सतह माइक्रोमशीनिंग: Difference between revisions
(Created page with "{{more footnotes|date=February 2018}} सतह माइक्रोमशीनिंग एक [[सब्सट्रेट (सामग्री विज्ञान)]...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{more footnotes|date=February 2018}} | {{more footnotes|date=February 2018}} | ||
सतह माइक्रोमशीनिंग एक [[सब्सट्रेट (सामग्री विज्ञान)]] पर नैनोकणों के जमाव और संरचनात्मक परतों को खोदकर [[सूक्ष्म]] संरचनाओं का निर्माण करती है।<ref>{{cite journal |last=Bustillo |first=J.M. |author2=R.T. Howe |author3=R.S. Muller |date=August 1998 |title=माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम के लिए सतह माइक्रोमशीनिंग|journal=Proceedings of the IEEE |volume=86 |issue=8 |pages=1552–1574 |doi=10.1109/5.704260|citeseerx=10.1.1.120.4059 }}</ref> यह [[थोक माइक्रोमशीनिंग]] से अलग है, जिसमें संरचनाओं का निर्माण करने के लिए एक [[सिलिकॉन]] सब्सट्रेट [[वेफर (इलेक्ट्रॉनिक्स)]] को | सतह माइक्रोमशीनिंग एक [[सब्सट्रेट (सामग्री विज्ञान)]] पर नैनोकणों के जमाव और संरचनात्मक परतों को खोदकर [[सूक्ष्म]] संरचनाओं का निर्माण करती है।<ref>{{cite journal |last=Bustillo |first=J.M. |author2=R.T. Howe |author3=R.S. Muller |date=August 1998 |title=माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम के लिए सतह माइक्रोमशीनिंग|journal=Proceedings of the IEEE |volume=86 |issue=8 |pages=1552–1574 |doi=10.1109/5.704260|citeseerx=10.1.1.120.4059 }}</ref> यह [[थोक माइक्रोमशीनिंग]] से अलग है, जिसमें संरचनाओं का निर्माण करने के लिए एक [[सिलिकॉन]] सब्सट्रेट [[वेफर (इलेक्ट्रॉनिक्स)]] को निर्वाचित रूप से उकेरा जाता है। | ||
== परतें == | == परतें == | ||
सामान्यतः, [[पॉलीसिलिकॉन]] का उपयोग सब्सट्रेट परतों में से एक के रूप में किया जाता है जबकि [[सिलिकॉन डाइऑक्साइड]] का उपयोग लाभहीनपरत के रूप में किया जाता है। मोटाई की दिशा में कोई आवश्यक शून्य बनाने के लिए लाभहीनकी परत को हटा दिया जाता है या खोद दिया जाता है। जोड़ी गई परतें आकार में 2-5 माइक्रोमीटर से भिन्न होती हैं। इस मशीनिंग प्रक्रिया का मुख्य लाभ एक ही सब्सट्रेट पर इलेक्ट्रॉनिक और मैकेनिकल घटकों (कार्यों) का निर्माण करने की क्षमता है। सतही सूक्ष्म-मशीनीकृत घटक उनके थोक सूक्ष्म-मशीनीकृत समकक्षों की तुलना में छोटे होते हैं। | |||
चूंकि संरचनाएं सब्सट्रेट के ऊपर बनाई जाती हैं, उसके अंदर नहीं, इसलिए सब्सट्रेट के गुण बल्क माइक्रो-मशीनिंग में उतने महत्वपूर्ण नहीं होते हैं। महंगे [[ सिलिकॉन बिस्किट ]] को [[ काँच ]] या [[प्लास्टिक]] जैसे सस्ते सबस्ट्रेट्स से बदला जा सकता है। सब्सट्रेट्स का आकार सिलिकॉन वेफर से बड़ा हो सकता है, और सतह माइक्रो-मशीनिंग का उपयोग फ्लैट पैनल डिस्प्ले के लिए बड़े क्षेत्र ग्लास सब्सट्रेट्स पर [[पतली फिल्म वाला ट्रांजिस्टर]] का उत्पादन करने के लिए किया जाता है। इस तकनीक का उपयोग पतली फिल्म सौर कोशिकाओं के निर्माण के लिए भी किया जा सकता है, जिन्हें कांच, [[पॉलीथीन टैरीपिथालेट]] सब्सट्रेट