त्रिविकर्णीय मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 19: Line 19:
{{Main| अनुवर्ती ( गणितकार)}}
{{Main| अनुवर्ती ( गणितकार)}}


क्रम n के त्रिविकर्ण आव्यूह A के निर्धारक की गणना तीन-अवधि के [[पुनरावृत्ति संबंध]] से की जा सकती है।<ref>{{Cite journal | last1 = El-Mikkawy | first1 = M. E. A. | title = एक सामान्य त्रिविकर्ण मैट्रिक्स के व्युत्क्रम पर| doi = 10.1016/S0096-3003(03)00298-4 | journal = Applied Mathematics and Computation | volume = 150 | issue = 3 | pages = 669–679 | year = 2004 }}</ref> एफ लिखें<sub>1</sub>=|<sub>1</sub>| = <sub>1</sub> (यानी, एफ<sub>1</sub> 1 बटा 1 आव्यूह का निर्धारक है जिसमें केवल a<sub>1</sub> सम्मलित होते है), और जाने
क्रम n के त्रिविकर्ण आव्यूह A के निर्धारक की गणना तीन-अवधि के [[पुनरावृत्ति संबंध]] से की जा सकती है।<ref>{{Cite journal | last1 = El-Mikkawy | first1 = M. E. A. | title = एक सामान्य त्रिविकर्ण मैट्रिक्स के व्युत्क्रम पर| doi = 10.1016/S0096-3003(03)00298-4 | journal = Applied Mathematics and Computation | volume = 150 | issue = 3 | pages = 669–679 | year = 2004 }}</ref> लिखें ''f''<sub>1</sub> = |''a''<sub>1</sub>| = ''a''<sub>1</sub> (अर्थात , ''f''<sub>1</sub> 1 बटा 1 आव्यूह का निर्धारक है जिसमें केवल a<sub>1</sub> सम्मलित होते है), और जाने


:<math>f_n = \begin{vmatrix}
:<math>f_n = \begin{vmatrix}
Line 28: Line 28:
& & & c_{n-1} & a_n
& & & c_{n-1} & a_n
\end{vmatrix}.</math>
\end{vmatrix}.</math>
अनुक्रम (एफ<sub>''i''</sub>) को सतत (गणित) कहा जाता है और पुनरावृत्ति संबंध को संतुष्ट करता है
अनुक्रम (''f<sub>i</sub>'') को सतत (गणित) कहा जाता है और पुनरावृत्ति संबंध को संतुष्ट करता है


:<math>f_n = a_n f_{n-1} - c_{n-1}b_{n-1}f_{n-2}</math>
:<math>f_n = a_n f_{n-1} - c_{n-1}b_{n-1}f_{n-2}</math>
प्रारंभिक मूल्यों के साथ एफ<sub>0</sub>= 1 और एफ<sub>−1</sub>= 0. इस सूत्र का उपयोग करके एक त्रिविकर्ण आव्यूह के निर्धारक की गणना करने की लागत n में रैखिक है, जबकि एक सामान्य आव्यूह के लिए लागत घन होता है।
प्रारंभिक मूल्यों के साथ''f''<sub>0</sub> = 1और  ''f''<sub>−1</sub> = 0 इस सूत्र का उपयोग करके एक त्रिविकर्ण आव्यूह के निर्धारक की गणना करने की लागत ''n'' में रैखिक है, जबकि एक सामान्य आव्यूह के लिए लागत घन होता है।


===उलटा===
===उलटा===
Line 50: Line 50:
(-1)^{i+j}c_j \cdots c_{i-1} \theta_{j-1} \phi_{i+1}/\theta_n & \text{ if } i > j\\
(-1)^{i+j}c_j \cdots c_{i-1} \theta_{j-1} \phi_{i+1}/\theta_n & \text{ if } i > j\\
\end{cases}</math>
\end{cases}</math>
जहां θ<sub>i</sub>पुनरावृत्ति संबंध को संतुष्ट करें
जहां ''θ<sub>i</sub>'' पुनरावृत्ति संबंध को संतुष्ट करें


