अशक्त सूत्रीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
अशक्त सूत्रीकरण गणितीय [[समीकरण]] के विश्लेषण के लिए महत्वपूर्ण उपकरण हैं जो आंशिक अंतर समीकरणों जैसे अन्य क्षेत्रों में समस्याओं को हल करने के लिए रैखिक बीजगणित की [[अवधारणा]]ओं के हस्तांतरण की अनुमति देते हैं। | '''अशक्त सूत्रीकरण''' गणितीय [[समीकरण]] के विश्लेषण के लिए महत्वपूर्ण उपकरण हैं जो आंशिक अंतर समीकरणों जैसे अन्य क्षेत्रों में समस्याओं को हल करने के लिए रैखिक बीजगणित की [[अवधारणा]]ओं के हस्तांतरण की अनुमति देते हैं। अशक्त सूत्रीकरण में, समीकरणों या नियमों को अब पूरी तरह से धारण करने की आवश्यकता नहीं है (और यह अच्छी तरह से परिभाषित भी नहीं है) और इसके अतिरिक्त केवल कुछ परीक्षण सदिश या परीक्षण कार्यों के संबंध में [[कमजोर समाधान|अशक्त समाधान]] हैं। शसक्त सूत्रीकरण में, समाधान स्थान का निर्माण इस तरह किया जाता है कि ये समीकरण या नियम पहले से ही पूरी हो जाती हैं। | ||
लैक्स-मिलग्राम प्रमेय, जिसका नाम [[पीटर लैक्स]] और [[आर्थर मिलग्राम]] के नाम पर रखा गया है, जिन्होंने इसे 1954 में सिद्ध किया था, [[हिल्बर्ट स्थान]] पर कुछ प्रणालियों के लिए अशक्त सूत्रीकरण प्रदान करता है। | लैक्स-मिलग्राम प्रमेय, जिसका नाम [[पीटर लैक्स]] और [[आर्थर मिलग्राम]] के नाम पर रखा गया है, जिन्होंने इसे 1954 में सिद्ध किया था, [[हिल्बर्ट स्थान]] पर कुछ प्रणालियों के लिए अशक्त सूत्रीकरण प्रदान करता है। | ||
==सामान्य अवधारणा== | ==सामान्य अवधारणा== | ||
मान लीजिए कि <math>V</math> | मान लीजिए कि <math>V</math> बैनाच स्पेस है, <math>V' | ||
</math> इसका दोहरा स्पेस है, <math>A\colon V \to V'</math>, और <math>f \in V'</math> समीकरण का हल <math>u \in V</math> खोजा जाता है | </math> इसका दोहरा स्पेस है, <math>A\colon V \to V'</math>, और <math>f \in V'</math> समीकरण का हल <math>u \in V</math> खोजा जाता है | ||
<math display=block>Au = f</math> | <math display=block>Au = f</math> | ||
यह <math>u\in V</math>को इस प्रकार खोजने के समान है कि, सभी <math>v \in V</math> के लिए। | यह <math>u\in V</math> को इस प्रकार खोजने के समान है कि, सभी <math>v \in V</math> के लिए। | ||
<math display=block>[Au](v) = f(v).</math> | <math display=block>[Au](v) = f(v).</math> | ||
यहाँ, <math>v</math> परीक्षण सदिश या परीक्षण फलन कहा जाता है। | यहाँ, <math>v</math> परीक्षण सदिश या परीक्षण फलन कहा जाता है। | ||
इसे | इसे अशक्त सूत्रीकरण के सामान्य रूप में लाने के लिए, <math>u\in V</math> को ऐसे खोजें | ||
<math display=block>a(u,v) = f(v) \quad \forall v \in V,</math> | <math display=block>a(u,v) = f(v) \quad \forall v \in V,</math> | ||
Line 22: | Line 22: | ||
==उदाहरण 1: समीकरणों की रैखिक प्रणाली== | ==उदाहरण 1: समीकरणों की रैखिक प्रणाली== | ||
अब, मान लीजिए कि <math>V = \mathbb R^n</math> और <math>A:V \to V</math> | अब, मान लीजिए कि <math>V = \mathbb R^n</math> और <math>A:V \to V</math> रैखिक मानचित्रण है। फिर, समीकरण का अशक्त सूत्रीकरण है | ||
<math display=block>Au = f</math>इसमें <math>u\in V</math> को इस प्रकार खोजना सम्मिलित है कि सभी <math>v \in V</math> के लिए निम्नलिखित समीकरण मान्य हो: | <math display=block>Au = f</math>इसमें <math>u\in V</math> को इस प्रकार खोजना सम्मिलित है कि सभी <math>v \in V</math> के लिए निम्नलिखित समीकरण मान्य हो: | ||