या अन्य गैर-कठोर सामग्री पर जमा किया जा सकता है। | चूंकि संरचनाएं सब्सट्रेट के ऊपर बनाई जाती हैं, उसके अंदर नहीं, इसलिए सब्सट्रेट के गुण बल्क माइक्रो-मशीनिंग में उतने महत्वपूर्ण नहीं होते हैं। महंगे [[ सिलिकॉन बिस्किट ]] को [[ काँच ]] या [[प्लास्टिक]] जैसे सस्ते सबस्ट्रेट्स से बदला जा सकता है। सब्सट्रेट्स का आकार सिलिकॉन वेफर से बड़ा हो सकता है, और सतह माइक्रो-मशीनिंग का उपयोग फ्लैट पैनल डिस्प्ले के लिए बड़े क्षेत्र ग्लास सब्सट्रेट्स पर [[पतली फिल्म वाला ट्रांजिस्टर]] का उत्पादन करने के लिए किया जाता है। इस तकनीक का उपयोग पतली फिल्म सौर कोशिकाओं के निर्माण के लिए भी किया जा सकता है, जिन्हें कांच, [[पॉलीथीन टैरीपिथालेट]] सब्सट्रेट या अन्य गैर-कठोर सामग्री पर जमा किया जा सकता है। | ||
==निर्माण प्रक्रिया== | ==निर्माण प्रक्रिया== | ||
माइक्रो-मशीनिंग एक सिलिकॉन वेफर या अन्य सब्सट्रेट से | माइक्रो-मशीनिंग एक सिलिकॉन वेफर या अन्य सब्सट्रेट से प्रारंभ होती है जिस पर नई परतें उगाई जाती हैं। इन परतों को [[ तस्वीर-लिथोग्राफी ]] द्वारा चुने हुए रूप से उकेरा गया है; या तो एक गीली नक़्क़ाशी जिसमें [[ अम्ल ]] सम्मिलित है, या एक सूखी नक़्क़ाशी जिसमें [[आयन]]ीकृत गैस (या प्लाज़्मा (भौतिकी)) सम्मिलित है। सूखी नक़्क़ाशी रासायनिक नक़्क़ाशी को भौतिक नक़्क़ाशी या आयन बमबारी के साथ जोड़ सकती है। सतह माइक्रो-मशीनिंग में प्रत्येक परत पर एक अलग मास्क (एक अलग पैटर्न का निर्माण) के साथ आवश्यकतानुसार कई परतें सम्मिलित होती हैं। आधुनिक एकीकृत सर्किट सेमीकंडक्टर डिवाइस निर्माण इस तकनीक का उपयोग करता है और 100 से अधिक परतों का उपयोग कर सकता है। माइक्रो-मशीनिंग एक नई तकनीक है और सामान्यतः 5 या 6 परतों से अधिक का उपयोग नहीं करती है। सरफेस माइक्रो-मशीनिंग विकसित तकनीक का उपयोग करती है (चूंकि कभी-कभी मांग वाले अनुप्रयोगों के लिए पर्याप्त नहीं होती) जिसे बड़े पैमाने पर उत्पादन के लिए सरलता से दोहराया जा सकता है। | ||
=== | ===सैक्रिफाइस की परतें=== | ||
लाभहीनपरत का उपयोग जटिल घटकों, जैसे चल भागों, के निर्माण के लिए किया जाता है। उदाहरण के लिए, एक निलंबित [[ ब्रैकट ]] को एक लाभहीनपरत को जमा करके और संरचना करके बनाया जा सकता है, जिसे बाद में उन स्थानों पर चुनिंदा रूप से हटा दिया जाता है जहां भविष्य के बीम को सब्सट्रेट (यानी लंगर बिंदु) से जोड़ा जाना चाहिए। फिर [[ पॉलीमर ]] के ऊपर एक संरचनात्मक परत जमा की जाती है और बीम को परिभाषित करने के लिए संरचित किया जाता है। अंत में, चयनात्मक खोदाई प्रक्रिया का उपयोग करके बीम को मुक्त करने के लिए लाभहीनपरत को हटा दिया जाता है जो संरचनात्मक परत को हानि नहीं पहुंचाता है। | |||
संरचनात्मक और | संरचनात्मक और लाभहीनपरतों के कई संयोजन संभव हैं। चुना गया संयोजन प्रक्रिया पर निर्भर करता है। उदाहरण के लिए, यह महत्वपूर्ण है कि लाभहीनकी परत को हटाने के लिए उपयोग की जाने वाली प्रक्रिया से संरचनात्मक परत क्षतिग्रस्त न हो। | ||
== उदाहरण == | == उदाहरण == | ||