:<math>\theta_i = a_i \theta_{i-1} - b_{i-1}c_{i-1}\theta_{i-2} \qquad i=2,3,\ldots,n</math>
:<math>\theta_i = a_i \theta_{i-1} - b_{i-1}c_{i-1}\theta_{i-2} \qquad i=2,3,\ldots,n</math>
प्रारंभिक शर्तों के साथ θ<sub>0</sub>= 1, मैं<sub>1</sub>= <sub>1</sub> और ϕ<sub>''i''</sub> संतुष्ट करना
प्रारंभिक शर्तों के साथ ''θ''<sub>0</sub> = 1, ''θ''<sub>1</sub> = ''a''<sub>1</sub> और ϕ<sub>''i''</sub> संतुष्ट करना


:<math>\phi_i = a_i \phi_{i+1} - b_i c_i \phi_{i+2} \qquad i=n-1,\ldots,1</math>
:<math>\phi_i = a_i \phi_{i+1} - b_i c_i \phi_{i+2} \qquad i=n-1,\ldots,1</math>
प्रारंभिक शर्तों के साथ ϕ<sub>''n''+1</sub>= 1 और ϕ<sub>''n''</sub>= <sub>n</sub>.<ref>{{Cite journal | last1 = Da Fonseca | first1 = C. M. | doi = 10.1016/j.cam.2005.08.047 | title = कुछ त्रिविकर्ण आव्यूहों के eigenvalues ​​पर| journal = Journal of Computational and Applied Mathematics | volume = 200 | pages = 283–286 | year = 2007 | doi-access = free }}</ref><ref>{{Cite journal | last1 = Usmani | first1 = R. A. | doi = 10.1016/0024-3795(94)90414-6 | title = त्रिविकर्ण जैकोबी मैट्रिक्स का उलटा| journal = Linear Algebra and its Applications | volume = 212-213 | pages = 413–414 | year = 1994 | doi-access = free }}</ref>
प्रारंभिक शर्तों के साथ ''ϕ<sub>n</sub>''<sub>+1</sub> = 1 और ''ϕ<sub>n</sub>'' = ''a<sub>n</sub>'' <ref>{{Cite journal | last1 = Da Fonseca | first1 = C. M. | doi = 10.1016/j.cam.2005.08.047 | title = कुछ त्रिविकर्ण आव्यूहों के eigenvalues ​​पर| journal = Journal of Computational and Applied Mathematics | volume = 200 | pages = 283–286 | year = 2007 | doi-access = free }}</ref><ref>{{Cite journal | last1 = Usmani | first1 = R. A. | doi = 10.1016/0024-3795(94)90414-6 | title = त्रिविकर्ण जैकोबी मैट्रिक्स का उलटा| journal = Linear Algebra and its Applications | volume = 212-213 | pages = 413–414 | year = 1994 | doi-access = free }}</ref>