Line 30: | Line 30: | ||
जहाँ <math>\langle \cdot,\cdot \rangle</math> | जहाँ <math>\langle \cdot,\cdot \rangle</math> आंतरिक उत्पाद को दर्शाता है. | ||
चूंकि <math>A</math> | चूंकि <math>A</math> रैखिक मानचित्रण है, यह आधार सदिश के साथ परीक्षण करने के लिए पर्याप्त है, और हमें मिलता है | ||
<math display="block">\langle Au,e_i\rangle = \langle f,e_i\rangle, \quad i=1,\ldots,n.</math> | <math display="block">\langle Au,e_i\rangle = \langle f,e_i\rangle, \quad i=1,\ldots,n.</math> | ||
Line 49: | Line 49: | ||
<math display=block>-\nabla^2 u = f,</math> | <math display=block>-\nabla^2 u = f,</math> | ||
डोमेन <math>\Omega\subset \mathbb R^d</math> पर जिसकी सीमा पर <math>u=0</math> है, और इसके पश्चात समाधान स्थान <math>V</math> निर्दिष्ट करने के लिए, कोई {{nowrap|<math>L^2</math>-}}स्केलर उत्पाद का उपयोग कर सकता है | |||
<math display=block>\langle u,v\rangle = \int_\Omega uv\,dx</math> | <math display=block>\langle u,v\rangle = \int_\Omega uv\,dx</math> | ||
Line 72: | Line 72: | ||
==लैक्स-मिलग्राम प्रमेय== | ==लैक्स-मिलग्राम प्रमेय== | ||
यह लैक्स-मिलग्राम प्रमेय का | यह लैक्स-मिलग्राम प्रमेय का सूत्रीकरण है जो द्विरेखीय रूप के सममित भाग के गुणों पर निर्भर करता है। यह सबसे सामान्य रूप नहीं है. | ||
मान लीजिये <math>V</math> हिल्बर्ट स्थान है और <math>a( \cdot ,\cdot )</math> {{nowrap|<math>V</math>,}} पर द्विरेखीय रूप है, जो है | |||
# | # परिबद्ध: <math>|a(u,v)| \le C \|u\| \|v\|\,;</math> और | ||
# | #निग्रह: <math>a(u,u) \ge c \|u\|^2\,.</math> | ||
फिर, किसी भी {{nowrap|<math>f\in V'</math>,}} के लिए, समीकरण का | फिर, किसी भी {{nowrap|<math>f\in V'</math>,}} के लिए, समीकरण का अद्वितीय समाधान <math>u\in V</math> है | ||
<math display=block>a(u,v) = f(v) \quad \forall v \in V</math> | <math display=block>a(u,v) = f(v) \quad \forall v \in V</math> | ||
और यह बना रहता | और यह बना रहता है | ||
<math display=block>\|u\| \le \frac1c \|f\|_{V'}\,.</math> | <math display=block>\|u\| \le \frac1c \|f\|_{V'}\,.</math> | ||
Line 88: | Line 88: | ||
*सीमाबद्धता: सभी द्विरेखीय रूप <math>\R^n</math> बंधे हुए हैं. विशेष रूप से, हमारे पास है <math display="block">|a(u,v)| \le \|A\|\,\|u\|\,\|v\|</math> | *सीमाबद्धता: सभी द्विरेखीय रूप <math>\R^n</math> बंधे हुए हैं. विशेष रूप से, हमारे पास है <math display="block">|a(u,v)| \le \|A\|\,\|u\|\,\|v\|</math> | ||
* | *परिबद्धता: इसका वास्तव में अर्थ यह है कि <math>A</math> के आइजेनवैल्यू के वास्तविक भाग <math>c</math> से छोटे नहीं हैं। चूँकि इसका तात्पर्य विशेष रूप से यह है कि कोई भी आइजेनवैल्यू शून्य नहीं है, प्रणाली हल करने योग्य है। | ||
इसके अतिरिक्त, इससे अनुमान प्राप्त होता है | इसके अतिरिक्त, इससे अनुमान प्राप्त होता है | ||
<math display="block">\|u\| \le \frac1c \|f\|,</math> | <math display="block">\|u\| \le \frac1c \|f\|,</math> | ||
जहाँ <math>c</math> , {{nowrap|<math>A</math>.}}के | जहाँ <math>c</math> , {{nowrap|<math>A</math>.}}के आइजेनवैल्यू का न्यूनतम वास्तविक भाग है | ||
