फर्मी स्तर: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Quantity in solid state thermodynamics}} {{Distinguish|Fermi energy}} भौतिक विज्ञान की ठोस अवस्था | स...")
 
No edit summary
Line 1: Line 1:
{{Short description|Quantity in solid state thermodynamics}}
{{Short description|Quantity in solid state thermodynamics}}
{{Distinguish|Fermi energy}}
{{Distinguish|Fermi energy}}
[[भौतिक विज्ञान की ठोस अवस्था]] | सॉलिड-स्टेट बॉडी का फर्मी स्तर शरीर में एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक [[[[thermodynamic]] कार्य]] है। यह एक थर्मोडायनामिक मात्रा है जिसे आमतौर पर ''μ'' या ''E'' द्वारा दर्शाया जाता है।<sub>F</sub><ref>{{cite book|title=[[Introduction to Solid State Physics (Kittel book)|Introduction to Solid State Physics]]|edition= 7th| last1=Kittel|first1=Charles| publisher=Wiley|year=<!--replace this comment with the publication year-->|author-link1=Charles Kittel}}</ref>
[[भौतिक विज्ञान की ठोस अवस्था]] |एक ठोस-अवस्था निकाय का फर्मी स्तर शरीर में एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक थर्मोडायनामिक कार्य है। यह एक थर्मोडायनामिक मात्रा है जिसे आमतौर पर संक्षिप्तता के लिए μ या μ या E<sub>F द्वारा दर्शाया जाता है।</sub>
संक्षिप्तता के लिए। फर्मी स्तर में इलेक्ट्रॉन को दूर करने के लिए आवश्यक कार्य शामिल नहीं है, जहां से वह आया था।
 
फर्मी स्तर की एक सटीक समझ - यह इलेक्ट्रॉनिक गुणों का निर्धारण करने में [[इलेक्ट्रॉनिक [[बैंड संरचना]]]] से कैसे संबंधित है, यह इलेक्ट्रॉनिक सर्किट में वोल्टेज और विद्युत प्रवाह से कैसे संबंधित है - ठोस-अवस्था भौतिकी की समझ के लिए आवश्यक है।
<ref>{{cite book|title=[[Introduction to Solid State Physics (Kittel book)|Introduction to Solid State Physics]]|edition= 7th| last1=Kittel|first1=Charles| publisher=Wiley|year=<!--replace this comment with the publication year-->|author-link1=Charles Kittel}}</ref>फर्मी स्तर में इलेक्ट्रॉन को दूर करने के लिए आवश्यक कार्यसम्मिलित  नहीं ह  जहां से वह आया था फर्मी स्तर की एक सटीक समझ - यह इलेक्ट्रॉनिक गुणों का निर्धारण करने में इलेक्ट्रॉनिक बैंड संरचना से कैसे संबंधित है, यह इलेक्ट्रॉनिक परिपथ में वोल्टेज और आवेश के प्रवाह से कैसे संबंधित है - ठोस-अवस्था भौतिकी की समझ के लिए आवश्यक है।।
 
बैंड संरचना सिद्धांत में ठोस अवस्था भौतिकी में एक ठोस में ऊर्जा के स्तर का विश्लेषण करने के लिए उपयोग किया जाता है। फर्मी स्तर को एक इलेक्ट्रॉन का एक काल्पनिक ऊर्जा स्तर माना जा सकता है, जैसे कि [[थर्मोडायनामिक संतुलन]] में इस ऊर्जा स्तर की 50% संभावना होगी किसी भी समय कब्जा किया जा रहा है।{{Clarify|date=February 2021}}


बैंड संरचना सिद्धांत में, ठोस अवस्था भौतिकी में एक ठोस में ऊर्जा के स्तर का विश्लेषण करने के लिए उपयोग किया जाता है, फर्मी स्तर को एक इलेक्ट्रॉन का एक काल्पनिक ऊर्जा स्तर माना जा सकता है, जैसे कि [[थर्मोडायनामिक संतुलन]] में इस ऊर्जा स्तर की 50% संभावना होगी किसी भी समय कब्जा किया जा रहा है।{{Clarify|date=February 2021}}
विद्युत गुणों के निर्धारण में बैंड ऊर्जा स्तरों के संबंध में फर्मी स्तर की स्थिति एक महत्वपूर्ण कारक है।
विद्युत गुणों के निर्धारण में बैंड ऊर्जा स्तरों के संबंध में फर्मी स्तर की स्थिति एक महत्वपूर्ण कारक है।
फर्मी स्तर आवश्यक रूप से एक वास्तविक ऊर्जा स्तर के अनुरूप नहीं होता है (एक इन्सुलेटर में फर्मी स्तर [[ऊर्जा अंतराल]] में होता है), न ही इसे बैंड संरचना के अस्तित्व की आवश्यकता होती है।
 