संवृत रूप समाधानों की गणना विशेष स्थतियों के लिए की जा सकती है जैसे कि सभी विकर्ण और ऑफ-विकर्ण तत्वों के साथ सममित आव्यूह<ref>{{Cite journal | last1 = Hu | first1 = G. Y. | last2 = O'Connell | first2 = R. F. | doi = 10.1088/0305-4470/29/7/020 | title = सममित त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम| journal = Journal of Physics A: Mathematical and General | volume = 29 | issue = 7 | pages = 1511 | year = 1996 }}</ref> या [[टोएप्लिट्ज़ मैट्रिसेस]]<ref>{{Cite journal | last1 = Huang | first1 = Y. | last2 = McColl | first2 = W. F. | doi = 10.1088/0305-4470/30/22/026 | title = सामान्य त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम| journal = Journal of Physics A: Mathematical and General | volume = 30 | issue = 22 | pages = 7919 | year = 1997 }}</ref> और सामान्य मामले के लिए भी.<ref>{{Cite journal | last1 = Mallik | first1 = R. K. | doi = 10.1016/S0024-3795(00)00262-7 | title = त्रिविकर्ण मैट्रिक्स का व्युत्क्रम| journal = Linear Algebra and its Applications | volume = 325 | pages = 109–139 | year = 2001 | doi-access = free }}</ref><ref>{{Cite journal | last1 = Kılıç | first1 = E. | doi = 10.1016/j.amc.2007.07.046 | title = पिछड़े निरंतर भिन्नों द्वारा त्रिविकर्ण मैट्रिक्स के व्युत्क्रम के लिए स्पष्ट सूत्र| journal = Applied Mathematics and Computation | volume = 197 | pages = 345–357 | year = 2008 }}</ref> सामान्यतः, त्रिविकर्ण आव्यूह का व्युत्क्रम एक [[अर्धविभाज्य मैट्रिक्स|अर्धविभाज्य आव्यूह]] होता है और इसके विपरीत।<ref name="VandebrilBarel2008">{{cite book|author1=Raf Vandebril|author2=Marc Van Barel|author3=Nicola Mastronardi|title=Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems|year=2008|publisher=JHU Press|isbn=978-0-8018-8714-7|at=Theorem 1.38, p. 41}}</ref>
संवृत रूप समाधानों की गणना विशेष स्थतियों के लिए की जा सकती है जैसे कि सभी विकर्ण और ऑफ-विकर्ण तत्वों के साथ सममित आव्यूह<ref>{{Cite journal | last1 = Hu | first1 = G. Y. | last2 = O'Connell | first2 = R. F. | doi = 10.1088/0305-4470/29/7/020 | title = सममित त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम| journal = Journal of Physics A: Mathematical and General | volume = 29 | issue = 7 | pages = 1511 | year = 1996 }}</ref> या [[टोएप्लिट्ज़ मैट्रिसेस]]<ref>{{Cite journal | last1 = Huang | first1 = Y. | last2 = McColl | first2 = W. F. | doi = 10.1088/0305-4470/30/22/026 | title = सामान्य त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम| journal = Journal of Physics A: Mathematical and General | volume = 30 | issue = 22 | pages = 7919 | year = 1997 }}</ref> और सामान्य मामले के लिए भी.<ref>{{Cite journal | last1 = Mallik | first1 = R. K. | doi = 10.1016/S0024-3795(00)00262-7 | title = त्रिविकर्ण मैट्रिक्स का व्युत्क्रम| journal = Linear Algebra and its Applications | volume = 325 | pages = 109–139 | year = 2001 | doi-access = free }}</ref><ref>{{Cite journal | last1 = Kılıç | first1 = E. | doi = 10.1016/j.amc.2007.07.046 | title = पिछड़े निरंतर भिन्नों द्वारा त्रिविकर्ण मैट्रिक्स के व्युत्क्रम के लिए स्पष्ट सूत्र| journal = Applied Mathematics and Computation | volume = 197 | pages = 345–357 | year = 2008 }}</ref> सामान्यतः, त्रिविकर्ण आव्यूह का व्युत्क्रम एक [[अर्धविभाज्य मैट्रिक्स|अर्धविभाज्य आव्यूह]] होता है और इसके विपरीत होते है।<ref name="VandebrilBarel2008">{{cite book|author1=Raf Vandebril|author2=Marc Van Barel|author3=Nicola Mastronardi|title=Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems|year=2008|publisher=JHU Press|isbn=978-0-8018-8714-7|at=Theorem 1.38, p. 41}}</ref>
===रैखिक प्रणाली का समाधान===
===रैखिक प्रणाली का समाधान===
{{Main|tridiagonal matrix algorithm}}
{{Main|
समीकरणों की एक प्रणाली Ax=b<math>b\in \R^n</math> गाऊसी उन्मूलन के एक कुशल रूप द्वारा हल किया जा सकता है जब ए त्रिविकर्ण आव्यूह एल्गोरिथ्म कहलाता है, जिसके लिए (एन) संचालन की आवश्यकता होती है।<ref>{{cite book|first1=Gene H.|last1=Golub|author-link1=Gene H. Golub |first2=Charles F. |last2=Van Loan|author-link2=Charles F. Van Loan| title =मैट्रिक्स संगणना| edition=3rd|publisher=The Johns Hopkins University Press|year=1996|isbn=0-8018-5414-8}}</ref>
त्रिविकर्ण आव्यूह एल्गोरिदम}}
समीकरणों की एक प्रणाली Ax=b<math>b\in \R^n</math> गाऊसी उन्मूलन के एक कुशल रूप द्वारा हल किया जा सकता है जब ए त्रिविकर्ण आव्यूह एल्गोरिथ्म कहलाता है, जिसके लिए ''O''(''n'') संचालन की आवश्यकता होती है।<ref>{{cite book|first1=Gene H.|last1=Golub|author-link1=Gene H. Golub |first2=Charles F. |last2=Van Loan|author-link2=Charles F. Van Loan| title =मैट्रिक्स संगणना| edition=3rd|publisher=The Johns Hopkins University Press|year=1996|isbn=0-8018-5414-8}}</ref>
===आइजेनवैल्यू===
===आइजेनवैल्यू===