=== उदाहरण 2 पर अनुप्रयोग === | === उदाहरण 2 पर अनुप्रयोग === | ||
यहां, मानदंड के साथ <math>V = H^1_0(\Omega)</math> चुनें | यहां, मानदंड के साथ <math>V = H^1_0(\Omega)</math> चुनें | ||
<math display="block">\|v\|_V := \|\nabla v\|,</math> | <math display="block">\|v\|_V := \|\nabla v\|,</math> | ||
जहां दाईं ओर का मानदंड ओमेगा पर {{nowrap|<math>L^2</math>-}}मानदंड है (यह पोंकारे असमानता द्वारा <math>V</math> पर | जहां दाईं ओर का मानदंड ओमेगा पर {{nowrap|<math>L^2</math>-}}मानदंड है (यह पोंकारे असमानता द्वारा <math>V</math> पर सही मानदंड प्रदान करता है)। किंतु , हम देखते हैं कि <math>|a(u,u)| = \|\nabla u\|^2</math> और कॉची-श्वार्ज़ असमानता {{nowrap|<math>|a(u,v)| \le \|\nabla u\|\,\|\nabla v\|</math>.}} द्वारा है । | ||
इसलिए, किसी भी {{nowrap|<math>f \in [H^1_0(\Omega)]'</math>,}} के लिए, पॉइसन समीकरण के <math>u\in V</math> में | इसलिए, किसी भी {{nowrap|<math>f \in [H^1_0(\Omega)]'</math>,}} के लिए, पॉइसन समीकरण के <math>u\in V</math> में अद्वितीय समाधान है और हमारे पास अनुमान है | ||
<math display="block">\|\nabla u\| \le \|f\|_{[H^1_0(\Omega)]'}.</math> | <math display="block">\|\nabla u\| \le \|f\|_{[H^1_0(\Omega)]'}.</math> | ||
==यह भी देखें== | ==यह भी देखें == | ||
* बाबुस्का-लैक्स-मिलग्राम प्रमेय | * बाबुस्का-लैक्स-मिलग्राम प्रमेय | ||
* लायंस-लैक्स-मिलग्राम प्रमेय | * लायंस-लैक्स-मिलग्राम प्रमेय | ||
Line 133: | Line 133: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://mathworld.wolfram.com/Lax-MilgramTheorem.html MathWorld page on Lax–Milgram theorem] | *[http://mathworld.wolfram.com/Lax-MilgramTheorem.html MathWorld page on Lax–Milgram theorem] | ||
[[Category:Created On 24/07/2023]] | [[Category:Created On 24/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:आंशिक अंतर समीकरण]] | |||
[[Category:कार्यात्मक विश्लेषण में प्रमेय]] | |||
[[Category:संख्यात्मक अंतर समीकरण]] |
Latest revision as of 10:55, 12 August 2023
अशक्त सूत्रीकरण गणितीय समीकरण के विश्लेषण के लिए महत्वपूर्ण उपकरण हैं जो आंशिक अंतर समीकरणों जैसे अन्य क्षेत्रों में समस्याओं को हल करने के लिए रैखिक बीजगणित की अवधारणाओं के हस्तांतरण की अनुमति देते हैं। अशक्त सूत्रीकरण में, समीकरणों या नियमों को अब पूरी तरह से धारण करने की आवश्यकता नहीं है (और यह अच्छी तरह से परिभाषित भी नहीं है) और इसके अतिरिक्त केवल कुछ परीक्षण सदिश या परीक्षण कार्यों के संबंध में अशक्त समाधान हैं। शसक्त सूत्रीकरण में, समाधान स्थान का निर्माण इस तरह किया जाता है कि ये समीकरण या नियम पहले से ही पूरी हो जाती हैं।
लैक्स-मिलग्राम प्रमेय, जिसका नाम पीटर लैक्स और आर्थर मिलग्राम के नाम पर रखा गया है, जिन्होंने इसे 1954 में सिद्ध किया था, हिल्बर्ट स्थान पर कुछ प्रणालियों के लिए अशक्त सूत्रीकरण प्रदान करता है।
सामान्य अवधारणा
मान लीजिए कि बैनाच स्पेस है, इसका दोहरा स्पेस है, , और समीकरण का हल खोजा जाता है
इसे अशक्त सूत्रीकरण के सामान्य रूप में लाने के लिए, को ऐसे खोजें
उदाहरण 1: समीकरणों की रैखिक प्रणाली
अब, मान लीजिए कि और रैखिक मानचित्रण है। फिर, समीकरण का अशक्त सूत्रीकरण है
जहाँ आंतरिक उत्पाद को दर्शाता है.