बहरहाल, फर्मी स्तर एक सटीक परिभाषित थर्मोडायनामिक मात्रा है, और फर्मी स्तर में अंतर को केवल [[वाल्टमीटर]] से मापा जा सकता है।
फर्मी स्तर आवश्यक रूप से एक वास्तविक ऊर्जा स्तर के अनुरूप नहीं होता है (एक इन्सुलेटर में फर्मी स्तर [[ऊर्जा अंतराल]] में होता है) न ही इसे बैंड संरचना के अस्तित्व की आवश्यकता होती है।
 
बहरहाल फर्मी स्तर एक सटीक परिभाषित थर्मोडायनामिक मात्रा है और फर्मी स्तर में अंतर को केवल [[वाल्टमीटर]] से मापा जा सकता है।


== वोल्टेज माप ==
== वोल्टेज माप ==


[[File:Old Volt Meter pic3.JPG|thumb|एक वाल्टमीटर [[इलेक्ट्रॉन चार्ज]] द्वारा विभाजित फर्मी स्तर में अंतर को मापता है।]]कभी-कभी यह कहा जाता है कि विद्युत धाराएं [[इलेक्ट्रोस्टैटिक क्षमता]] (गैलवानी क्षमता) में अंतर से संचालित होती हैं, लेकिन यह बिल्कुल सच नहीं है।<ref>{{cite journal|doi=10.1016/S0167-2738(96)00542-5|title=What does a voltmeter measure?|journal=Solid State Ionics|volume=95|issue=3–4|pages=327–328|year=1997|last1=Riess|first1=I}}</ref>
[[File:Old Volt Meter pic3.JPG|thumb|एक वाल्टमीटर [[इलेक्ट्रॉन चार्ज]] द्वारा विभाजित फर्मी स्तर में अंतर को मापता है।]]कभी-कभी यह कहा जाता है कि विद्युत धाराएं [[इलेक्ट्रोस्टैटिक क्षमता]] (गैलवानी क्षमता) में अंतर से संचालित होती हैं लेकिन यह बिल्कुल सच नहीं है।<ref>{{cite journal|doi=10.1016/S0167-2738(96)00542-5|title=What does a voltmeter measure?|journal=Solid State Ionics|volume=95|issue=3–4|pages=327–328|year=1997|last1=Riess|first1=I}}</ref>
एक प्रति उदाहरण के रूप में, पी-एन जंक्शन जैसे बहु-भौतिक उपकरणों में संतुलन पर आंतरिक इलेक्ट्रोस्टैटिक संभावित अंतर होते हैं, फिर भी बिना किसी नेट करंट के; यदि एक वाल्टमीटर जंक्शन से जुड़ा हुआ है, तो एक शून्य वोल्ट को मापता है।<ref>{{cite book |title=Fundamentals of Solid-State Electronics |url=https://archive.org/details/fundamentalssoli00sahc_987 |url-access=limited |last1=Sah |first1=Chih-Tang |year=1991 |publisher=World Scientific |isbn=978-9810206376 |page=[https://archive.org/details/fundamentalssoli00sahc_987/page/n405 404]}}</ref>
एक प्रति उदाहरण के रूप में पी-एन जंक्शन जैसे बहु-भौतिक उपकरणों में संतुलन पर आंतरिक इलेक्ट्रोस्टैटिक संभावित अंतर होते हैं फिर भी बिना किसी नेट धारा के यदि एक वाल्टमीटर जंक्शन से जुड़ा हुआ है, तो एक शून्य वोल्ट को मापता है।
स्पष्ट रूप से, इलेक्ट्रोस्टैटिक क्षमता सामग्री में आवेश के प्रवाह को प्रभावित करने वाला एकमात्र कारक नहीं है - [[पाउली प्रतिकर्षण]], वाहक सांद्रता प्रवणता, विद्युत चुम्बकीय प्रेरण और तापीय प्रभाव भी एक महत्वपूर्ण भूमिका निभाते हैं।