जब एक त्रिदिकोणीय आव्यूह [[टोएप्लिट्ज़ मैट्रिक्स|टोएप्लिट्ज़ आव्यूह]] भी होता है, तो इसके eigenvalues ​​​​के लिए एक सरल संवृत रूप त्:<ref>{{Cite journal | doi = 10.1002/nla.1811| title = Tridiagonal Toeplitz matrices: Properties and novel applications| journal = Numerical Linear Algebra with Applications| volume = 20| issue = 2| pages = 302| year = 2013| last1 = Noschese | first1 = S. | last2 = Pasquini | first2 = L. | last3 = Reichel | first3 = L. }}</ref><ref>This can also be written as <math> a + 2 \sqrt{bc} \cos(k \pi / {(n+1)}) </math> because <math> \cos(x) = -\cos(\pi-x) </math>, as is done in: {{Cite journal | last1 = Kulkarni | first1 = D. | last2 = Schmidt | first2 = D. | last3 = Tsui | first3 = S. K. | title = Eigenvalues of tridiagonal pseudo-Toeplitz matrices | doi = 10.1016/S0024-3795(99)00114-7 | journal = Linear Algebra and its Applications | volume = 297 | pages = 63 | year = 1999 | url = https://hal.archives-ouvertes.fr/hal-01461924/file/KST.pdf }}</ref>
जब एक त्रिदिकोणीय आव्यूह [[टोएप्लिट्ज़ मैट्रिक्स|टोएप्लिट्ज़ आव्यूह]] भी होता है, तो इसके eigenvalues ​​​​के लिए एक सरल संवृत रूप त्:<ref>{{Cite journal | doi = 10.1002/nla.1811| title = Tridiagonal Toeplitz matrices: Properties and novel applications| journal = Numerical Linear Algebra with Applications| volume = 20| issue = 2| pages = 302| year = 2013| last1 = Noschese | first1 = S. | last2 = Pasquini | first2 = L. | last3 = Reichel | first3 = L. }}</ref><ref>This can also be written as <math> a + 2 \sqrt{bc} \cos(k \pi / {(n+1)}) </math> because <math> \cos(x) = -\cos(\pi-x) </math>, as is done in: {{Cite journal | last1 = Kulkarni | first1 = D. | last2 = Schmidt | first2 = D. | last3 = Tsui | first3 = S. K. | title = Eigenvalues of tridiagonal pseudo-Toeplitz matrices | doi = 10.1016/S0024-3795(99)00114-7 | journal = Linear Algebra and its Applications | volume = 297 | pages = 63 | year = 1999 | url = https://hal.archives-ouvertes.fr/hal-01461924/file/KST.pdf }}</ref>
:<math> a + 2 \sqrt{bc} \cos \left (\frac{k\pi}{n+1} \right ), \qquad k=1, \ldots, n. </math>
:<math> a + 2 \sqrt{bc} \cos \left (\frac{k\pi}{n+1} \right ), \qquad k=1, \ldots, n. </math>
एक वास्तविक सममित आव्यूह त्रिदिकोणीय आव्यूह में वास्तविक eigenvalues ​​​​होते हैं, और यदि सभी ऑफ-विकर्ण तत्व गैर-शून्य हैं तो सभी eigenvalues ​​​​eigenvalues ​​​​और eigenvectors # बीजगणितीय बहुलता | विशिष्ट (सरल) हैं।