ऑर्थोगोनल परिवर्तन: Difference between revisions
m (5 revisions imported from alpha:ऑर्थोगोनल_परिवर्तन) |
No edit summary |
||
Line 60: | Line 60: | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Created On 24/07/2023]] | [[Category:Created On 24/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:लीनियर अलजेब्रा]] |
Latest revision as of 11:30, 11 August 2023
रैखिक बीजगणित में, ऑर्थोगोनल परिवर्तन वास्तविक संख्या आंतरिक उत्पाद समिष्ट V पर रैखिक परिवर्तन T: V → V है, जो आंतरिक उत्पाद समिष्ट को संरक्षित करता है। अर्थात्, V के तत्वों के प्रत्येक जोड़े u, v हमारे पास है:[1]
चूँकि सदिशों की लंबाई और उनके मध्य के कोणों को आंतरिक उत्पाद के माध्यम से परिभाषित किया जाता है, ऑर्थोगोनल परिवर्तन सदिशों की लंबाई और उनके मध्य के कोणों को संरक्षित करते हैं। विशेष रूप से, ऑर्थोगोनल परिवर्तन ऑर्थोनॉर्मल आधार पर मैप करते है।
ऑर्थोगोनल परिवर्तन इन्जेक्टिव हैं: यदि तब , इस प्रकार , तो कर्नेल (रैखिक बीजगणित) का तुच्छ है।
दो या तीन-आयाम (सदिश समिष्ट) यूक्लिडियन समिष्ट में ऑर्थोगोनल परिवर्तन कठोर घूर्णन (गणित), प्रतिबिंब (गणित), या घूर्णन और प्रतिबिंब के संयोजन (जिन्हें अनुचित घूर्णन के रूप में भी जाना जाता है) हैं। प्रतिबिंब वे परिवर्तन हैं जो दिशा को आगे से पीछे, ओर्थोगोनल से दर्पण तल तक परिवर्तित कर देते हैं, जैसे (वास्तविक विश्व) दर्पण करते हैं। उचित घूर्णन (प्रतिबिंब के बिना) के अनुरूप आव्यूह (गणित) में +1 का निर्धारक होता है। प्रतिबिंब के साथ परिवर्तनों को -1 के निर्धारक के साथ आव्यूह द्वारा दर्शाया जाता है। यह घूर्णन और परावर्तन की अवधारणा को उच्च आयामों तक सामान्यीकृत करने की अनुमति देता है।
परिमित-आयामी समिष्टों में, ऑर्थोगोनल परिवर्तन का आव्यूह प्रतिनिधित्व (ऑर्थोनॉर्मल आधार के संबंध में) ऑर्थोगोनल आव्यूह है। इसकी पंक्तियाँ इकाई पैरामीटर के साथ परस्पर ऑर्थोगोनल वैक्टर हैं, जिससे पंक्तियाँ V का ऑर्थोनॉर्मल आधार बनाया जाता है। आव्यूह के पंक्ति V का ऑर्थोनॉर्मल आधार बनाते हैं।
यदि ऑर्थोगोनल परिवर्तन व्युत्क्रम फलन है (जो सदैव तब होता है जब V परिमित-आयामी होता है) तो इसका व्युत्क्रम और ऑर्थोगोनल परिवर्तन होता है। इसका आव्यूह प्रतिनिधित्व मूल परिवर्तन के आव्यूह प्रतिनिधित्व का समिष्टान्तरण है।
उदाहरण
आंतरिक-उत्पाद समिष्ट पर विचार करें मानक यूक्लिडियन आंतरिक उत्पाद और मानक आधार के साथ आव्यूह परिवर्तन है:
ऑर्थोगोनल के लिए विचार किया जाता है:
तब,
पूर्व उदाहरण को सभी ऑर्थोगोनल परिवर्तनों के निर्माण के लिए बढ़ाया जा सकता है। उदाहरण के लिए, निम्नलिखित आव्यूह ऑर्थोगोनल परिवर्तनों को परिभाषित करते हैं:
यह भी देखें
- अनुचित घूर्णन
- रैखिक परिवर्तन
- ऑर्थोगोनल आव्यूह
- एकात्मक परिवर्तन
संदर्भ
- ↑ Rowland, Todd. "ऑर्थोगोनल परिवर्तन". MathWorld. Retrieved 4 May 2012.