सतह माइक्रो-मशीनिंग को निम्नलिखित एमईएमएस (माइक्रोइलेक्ट्रोमैकेनिकल) उत्पादों में क्रियाशील देखा जा सकता है: | सतह माइक्रो-मशीनिंग को निम्नलिखित एमईएमएस (माइक्रोइलेक्ट्रोमैकेनिकल) उत्पादों में क्रियाशील देखा जा सकता है: | ||
* सतही सूक्ष्म-मशीनीकृत [[ accelerometer ]]<ref>{{cite journal |last=Boser |first=B.E. |author2=R.T. Howe |date=March 1996 |title=भूतल सूक्ष्म-मशीनीकृत एक्सेलेरोमीटर|journal=IEEE Journal of Solid-State Circuits |volume=31 |issue=3 |pages=366–375 |doi=10.1109/4.494198|bibcode=1996IJSSC..31..366B }}</ref> | * सतही सूक्ष्म-मशीनीकृत [[ accelerometer | त्वरणमापी]]<ref>{{cite journal |last=Boser |first=B.E. |author2=R.T. Howe |date=March 1996 |title=भूतल सूक्ष्म-मशीनीकृत एक्सेलेरोमीटर|journal=IEEE Journal of Solid-State Circuits |volume=31 |issue=3 |pages=366–375 |doi=10.1109/4.494198|bibcode=1996IJSSC..31..366B }}</ref> | ||
* | * 3d लचीला मल्टीचैनल न्यूरल प्रोब ऐरे<ref>{{cite journal |last=Takeuchi |first=Shoji |author2=Takafumi Suzuki |author3=Kunihiko Mabuchi |author4=Hiroyuki Fujita|date=October 2003 |title=3D Flexible Multi-channel Neural Probe Array |journal=Journal of Micro-machines and Micro-engineering}}</ref> | ||
* [[नैनोइलेक्ट्रोमैकेनिकल रिले]] | * [[नैनोइलेक्ट्रोमैकेनिकल रिले]] | ||
Revision as of 23:15, 29 July 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2018) (Learn how and when to remove this template message) |
सतह माइक्रोमशीनिंग एक सब्सट्रेट (सामग्री विज्ञान) पर नैनोकणों के जमाव और संरचनात्मक परतों को खोदकर सूक्ष्म संरचनाओं का निर्माण करती है।[1] यह थोक माइक्रोमशीनिंग से अलग है, जिसमें संरचनाओं का निर्माण करने के लिए एक सिलिकॉन सब्सट्रेट वेफर (इलेक्ट्रॉनिक्स) को निर्वाचित रूप से उकेरा जाता है।
परतें
सामान्यतः, पॉलीसिलिकॉन का उपयोग सब्सट्रेट परतों में से एक के रूप में किया जाता है जबकि सिलिकॉन डाइऑक्साइड का उपयोग लाभहीनपरत के रूप में किया जाता है। मोटाई की दिशा में कोई आवश्यक शून्य बनाने के लिए लाभहीनकी परत को हटा दिया जाता है या खोद दिया जाता है। जोड़ी गई परतें आकार में 2-5 माइक्रोमीटर से भिन्न होती हैं। इस मशीनिंग प्रक्रिया का मुख्य लाभ एक ही सब्सट्रेट पर इलेक्ट्रॉनिक और मैकेनिकल घटकों (कार्यों) का निर्माण करने की क्षमता है। सतही सूक्ष्म-मशीनीकृत घटक उनके थोक सूक्ष्म-मशीनीकृत समकक्षों की तुलना में छोटे होते हैं।
चूंकि संरचनाएं सब्सट्रेट के ऊपर बनाई जाती हैं, उसके अंदर नहीं, इसलिए सब्सट्रेट के गुण बल्क माइक्रो-मशीनिंग में उतने महत्वपूर्ण नहीं होते हैं। महंगे सिलिकॉन बिस्किट को काँच या प्लास्टिक जैसे सस्ते सबस्ट्रेट्स से बदला जा सकता है। सब्सट्रेट्स का आकार सिलिकॉन वेफर से बड़ा हो सकता है, और सतह माइक्रो-मशीनिंग का उपयोग फ्लैट पैनल डिस्प्ले के लिए बड़े क्षेत्र ग्लास सब्सट्रेट्स पर पतली फिल्म वाला ट्रांजिस्टर का उत्पादन करने के लिए किया जाता है। इस तकनीक का उपयोग पतली फिल्म सौर कोशिकाओं के निर्माण के लिए भी किया जा सकता है, जिन्हें कांच, पॉलीथीन टैरीपिथालेट सब्सट्रेट या अन्य गैर-कठोर सामग्री पर जमा किया जा सकता है।