<ref>{{Cite book | last1 = Parlett | first1 = B.N. | title = सममित आइगेनवेल्यू समस्या| year = 1980 | publisher = Prentice Hall, Inc. }}</ref> मनमाने ढंग से परिमित परिशुद्धता के लिए एक वास्तविक सममित त्रिदिकोणीय आव्यूह के eigenvalues ​​​​की संख्यात्मक गणना के लिए कई विधियां सम्मलित होते हैं, सामान्यतः  इसकी आवश्यकता होती है <math>O(n^2)</math> आकार के आव्यूह के लिए संचालन <math>n\times n</math>, चूंकि तेज़ एल्गोरिदम सम्मलित हैं जिनकी (समानांतर गणना के बिना) केवल आवश्यकता होती है <math>O(n\log n)</math>.<ref>{{Cite journal |last1 = Coakley |first1= E.S. |last2=Rokhlin | first2=V. | title =वास्तविक सममित त्रिविकर्ण मैट्रिक्स के स्पेक्ट्रा की गणना के लिए एक तेज़ विभाजन और जीत एल्गोरिदम| doi = 10.1016/j.acha.2012.06.003 |journal = [[Applied and Computational Harmonic Analysis]] |volume = 34 |issue = 3 |pages = 379–414 |year =2012 |doi-access = free }}</ref> एक साइड नोट के रूप में, एक असंतुलित सममित त्रिदिकोणीय आव्यूह एक आव्यूह है जिसमें त्रिदिकोण के गैर-शून्य ऑफ-विकर्ण तत्व होते हैं, जहां आइगेनवैल्यू अलग-अलग होते हैं जबकि आइजेनवेक्टर एक स्केल फैक्टर तक अद्वितीय होते हैं और परस्पर ऑर्थोगोनल होते हैं।<ref>{{cite book |last1=Dhillon |first1=Inderjit Singh |title=A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem |page=8 |url=http://www.cs.utexas.edu/~inderjit/public_papers/thesis.pdf}}</ref>
एक वास्तविक सममित आव्यूह त्रिदिकोणीय आव्यूह में वास्तविक eigenvalues ​​​​होते हैं, और यदि सभी ऑफ-विकर्ण तत्व गैर-शून्य हैं तो सभी eigenvalues ​​​​eigenvalues ​​​​और eigenvectors बीजगणितीय बहुलता विशिष्ट (सरल) होते हैं।<ref>{{Cite book | last1 = Parlett | first1 = B.N. | title = सममित आइगेनवेल्यू समस्या| year = 1980 | publisher = Prentice Hall, Inc. }}</ref> यादृच्छिक रूप से परिमित परिशुद्धता के लिए एक वास्तविक सममित त्रिदिकोणीय आव्यूह के eigenvalues ​​​​की संख्यात्मक गणना के लिए कई विधियां सम्मलित होते हैं, सामान्यतः  इसकी आवश्यकता होती है <math>O(n^2)</math> आकार के आव्यूह के लिए संचालन <math>n\times n</math>, चूंकि तेज़ एल्गोरिदम सम्मलित हैं जिनकी (समानांतर गणना के बिना) केवल आवश्यकता होती है <math>O(n\log n)</math><ref>{{Cite journal |last1 = Coakley |first1= E.S. |last2=Rokhlin | first2=V. | title =वास्तविक सममित त्रिविकर्ण मैट्रिक्स के स्पेक्ट्रा की गणना के लिए एक तेज़ विभाजन और जीत एल्गोरिदम| doi = 10.1016/j.acha.2012.06.003 |journal = [[Applied and Computational Harmonic Analysis]] |volume = 34 |issue = 3 |pages = 379–414 |year =2012 |doi-access = free }}</ref> एक साइड नोट के रूप में, एक असंतुलित सममित त्रिदिकोणीय आव्यूह एक आव्यूह है जिसमें त्रिदिकोण के गैर-शून्य ऑफ-विकर्ण तत्व होते हैं, जहां आइगेनवैल्यू अलग-अलग होते हैं जबकि आइजेनवेक्टर एक स्केल फैक्टर तक अद्वितीय होते हैं और परस्पर ऑर्थोगोनल होते हैं।<ref>{{cite book |last1=Dhillon |first1=Inderjit Singh |title=A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem |page=8 |url=http://www.cs.utexas.edu/~inderjit/public_papers/thesis.pdf}}</ref>