वास्तव में, इलेक्ट्रॉनिक सर्किट में मापी गई वोल्टेज नामक मात्रा का इलेक्ट्रॉनों (फर्मी स्तर) के लिए [[रासायनिक क्षमता]] से सीधा संबंध होता है।
<ref>{{cite book |title=Fundamentals of Solid-State Electronics |url=https://archive.org/details/fundamentalssoli00sahc_987 |url-access=limited |last1=Sah |first1=Chih-Tang |year=1991 |publisher=World Scientific |isbn=978-9810206376 |page=[https://archive.org/details/fundamentalssoli00sahc_987/page/n405 404]}}</ref>स्पष्ट रूप से इलेक्ट्रोस्टैटिक क्षमता सामग्री में आवेश के प्रवाह को प्रभावित करने वाला एकमात्र कारक नहीं है - [[पाउली प्रतिकर्षण]], वाहक सांद्रता प्रवणता, विद्युत चुम्बकीय प्रेरण और तापीय प्रभाव भी एक महत्वपूर्ण भूमिका निभाते हैं।
जब एक वाल्टमीटर की लीड एक सर्किट में दो बिंदुओं से जुड़ी होती है, तो प्रदर्शित वोल्टेज एक यूनिट चार्ज को एक बिंदु से दूसरे तक जाने की अनुमति देने पर स्थानांतरित किए गए कुल कार्य का एक माप होता है।
यदि भिन्न वोल्टेज ([[शार्ट सर्किट]] बनाने) के दो बिंदुओं के बीच एक साधारण तार जुड़ा हुआ है, तो वर्तमान धनात्मक से ऋणात्मक वोल्टेज में प्रवाहित होगा, जो उपलब्ध कार्य को ऊष्मा में परिवर्तित करेगा।


किसी पिंड का फर्मी स्तर उसमें एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक कार्य को व्यक्त करता है, या समान रूप से एक इलेक्ट्रॉन को हटाकर प्राप्त कार्य को व्यक्त करता है।
 
इसलिए, वी<sub>A</sub>- वी<sub>B</sub>, इलेक्ट्रॉनिक सर्किट में दो बिंदुओं, ए और बी के बीच वोल्टेज में देखा गया अंतर, संबंधित रासायनिक संभावित अंतर, μ से बिल्कुल संबंधित है<sub>A</sub>- <sub>B</sub>, फर्मी स्तर में सूत्र द्वारा<ref>{{cite book
वास्तव में इलेक्ट्रॉनिक परिपथ में मापी गई वोल्टेज नामक मात्रा का इलेक्ट्रॉनों (फर्मी स्तर) के लिए [[रासायनिक क्षमता]] से सीधा संबंध होता है।
 
जब एक वाल्टमीटर की लीड एक परिपथ में दो बिंदुओं से जुड़ी होती है, तो प्रदर्शित वोल्टेज एक यूनिट चार्ज को एक बिंदु से दूसरे तक जाने की अनुमति देने पर स्थानांतरित किए गए कुल कार्य का एक माप होता है।
 
यदि भिन्न वोल्टेज ([[शार्ट सर्किट|शार्ट परिपथ]] बनाने) के दो बिंदुओं के बीच एक साधारण तार जुड़ा हुआ है, तो वर्तमान धनात्मक से ऋणात्मक वोल्टेज में प्रवाहित होगा जो उपलब्ध कार्य को ऊष्मा में परिवर्तित करेगा।
 
किसी पिंड का फर्मी स्तर उसमें एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक कार्य को व्यक्त करता है या समान रूप से एक इलेक्ट्रॉन को हटाकर प्राप्त कार्य को व्यक्त करता है।
 
इसलिए V<sub>A</sub>- V<sub>B</sub>, इलेक्ट्रॉनिक परिपथ में दो बिंदुओं A और B के बीच वोल्टेज में देखा गया अंतर संबंधित रासायनिक संभावित अंतर μ<sub>A</sub>- μ<sub>B से बिल्कुल संबंधित है।</sub>फर्मी स्तर में सूत्र द्वारा<ref>{{cite book
  | isbn        = 9780521631457
  | isbn        = 9780521631457
  | title        = Quantum Transport: Atom to Transistor
  | title        = Quantum Transport: Atom to Transistor
Line 35: Line 43:


