपी लॉग-किल प्रभाव के साथ प्रारंभ की जाती है, तो समीकरण को संशोधित किया जा सकता है

जहाँ चिकित्सा-प्रेरित मृत्यु दर है। बहुत लंबी चिकित्सा के आदर्श स्थिति में, आवधिक कार्य (अवधि के) के रूप में प्रतिरूपित किया जा सकता है ) या (निरंतर जलसेक चिकित्सा के स्थिति में) निरंतर कार्य के रूप में, और किसी के पास वह है

अथार्त यदि औसत चिकित्सा-प्रेरित मृत्यु दर आधारभूत प्रसार दर से अधिक है, तो रोग का उन्मूलन हो जाता है। बेशक, यह विकास और उपचार दोनों का अतिसरलीकृत मॉडल है (उदाहरण के लिए यह क्लोनल प्रतिरोध की घटना को ध्यान में नहीं रखता है)।

चिकित्सा में: महामारी का मॉडलिंग

एक नया संक्रामक रोगज़नक़ जिसके प्रति जन संख्या में कोई प्रतिरक्षा नहीं है, समान्यत: शुरुआती चरणों में तेजी से फैल जाएगा, जबकि अतिसंवेदनशील व्यक्तियों की आपूर्ति प्रचुर मात्रा में है। SARS-CoV-2 वायरस, जो COVID-19 का कारण बनता है, ने 2020 की शुरुआत में कई देशों में संक्रमण के दौरान तेजी से वृद्धि प्रदर्शित की।[21] अतिसंवेदनशील मेजबानों की कमी (संक्रमण के निरंतर प्रसार के माध्यम से जब तक कि यह झुंड प्रतिरक्षा के लिए सीमा पार नहीं कर लेता) या शारीरिक दूरी के उपायों के माध्यम से संभावित मेजबानों की पहुंच में कमी सहित कारक, तेजी से दिखने वाले महामारी वक्रों को पहले रैखिक कर सकते हैं (लघुगणक की नकल कर सकते हैं) लॉजिस्टिक ट्रांज़िशन को सबसे पहले पियरे फ़्राँस्वा वेरहल्स्ट ने नोट किया था|पियरे-फ़्राँस्वा वेरहल्स्ट, जैसा कि ऊपर बताया गया है) और फिर अधिकतम सीमा तक पहुँचना।[22] एक लॉजिस्टिक फलन , या संबंधित फलन (उदाहरण के लिए गोम्पर्ट्ज़ फलन ) का उपयोग आमतौर पर वर्णनात्मक या घटनात्मक तरीके से किया जाता है क्योंकि वे न केवल प्रारंभिक घातीय वृद्धि के लिए उपयुक्त होते हैं, बल्कि महामारी के अंतिम स्तर के लिए भी उपयुक्त होते हैं क्योंकि जन संख्या झुंड प्रतिरक्षा विकसित करती है। . यह महामारी के वास्तविक मॉडल के विपरीत है जो महामारी की गतिशीलता (जैसे संपर्क दर, ऊष्मायन समय, सामाजिक दूरी, आदि) के आधार पर विवरण तैयार करने का प्रयास करता है। हालाँकि, कुछ सरल मॉडल विकसित किए गए हैं, जो लॉजिस्टिक समाधान देते हैं।[23][24][25]


प्रारंभिक COVID-19 मामलों की मॉडलिंग

महामारी विज्ञान मॉडलिंग में सामान्यीकृत लॉजिस्टिक फलन (रिचर्ड्स ग्रोथ कर्व)।

एक सामान्यीकृत लॉजिस्टिक फलन , जिसे रिचर्ड्स ग्रोथ कर्व भी कहा जाता है, को COVID-19 प्रकोप के प्रारंभिक चरण को मॉडल करने के लिए लागू किया गया है।[26] लेखक सामान्यीकृत लॉजिस्टिक फलन को संक्रमित मामलों की संचयी संख्या में फिट करते हैं, जिसे यहां संक्रमण प्रक्षेपवक्र के रूप में जाना जाता है। साहित्य में सामान्यीकृत लॉजिस्टिक फलन के विभिन्न मानकीकरण हैं। अधिकांशतः उपयोग किया जाने वाला फॉर्म है

जहाँ वास्तविक संख्याएँ हैं, और धनात्मक वास्तविक संख्या है. वक्र का लचीलापन पैरामीटर के कारण है : (i) यदि तब वक्र लॉजिस्टिक फलन तक कम हो जाता है, और (ii) के रूप में शून्य के समीप पहुंचता है, वक्र गोम्पर्ट्ज़ फलन में परिवर्तित हो जाता है। महामारी विज्ञान मॉडलिंग में, , , और क्रमशः अंतिम महामारी आकार, संक्रमण दर और अंतराल चरण का प्रतिनिधित्व करते हैं। उदाहरण के लिए संक्रमण प्रक्षेपवक्र के लिए सही पैनल देखें इसके लिए सेट है .