चूंकि रैखिक मानचित्रण है, यह आधार सदिश के साथ परीक्षण करने के लिए पर्याप्त है, और हमें मिलता है
इस अशक्त सूत्रीकरण से जुड़ा द्विरेखीय रूप है
उदाहरण 2: पॉइसन का समीकरण
पॉइसन के समीकरण को हल करने के लिए
डोमेन पर जिसकी सीमा पर है, और इसके पश्चात समाधान स्थान निर्दिष्ट करने के लिए, कोई -स्केलर उत्पाद का उपयोग कर सकता है
इसे ही समान्यत: पॉइसन समीकरण का अशक्त सूत्रीकरण कहा जाता है। समाधान स्थान में फलन सीमा पर शून्य होना चाहिए, और इसमें वर्ग-अभिन्न व्युत्पन्न होना चाहिए। इन आवश्यकताओं को पूरा करने के लिए उपयुक्त स्थान में अशक्त डेरिवेटिव और शून्य सीमा नियमों के साथ कार्यों का सोबोलेव स्पेस है, इसलिए .।
सामान्य प्रपत्र असाइन करके प्राप्त किया जाता है
लैक्स-मिलग्राम प्रमेय
यह लैक्स-मिलग्राम प्रमेय का सूत्रीकरण है जो द्विरेखीय रूप के सममित भाग के गुणों पर निर्भर करता है। यह सबसे सामान्य रूप नहीं है.
मान लीजिये हिल्बर्ट स्थान है और , पर द्विरेखीय रूप है, जो है
- परिबद्ध: और
- निग्रह:
फिर, किसी भी , के लिए, समीकरण का अद्वितीय समाधान है
उदाहरण 1 पर आवेदन
यहां, लैक्स-मिलग्राम प्रमेय का अनुप्रयोग आवश्यकता से अधिक शसक्त परिणाम है।
- सीमाबद्धता: सभी द्विरेखीय रूप बंधे हुए हैं. विशेष रूप से, हमारे पास है
- परिबद्धता: इसका वास्तव में अर्थ यह है कि के आइजेनवैल्यू के वास्तविक भाग से छोटे नहीं हैं। चूँकि इसका तात्पर्य विशेष रूप से यह है कि कोई भी आइजेनवैल्यू शून्य नहीं है, प्रणाली हल करने योग्य है।
इसके अतिरिक्त, इससे अनुमान प्राप्त होता है
उदाहरण 2 पर अनुप्रयोग
यहां, मानदंड के साथ चुनें
इसलिए, किसी भी , के लिए, पॉइसन समीकरण के में अद्वितीय समाधान है और हमारे पास अनुमान है
यह भी देखें
- बाबुस्का-लैक्स-मिलग्राम प्रमेय
- लायंस-लैक्स-मिलग्राम प्रमेय
संदर्भ
- Lax, Peter D.; Milgram, Arthur N. (1954), "Parabolic equations", Contributions to the theory of partial differential equations, Annals of Mathematics Studies, vol. 33, Princeton, N. J.: Princeton University Press, pp. 167–190, doi:10.1515/9781400882182-010, ISBN 9781400882182, MR 0067317, Zbl 0058.08703