=== सममित त्रिविकर्ण आव्यूह से समानता ===
=== सममित त्रिविकर्ण आव्यूह से समानता ===
Line 150: Line 151:


{{Matrix classes}}
{{Matrix classes}}
[[Category: विरल मैट्रिक्स]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1]]
[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:Collapse templates]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:विरल मैट्रिक्स]]

Latest revision as of 14:54, 11 August 2023

रैखिक बीजगणित में, एक त्रिविकर्ण आव्यूह एक बैंड आव्यूह होता है जिसमें केवल मुख्य विकर्ण, उपविकर्ण/निचले विकर्ण (इसके नीचे पहला विकर्ण), और सुप्राडियागोनल/ऊपरी विकर्ण (मुख्य विकर्ण के ऊपर पहला विकर्ण) पर गैर-शून्य तत्व होते हैं। उदाहरण के लिए, निम्नलिखित आव्यूह (गणित) त्रिविकर्ण आव्यूह एल्गोरिदम होता hotaहै:

एक त्रिविकर्ण आव्यूह का निर्धारक उसके तत्वों के सातत्य (गणित) द्वारा दिया जाता है।[1] एक सममित (या हर्मिटियन) आव्यूह का त्रिदिकोणीय रूप में ऑर्थोगोनल परिवर्तन लैंज़ोस एल्गोरिदम के साथ किया जा सकता है।

गुण

एक त्रिविकर्ण आव्यूह एक आव्यूह है जो ऊपरी और निचले हेसेनबर्ग आव्यूह दोनों है।[2] विशेष रूप से, एक त्रिविकर्ण आव्यूह p 1-by-1 और q 2-by-2 आव्यूह का सीधा योग है जैसे कि p + q/2 = n- त्रिविकर्ण का आयाम होता है। चूंकि एक सामान्य त्रिविकर्ण आव्यूह आवश्यक रूप से सममित आव्यूह या हर्मिटियन आव्यूह नहीं है, उनमें से कई जो रैखिक बीजगणित समस्याओं को हल करते समय उत्पन्न होते हैं उनमें इनमें से एक गुण होता है। इसके अतिरिक्त , यदि एक वास्तविक त्रिविकर्ण आव्यूह A सभी k के लिए, ak,k+1 ak+1,k > 0 को संतुष्ट करता है, जिससे की इसकी प्रविष्टियों के चिह्न सममित हों, तो यह आधार आव्यूह के विकर्ण परिवर्तन द्वारा हर्मिटियन आव्यूह के समान (रैखिक बीजगणित) होता है। इसलिए, इसके ईजेनमान ​​​​वास्तविक होते हैं। यदि हम सख्त असमानता को ak,k+1 ak+1,k ≥ 0 से प्रतिस्थापित करते हैं तो निरंतरता से, आइगेनवैल्यू अभी भी वास्तविक होने की गारंटी होती है, किन्तु आव्यूह को अब हर्मिटियन आव्यूह के समान होने की आवश्यकता नहीं है।[3]

सभी n × n त्रिविकर्ण आव्यूहों का समुच्चय (गणित) एक 3n-2 आयामी सदिश बिन्दु बनाता है।

कई रैखिक बीजगणित कलन विधि को विकर्ण आव्यूह पर लागू होने पर अधिक कम संगणनात्मक जटिलता सिद्धांत की आवश्यकता होती है, और यह सुधार अधिकांशतः त्रिविकर्ण आव्यूह पर भी लागू होता है।

निर्धारक

क्रम n के त्रिविकर्ण आव्यूह A के निर्धारक की गणना तीन-अवधि के पुनरावृत्ति संबंध से की जा सकती है।[4] लिखें f1 = |a1| = a1 (अर्थात , f1 1 बटा 1 आव्यूह का निर्धारक है जिसमें केवल a1 सम्मलित होते है), और जाने

अनुक्रम (fi) को सतत (गणित) कहा जाता है और पुनरावृत्ति संबंध को संतुष्ट करता है

प्रारंभिक मूल्यों के साथf0 = 1और f−1 = 0 इस सूत्र का उपयोग करके एक त्रिविकर्ण आव्यूह के निर्धारक की गणना करने की लागत n में रैखिक है, जबकि एक सामान्य आव्यूह के लिए लागत घन होता है।

उलटा

एक गैर-एकवचन त्रिविकर्ण आव्यूह टी का व्युत्क्रम आव्यूह

द्वारा दिया गया है

जहां θi पुनरावृत्ति संबंध को संतुष्ट करें

प्रारंभिक शर्तों के साथ θ0 = 1, θ1 = a1 और ϕi संतुष्ट करना

प्रारंभिक शर्तों के साथ ϕn+1 = 1 और ϕn = an [5][6]

संवृत रूप समाधानों की गणना विशेष स्थतियों के लिए की जा सकती है जैसे कि सभी विकर्ण और ऑफ-विकर्ण तत्वों के साथ सममित आव्यूह[7] या टोएप्लिट्ज़ मैट्रिसेस[8] और सामान्य मामले के लिए भी.[9][10] सामान्यतः, त्रिविकर्ण आव्यूह का व्युत्क्रम एक अर्धविभाज्य आव्यूह होता है और इसके विपरीत होते है।[11]