कोविड-19 से गंभीर रूप से प्रभावित 40 देशों के बाह्य संक्रमण पथ और 14 मई तक भव्य (जनसंख्या) औसत

महामारी विज्ञान मॉडलिंग में सामान्यीकृत लॉजिस्टिक फलन जैसे विकास फलन का उपयोग करने के लाभों में से बहुस्तरीय मॉडल ढांचे के लिए इसका अपेक्षाकृत आसान अनुप्रयोग है, जहां विभिन्न भौगोलिक क्षेत्रों की जानकारी को साथ एकत्रित किया जा सकता है।

रसायन विज्ञान में: प्रतिक्रिया मॉडल

ऑटोकैटलिसिस में अभिकारकों और उत्पादों की सांद्रता लॉजिस्टिक फलन का पालन करती है। ईंधन सेल कैथोड में प्लैटिनम समूह धातु-मुक्त (पीजीएम-मुक्त) ऑक्सीजन कटौती प्रतिक्रिया (ओआरआर) उत्प्रेरक का क्षरण लॉजिस्टिक क्षय फलन का अनुसरण करता है,[27] ऑटोकैटलिटिक डिग्रेडेशन तंत्र का सुझाव देना।

भौतिकी में: फर्मी-डिराक वितरण

लॉजिस्टिक फलन थर्मल संतुलन में प्रणाली की ऊर्जा अवस्थाओं पर फर्मियन के सांख्यिकीय वितरण को निर्धारित करता है। विशेष रूप से, यह संभावनाओं का वितरण है कि फर्मी फलन | फर्मी-डिराक आंकड़ों के अनुसार, प्रत्येक संभावित ऊर्जा स्तर पर फर्मियन का कब्जा है।

भौतिक विज्ञान में: चरण आरेख

प्रसार बंधन देखें।

भाषा विज्ञान में: भाषा परिवर्तन

भाषाविज्ञान में, लॉजिस्टिक फलन का उपयोग भाषा परिवर्तन को मॉडल करने के लिए किया जा सकता है:[28] नवाचार जो पहले हाशिए पर होता है वह समय के साथ अधिक तेजी से फैलने लगता है, और फिर धीरे-धीरे फैलता है क्योंकि यह अधिक सार्वभौमिक रूप से अपनाया जाता है।

कृषि में: फसल प्रतिक्रिया मॉडलिंग

लॉजिस्टिक एस-वक्र का उपयोग विकास कारकों में परिवर्तन के प्रति फसल की प्रतिक्रिया को मॉडलिंग करने के लिए किया जा सकता है। प्रतिक्रिया कार्य दो प्रकार के होते हैं: धनात्मक और ऋणात्मक विकास वक्र। उदाहरण के लिए, फसल की उपज निश्चित स्तर (धनात्मक कार्य) तक विकास कारक के मूल्य में वृद्धि के साथ बढ़ सकती है, या यह विकास कारक मूल्यों (ऋणात्मक विकास कारक के कारण ऋणात्मक कार्य) में वृद्धि के साथ घट सकती है, जिस स्थिति में उलट की आवश्यकता होती है एस कर्व।

S-curve model for crop yield versus depth of water table.[29]
Inverted S-curve model for crop yield versus soil salinity.[30]

अर्थशास्त्र और समाजशास्त्र में: नवाचारों का प्रसार

लॉजिस्टिक फलन का उपयोग इसके जीवन चक्र के माध्यम से नवाचारों के प्रसार की प्रगति को दर्शाने के लिए किया जा सकता है।