निर्माण प्रक्रिया
माइक्रो-मशीनिंग एक सिलिकॉन वेफर या अन्य सब्सट्रेट से प्रारंभ होती है जिस पर नई परतें उगाई जाती हैं। इन परतों को तस्वीर-लिथोग्राफी द्वारा चुने हुए रूप से उकेरा गया है; या तो एक गीली नक़्क़ाशी जिसमें अम्ल सम्मिलित है, या एक सूखी नक़्क़ाशी जिसमें आयनीकृत गैस (या प्लाज़्मा (भौतिकी)) सम्मिलित है। सूखी नक़्क़ाशी रासायनिक नक़्क़ाशी को भौतिक नक़्क़ाशी या आयन बमबारी के साथ जोड़ सकती है। सतह माइक्रो-मशीनिंग में प्रत्येक परत पर एक अलग मास्क (एक अलग पैटर्न का निर्माण) के साथ आवश्यकतानुसार कई परतें सम्मिलित होती हैं। आधुनिक एकीकृत सर्किट सेमीकंडक्टर डिवाइस निर्माण इस तकनीक का उपयोग करता है और 100 से अधिक परतों का उपयोग कर सकता है। माइक्रो-मशीनिंग एक नई तकनीक है और सामान्यतः 5 या 6 परतों से अधिक का उपयोग नहीं करती है। सरफेस माइक्रो-मशीनिंग विकसित तकनीक का उपयोग करती है (चूंकि कभी-कभी मांग वाले अनुप्रयोगों के लिए पर्याप्त नहीं होती) जिसे बड़े पैमाने पर उत्पादन के लिए सरलता से दोहराया जा सकता है।
सैक्रिफाइस की परतें
लाभहीनपरत का उपयोग जटिल घटकों, जैसे चल भागों, के निर्माण के लिए किया जाता है। उदाहरण के लिए, एक निलंबित ब्रैकट को एक लाभहीनपरत को जमा करके और संरचना करके बनाया जा सकता है, जिसे बाद में उन स्थानों पर चुनिंदा रूप से हटा दिया जाता है जहां भविष्य के बीम को सब्सट्रेट (यानी लंगर बिंदु) से जोड़ा जाना चाहिए। फिर पॉलीमर के ऊपर एक संरचनात्मक परत जमा की जाती है और बीम को परिभाषित करने के लिए संरचित किया जाता है। अंत में, चयनात्मक खोदाई प्रक्रिया का उपयोग करके बीम को मुक्त करने के लिए लाभहीनपरत को हटा दिया जाता है जो संरचनात्मक परत को हानि नहीं पहुंचाता है।
संरचनात्मक और लाभहीनपरतों के कई संयोजन संभव हैं। चुना गया संयोजन प्रक्रिया पर निर्भर करता है। उदाहरण के लिए, यह महत्वपूर्ण है कि लाभहीनकी परत को हटाने के लिए उपयोग की जाने वाली प्रक्रिया से संरचनात्मक परत क्षतिग्रस्त न हो।
उदाहरण
सतह माइक्रो-मशीनिंग को निम्नलिखित एमईएमएस (माइक्रोइलेक्ट्रोमैकेनिकल) उत्पादों में क्रियाशील देखा जा सकता है:
- सतही सूक्ष्म-मशीनीकृत त्वरणमापी[2]
- 3d लचीला मल्टीचैनल न्यूरल प्रोब ऐरे[3]
- नैनोइलेक्ट्रोमैकेनिकल रिले
यह भी देखें
- बल्क माइक्रोमशीनिंग
- चुंबकीय नैनोकण
- एमईएमएस
- सेमीकंडक्टर डिवाइस निर्माण
संदर्भ
- ↑ Bustillo, J.M.; R.T. Howe; R.S. Muller (August 1998). "माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम के लिए सतह माइक्रोमशीनिंग". Proceedings of the IEEE. 86 (8): 1552–1574. CiteSeerX 10.1.1.120.4059. doi:10.1109/5.704260.
- ↑ Boser, B.E.; R.T. Howe (March 1996). "भूतल सूक्ष्म-मशीनीकृत एक्सेलेरोमीटर". IEEE Journal of Solid-State Circuits. 31 (3): 366–375. Bibcode:1996IJSSC..31..366B. doi:10.1109/4.494198.
- ↑ Takeuchi, Shoji; Takafumi Suzuki; Kunihiko Mabuchi; Hiroyuki Fujita (October 2003). "3D Flexible Multi-channel Neural Probe Array". Journal of Micro-machines and Micro-engineering.