रैखिक प्रणाली का समाधान

समीकरणों की एक प्रणाली Ax=b गाऊसी उन्मूलन के एक कुशल रूप द्वारा हल किया जा सकता है जब ए त्रिविकर्ण आव्यूह एल्गोरिथ्म कहलाता है, जिसके लिए O(n) संचालन की आवश्यकता होती है।[12]

आइजेनवैल्यू

जब एक त्रिदिकोणीय आव्यूह टोएप्लिट्ज़ आव्यूह भी होता है, तो इसके eigenvalues ​​​​के लिए एक सरल संवृत रूप त्:[13][14]

एक वास्तविक सममित आव्यूह त्रिदिकोणीय आव्यूह में वास्तविक eigenvalues ​​​​होते हैं, और यदि सभी ऑफ-विकर्ण तत्व गैर-शून्य हैं तो सभी eigenvalues ​​​​eigenvalues ​​​​और eigenvectors बीजगणितीय बहुलता विशिष्ट (सरल) होते हैं।[15] यादृच्छिक रूप से परिमित परिशुद्धता के लिए एक वास्तविक सममित त्रिदिकोणीय आव्यूह के eigenvalues ​​​​की संख्यात्मक गणना के लिए कई विधियां सम्मलित होते हैं, सामान्यतः इसकी आवश्यकता होती है आकार के आव्यूह के लिए संचालन , चूंकि तेज़ एल्गोरिदम सम्मलित हैं जिनकी (समानांतर गणना के बिना) केवल आवश्यकता होती है [16] एक साइड नोट के रूप में, एक असंतुलित सममित त्रिदिकोणीय आव्यूह एक आव्यूह है जिसमें त्रिदिकोण के गैर-शून्य ऑफ-विकर्ण तत्व होते हैं, जहां आइगेनवैल्यू अलग-अलग होते हैं जबकि आइजेनवेक्टर एक स्केल फैक्टर तक अद्वितीय होते हैं और परस्पर ऑर्थोगोनल होते हैं।[17]

सममित त्रिविकर्ण आव्यूह से समानता

असममित या गैर सममित त्रिदिकोणीय आव्यूह के लिए कोई समानता परिवर्तन का उपयोग करके ईगेंडेरचना की गणना कर सकता है। एक वास्तविक त्रिविकर्णीय, गैरसममितीय आव्यूह दिया गया है

कहाँ . मान लें कि ऑफ-विकर्ण प्रविष्टियों का प्रत्येक उत्पाद है केवल सकारात्मक और एक परिवर्तन आव्यूह को परिभाषित करें द्वारा

आव्यूह समानता एक सममित त्रिविकर्ण आव्यूह उत्पन्न करता है द्वारा:[18]

ध्यान दें कि और समान eigenvalues ​​​​हैं।

कंप्यूटर प्रोग्रामिंग

एक परिवर्तन जो एक सामान्य आव्यूह को हेसेनबर्ग रूप में कम कर देता है, एक हर्मिटियन आव्यूह को त्रिविकर्ण रूप में कम कर देगा। इसलिए, कई eigenvalue एल्गोरिथ्म, जब हर्मिटियन आव्यूह पर लागू होते हैं, तो पहले चरण के रूप में इनपुट हर्मिटियन आव्यूह को (सममित वास्तविक) त्रिविकर्ण रूप में कम कर देते हैं।[19] एक विशेष आव्यूह प्रतिनिधित्व का उपयोग करके एक त्रिविकर्ण आव्यूह को सामान्य आव्यूह की तुलना में अधिक कुशलता से संग्रहीत किया जा सकता है। उदाहरण के लिए, LAPACK फोरट्रान पैकेज तीन एक-आयामी सरणियों में क्रम n के एक असममित त्रिविकर्ण आव्यूह को संग्रहीत करता है, एक लंबाई n में विकर्ण तत्व होते हैं, और दो लंबाई n - 1 में उपविकर्ण और अतिविकर्ण तत्व होते हैं।

अनुप्रयोग

एक आयामी प्रसार या ऊष्मा समीकरण के स्थान में विवेकीकरण

दूसरे क्रम के केंद्रीय परिमित अंतर का उपयोग करने से परिणाम मिलता है

विवेकाधीन स्थिरांक के साथ . आव्यूह त्रिविकर्णीय है और . ध्यान दें: यहां कोई सीमा शर्तों का उपयोग नहीं किया गया है।