द लॉज़ ऑफ़ इमिटेशन (1890) में गेब्रियल दोपहर ने अनुकरणात्मक श्रृंखलाओं के माध्यम से नए विचारों के उदय और प्रसार का वर्णन किया है। विशेष रूप से, टार्डे तीन मुख्य चरणों की पहचान करते हैं जिनके माध्यम से नवाचार फैलते हैं: पहला कठिन शुरुआत से मेल खाता है, जिसके दौरान विचार को विरोधी आदतों और विश्वासों से भरे शत्रुतापूर्ण माहौल में संघर्ष करना पड़ता है; दूसरा, विचार के उचित घातीय उतार-चढ़ाव से मेल खाता है ; अंत में, तीसरा चरण लघुगणकीय है , और उस समय से मेल खाता है जब विचार का आवेग धीरे-धीरे धीमा हो जाता है, साथ ही साथ नए प्रतिद्वंद्वी विचार भी प्रकट होते हैं। आगामी स्थिति नवप्रवर्तन की प्रगति को रोक देती है या स्थिर कर देती है, जो स्पर्शोन्मुख के समीप पहुँच जाती है।

एक संप्रभु राज्य में, उपराष्ट्रीय इकाइयाँ (घटक राज्य या शहर) अपनी परियोजनाओं के वित्तपोषण के लिए ऋण का उपयोग कर सकती हैं। हालाँकि, यह फंडिंग स्रोत आमतौर पर सख्त कानूनी नियमों के साथ-साथ अर्थव्यवस्था की कमी की बाधाओं के अधीन है, विशेष रूप से वे संसाधन जो बैंक उधार दे सकते हैं (उनकी इक्विटी (वित्त) या बेसल III सीमा के कारण)। ये प्रतिबंध, जो संतृप्ति स्तर का प्रतिनिधित्व करते हैं, पैसे के लिए प्रतिस्पर्धा (अर्थशास्त्र) में तेजी से वृद्धि के साथ, क्रेडिट दलीलों का सार्वजनिक वित्त प्रसार बनाते हैं और समग्र राष्ट्रीय प्रतिक्रिया सिग्मॉइड वक्र है।[31] अर्थव्यवस्था के इतिहास में, जब नए उत्पाद प्रस्तुत किए जाते हैं तो गहन मात्रा में अनुसंधान और विकास होता है जिससे गुणवत्ता में नाटकीय सुधार होता है और लागत में कमी आती है। इससे उद्योग के तीव्र विकास का दौर प्रारंभ होता है। कुछ अधिक प्रसिद्ध उदाहरण हैं: रेलमार्ग, गरमागरम प्रकाश बल्ब, विद्युतीकरण, कारें और हवाई यात्रा। अंततः, नाटकीय सुधार और लागत में कमी के अवसर समाप्त हो जाते हैं, उत्पाद या प्रक्रिया कुछ शेष संभावित नए ग्राहकों के साथ व्यापक उपयोग में होती है, और बाजार संतृप्त हो जाते हैं।

इंटरनेशनल इंस्टीट्यूट ऑफ एप्लाइड सिस्टम्स एनालिसिस (आईआईएएसए) के कई शोधकर्ताओं द्वारा कागजात में लॉजिस्टिक विश्लेषण का उपयोग किया गया था। ये पेपर विभिन्न नवाचारों, बुनियादी ढांचे और ऊर्जा स्रोत प्रतिस्थापन के प्रसार और अर्थव्यवस्था में काम की भूमिका के साथ-साथ लंबे आर्थिक चक्र से संबंधित हैं। लंबे आर्थिक चक्रों की जांच रॉबर्ट आयर्स (1989) द्वारा की गई थी।[32] सेसारे मार्चेट्टी ने कोंड्रैटिएव लहर और नवाचारों के प्रसार पर प्रकाशित किया।[33][34] अर्नल्फ़ ग्रुबलर की पुस्तक (1990) नहरों, रेलमार्गों, राजमार्गों और एयरलाइनों सहित बुनियादी ढांचे के प्रसार का विस्तृत विवरण देती है, जिसमें दिखाया गया है कि उनका प्रसार लॉजिस्टिक आकार के वक्रों के बाद हुआ।[35] कार्लोटा पेरेज़ ने निम्नलिखित लेबल के साथ लंबे (कोंड्रैटिव वेव) व्यापार चक्र को चित्रित करने के लिए लॉजिस्टिक वक्र का उपयोग किया: तकनीकी युग की शुरुआत विघटन के रूप में, चढ़ाई उन्माद के रूप में, तेजी से निर्माण तालमेल के रूप में और समापन परिपक्वता के रूप में।[36]


यह भी देखें

टिप्पणियाँ

  1. The paper was presented in 1844, and published in 1845: "(Lu à la séance du 30 novembre 1844)." "(Read at the session of 30 November 1844).", p. 1.
  2. Verhulst first refers to arithmetic progression and geometric progression, and refers to the geometric growth curve as a logarithmic curve (confusingly, the modern term is instead exponential curve, which is the inverse). He then calls his curve logistic, in contrast to logarithmic, and compares the logarithmic curve and logistic curve in the figure of his paper.
  3. In Ancient Greece, λογῐστῐκός referred to practical computation and accounting, in contrast to ἀριθμητική (arithmētikḗ), the theoretical or philosophical study of numbers. Confusingly, in English, arithmetic refers to practical computation, even though it derives from ἀριθμητική, not λογῐστῐκός. See for example Louis Charles Karpinski, Nicomachus of Gerasa: Introduction to Arithmetic (1926) p. 3: "Arithmetic is fundamentally associated by modern readers, particularly by scientists and mathematicians, with the art of computation. For the ancient Greeks after Pythagoras, however, arithmetic was primarily a philosophical study, having no necessary connection with practical affairs. Indeed the Greeks gave a separate name to the arithmetic of business, λογιστική [accounting or practical logistic] ... In general the philosophers and mathematicians of Greece undoubtedly considered it beneath their dignity to treat of this branch, which probably formed a part of the elementary instruction of children."