यह भी देखें

टिप्पणियाँ

  1. Thomas Muir (1960). निर्धारकों के सिद्धांत पर एक ग्रंथ. Dover Publications. pp. 516–525.
  2. Horn, Roger A.; Johnson, Charles R. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. p. 28. ISBN 0521386322.
  3. Horn & Johnson, page 174
  4. El-Mikkawy, M. E. A. (2004). "एक सामान्य त्रिविकर्ण मैट्रिक्स के व्युत्क्रम पर". Applied Mathematics and Computation. 150 (3): 669–679. doi:10.1016/S0096-3003(03)00298-4.
  5. Da Fonseca, C. M. (2007). "कुछ त्रिविकर्ण आव्यूहों के eigenvalues ​​पर". Journal of Computational and Applied Mathematics. 200: 283–286. doi:10.1016/j.cam.2005.08.047. {{cite journal}}: zero width space character in |title= at position 40 (help)
  6. Usmani, R. A. (1994). "त्रिविकर्ण जैकोबी मैट्रिक्स का उलटा". Linear Algebra and its Applications. 212–213: 413–414. doi:10.1016/0024-3795(94)90414-6.
  7. Hu, G. Y.; O'Connell, R. F. (1996). "सममित त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम". Journal of Physics A: Mathematical and General. 29 (7): 1511. doi:10.1088/0305-4470/29/7/020.
  8. Huang, Y.; McColl, W. F. (1997). "सामान्य त्रिविकर्ण आव्यूहों का विश्लेषणात्मक व्युत्क्रम". Journal of Physics A: Mathematical and General. 30 (22): 7919. doi:10.1088/0305-4470/30/22/026.
  9. Mallik, R. K. (2001). "त्रिविकर्ण मैट्रिक्स का व्युत्क्रम". Linear Algebra and its Applications. 325: 109–139. doi:10.1016/S0024-3795(00)00262-7.
  10. Kılıç, E. (2008). "पिछड़े निरंतर भिन्नों द्वारा त्रिविकर्ण मैट्रिक्स के व्युत्क्रम के लिए स्पष्ट सूत्र". Applied Mathematics and Computation. 197: 345–357. doi:10.1016/j.amc.2007.07.046.
  11. Raf Vandebril; Marc Van Barel; Nicola Mastronardi (2008). Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems. JHU Press. Theorem 1.38, p. 41. ISBN 978-0-8018-8714-7.
  12. Golub, Gene H.; Van Loan, Charles F. (1996). मैट्रिक्स संगणना (3rd ed.). The Johns Hopkins University Press. ISBN 0-8018-5414-8.
  13. Noschese, S.; Pasquini, L.; Reichel, L. (2013). "Tridiagonal Toeplitz matrices: Properties and novel applications". Numerical Linear Algebra with Applications. 20 (2): 302. doi:10.1002/nla.1811.
  14. This can also be written as because , as is done in: Kulkarni, D.; Schmidt, D.; Tsui, S. K. (1999). "Eigenvalues of tridiagonal pseudo-Toeplitz matrices" (PDF). Linear Algebra and its Applications. 297: 63. doi:10.1016/S0024-3795(99)00114-7.
  15. Parlett, B.N. (1980). सममित आइगेनवेल्यू समस्या. Prentice Hall, Inc.
  16. Coakley, E.S.; Rokhlin, V. (2012). "वास्तविक सममित त्रिविकर्ण मैट्रिक्स के स्पेक्ट्रा की गणना के लिए एक तेज़ विभाजन और जीत एल्गोरिदम". Applied and Computational Harmonic Analysis. 34 (3): 379–414. doi:10.1016/j.acha.2012.06.003.
  17. Dhillon, Inderjit Singh. A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (PDF). p. 8.
  18. "www.math.hkbu.edu.hk math lecture" (PDF).
  19. Eidelman, Yuli; Gohberg, Israel; Gemignani, Luca (2007-01-01). "हेसेनबर्ग और त्रिविकर्ण रूपों में एक अर्धविभाज्य मैट्रिक्स की तेजी से कमी पर". Linear Algebra and its Applications (in English). 420 (1): 86–101. doi:10.1016/j.laa.2006.06.028. ISSN 0024-3795.


बाहरी संबंध