संदर्भ

  1. "Sigmoid — PyTorch 1.10.1 documentation".
  2. expit documentation for R's clusterPower package.
  3. "Scipy.special.expit — SciPy v1.7.1 Manual".
  4. Cramer 2002, pp. 3–5.
  5. Cite error: Invalid <ref> tag; no text was provided for refs named verhulst1838
  6. Verhulst, Pierre-François (1845). "Recherches mathématiques sur la loi d'accroissement de la population" [Mathematical Researches into the Law of Population Growth Increase]. Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles. 18: 8. Retrieved 18 February 2013. Nous donnerons le nom de logistique à la courbe [We will give the name logistic to the curve]
  7. Verhulst, Pierre-François (1847). "Deuxième mémoire sur la loi d'accroissement de la population". Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. 20: 1–32. Retrieved 18 February 2013.
  8. Shulman, Bonnie (1998). "गणित-जीवित! सामाजिक संदर्भ में गणित पढ़ाने के लिए मूल स्रोतों का उपयोग करना". PRIMUS. 8 (March): 1–14. doi:10.1080/10511979808965879. The diagram clinched it for me: there two curves labeled "Logistique" and "Logarithmique" are drawn on the same axes, and one can see that there is a region where they match almost exactly, and then diverge.
    I concluded that Verhulst's intention in naming the curve was indeed to suggest this comparison, and that "logistic" was meant to convey the curve's "log-like" quality.
  9. Kocian, Alexander; Carmassi, Giulia; Cela, Fatjon; Incrocci, Luca; Milazzo, Paolo; Chessa, Stefano (7 June 2020). "ग्रीनहाउस फसलों के लिए लुप्त डेटा के साथ बायेसियन सिग्मॉइड-प्रकार की समय श्रृंखला का पूर्वानुमान". Sensors. 20 (11): 3246. Bibcode:2020Senso..20.3246K. doi:10.3390/s20113246. PMC 7309099. PMID 32517314.
  10. Kyurkchiev, Nikolay, and Svetoslav Markov. "Sigmoid functions: some approximation and modelling aspects". LAP LAMBERT Academic Publishing, Saarbrucken (2015).
  11. Raul Rojas. Neural Networks – A Systematic Introduction (PDF). Retrieved 15 October 2016.
  12. S. W. Link, Psychometrika, 1975, 40, 1, 77–105
  13. S. W. Link, Attention and Performance VII, 1978, 619–630
  14. S. W. Link, The wave theory of difference and similarity (book), Taylor and Francis, 1992
  15. A. G. McKendricka; M. Kesava Paia1 (January 1912). "XLV.—The Rate of Multiplication of Micro-organisms: A Mathematical Study". Proceedings of the Royal Society of Edinburgh. 31: 649–653. doi:10.1017/S0370164600025426.
  16. Raymond Pearl & Lowell Reed (June 1920). "संयुक्त राज्य अमेरिका की जनसंख्या की वृद्धि दर पर" (PDF). Proceedings of the National Academy of Sciences of the United States of America. Vol. 6, no. 6. p. 275.
  17. Griffiths, Graham; Schiesser, William (2009). "रैखिक और अरेखीय तरंगें". Scholarpedia (in English). 4 (7): 4308. Bibcode:2009SchpJ...4.4308G. doi:10.4249/scholarpedia.4308. ISSN 1941-6016.
  18. Yukalov, V. I.; Yukalova, E. P.; Sornette, D. (2009). "विलंबित वहन क्षमता के कारण विकास में रुकावट आई". Physica D: Nonlinear Phenomena. 238 (17): 1752–1767. arXiv:0901.4714. Bibcode:2009PhyD..238.1752Y. doi:10.1016/j.physd.2009.05.011. S2CID 14456352.
  19. Gershenfeld 1999, p. 150.
  20. LeCun, Y.; Bottou, L.; Orr, G.; Muller, K. (1998). Orr, G.; Muller, K. (eds.). कुशल बैकप्रॉप (PDF). ISBN 3-540-65311-2. {{cite book}}: |work= ignored (help)
  21. Worldometer: COVID-19 CORONAVIRUS PANDEMIC
  22. Villalobos-Arias, Mario (2020). "Using generalized logistics regression to forecast population infected by Covid-19". arXiv:2004.02406 [q-bio.PE].
  23. Postnikov, Eugene B. (June 2020). "Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest SIR model provide quantitative parameters and predictions?". Chaos, Solitons & Fractals. 135: 109841. Bibcode:2020CSF...13509841P. doi:10.1016/j.chaos.2020.109841. PMC 7252058. PMID 32501369.
  24. Saito, Takesi (June 2020). "A Logistic Curve in the SIR Model and Its Application to Deaths by COVID-19 in Japan". medRxiv. doi:10.1101/2020.06.25.20139865. S2CID 220068969. Retrieved July 20, 2020.
  25. Reiser, Paul A. (2020). "संशोधित एसआईआर मॉडल एक लॉजिस्टिक समाधान प्रदान कर रहा है". arXiv:2006.01550 [q-bio.PE].
  26. Lee, Se Yoon; Lei, Bowen; Mallick, Bani (2020). "Estimation of COVID-19 spread curves integrating global data and borrowing information". PLOS ONE. 15 (7): e0236860. arXiv:2005.00662. Bibcode:2020PLoSO..1536860L. doi:10.1371/journal.pone.0236860. PMC 7390340. PMID 32726361.
  27. Yin, Xi; Zelenay, Piotr (13 July 2018). "पीजीएम-मुक्त ओआरआर उत्प्रेरक के क्षरण तंत्र के लिए काइनेटिक मॉडल". ECS Transactions. 85 (13): 1239–1250. doi:10.1149/08513.1239ecst. OSTI 1471365. S2CID 103125742.
  28. Bod, Hay, Jennedy (eds.) 2003, pp. 147–156
  29. Collection of data on crop production and depth of the water table in the soil of various authors. On line: [1]
  30. Collection of data on crop production and soil salinity of various authors. On line: [2]
  31. Rocha, Leno S.; Rocha, Frederico S. A.; Souza, Thársis T. P. (5 October 2017). "Is the public sector of your country a diffusion borrower? Empirical evidence from Brazil". PLOS ONE (in English). 12 (10): e0185257. arXiv:1604.07782. Bibcode:2017PLoSO..1285257R. doi:10.1371/journal.pone.0185257. ISSN 1932-6203. PMC 5628819. PMID 28981532.
  32. Ayres, Robert (February 1989). "Technological Transformations and Long Waves" (PDF). International Institute for Applied Systems Analysis. Archived from the original (PDF) on 1 March 2012. Retrieved 6 November 2010.
  33. Marchetti, Cesare (1996). "Pervasive Long Waves: Is Society Cyclotymic" (PDF). Aspen Global Change INstitute. Archived from the original (PDF) on 5 March 2012.
  34. Marchetti, Cesare (1988). "Kondratiev Revisited-After One Cycle" (PDF). Cesare Marchetti.
  35. Grübler, Arnulf (1990). The Rise and Fall of Infrastructures: Dynamics of Evolution and Technological Change in Transport (PDF). Heidelberg and New York: Physica-Verlag.
  36. Perez, Carlota (2002). Technological Revolutions and Financial Capital: The Dynamics of Bubbles and Golden Ages. UK: Edward Elgar Publishing Limited. ISBN 1-84376-331-1.


बाहरी संबंध