उपरोक्त चर्चा से यह देखा जा सकता है कि यदि एक सरल पथ प्रदान किया जाता है तो इलेक्ट्रॉन उच्च μ (कम वोल्टेज) से कम μ (उच्च वोल्टेज) की ओर बढ़ेंगे।
उपरोक्त चर्चा से यह देखा जा सकता है कि यदि एक सरल पथ प्रदान किया जाता है तो इलेक्ट्रॉन उच्च μ (कम वोल्टेज) से कम μ (उच्च वोल्टेज) की ओर बढ़ेंगे।
इलेक्ट्रॉनों के इस प्रवाह के कारण निम्न μ बढ़ेगा (चार्जिंग या अन्य प्रतिकर्षण प्रभावों के कारण) और इसी तरह उच्च μ घटने का कारण होगा।
इलेक्ट्रॉनों के इस प्रवाह के कारण निम्न μ बढ़ेगा (चार्जिंग या अन्य प्रतिकर्षण प्रभावों के कारण) और इसी तरह उच्च μ घटने का कारण होगा।
आखिरकार, μ दोनों निकायों में समान मान पर स्थिर हो जाएगा।
 
यह इलेक्ट्रॉनिक सर्किट के संतुलन (बंद) स्थिति के संबंध में एक महत्वपूर्ण तथ्य की ओर ले जाता है:
आखिरकार μ दोनों निकायों में समान मान पर स्थिर हो जाएगा।
 
यह इलेक्ट्रॉनिक परिपथ के संतुलन (बंद) स्थिति के संबंध में एक महत्वपूर्ण तथ्य की ओर ले जाता है:
{{block indent|em=1.5|text=''An electronic circuit in [[thermodynamic equilibrium]] will have a constant Fermi level throughout its connected parts.''{{According to whom|date=May 2017}}}}
{{block indent|em=1.5|text=''An electronic circuit in [[thermodynamic equilibrium]] will have a constant Fermi level throughout its connected parts.''{{According to whom|date=May 2017}}}}


इसका अर्थ यह भी है कि किसी भी दो बिंदुओं के बीच वोल्टेज (वाल्टमीटर से मापा जाता है) शून्य होगा, संतुलन पर।
इसका अर्थ यह भी है कि किसी भी दो बिंदुओं के बीच वोल्टेज (वाल्टमीटर से मापा जाता है) संतुलन पर शून्य होगा।
ध्यान दें कि यहां थर्मोडायनामिक संतुलन के लिए आवश्यक है कि सर्किट आंतरिक रूप से जुड़ा हो और इसमें कोई बैटरी या अन्य शक्ति स्रोत न हों, न ही तापमान में कोई भिन्नता हो।
 
ध्यान दें कि यहां थर्मोडायनामिक संतुलन के लिए आवश्यक है कि परिपथ  आंतरिक रूप से जुड़ा हो और इसमें कोई बैटरी या अन्य शक्ति स्रोत न हों, न ही तापमान में कोई भिन्नता हो।


== ठोस पदार्थों की बैंड संरचना ==
== ठोस पदार्थों की बैंड संरचना ==


{{Band structure filling diagram}}
{{Band structure filling diagram}}
[[File:Fermi.gif|thumb|250px|left|फर्मी-डिराक वितरण <math>f(\epsilon) </math> बनाम ऊर्जा <math>\epsilon </math>, μ = 0.55 eV के साथ और सीमा में विभिन्न तापमानों के लिए {{nowrap|50 K ≤ ''T'' ≤ 375 K}}.]]ठोस पदार्थों के [[बैंड सिद्धांत]] में, इलेक्ट्रॉनों को एकल-कण ऊर्जा से बने बैंड की एक श्रृंखला पर कब्जा करने के लिए माना जाता है, प्रत्येक को ϵ द्वारा लेबल किया जाता है। यद्यपि यह एकल कण चित्र एक सन्निकटन है, यह इलेक्ट्रॉनिक व्यवहार की समझ को बहुत सरल करता है और सही ढंग से लागू होने पर यह आम तौर पर सही परिणाम प्रदान करता है।
[[File:Fermi.gif|thumb|250px|left|फर्मी-डिराक वितरण <math>f(\epsilon) </math> बनाम ऊर्जा <math>\epsilon </math>, μ = 0.55 eV के साथ और सीमा में विभिन्न तापमानों के लिए {{nowrap|50 K ≤ ''T'' ≤ 375 K}}.]]ठोस पदार्थों के [[बैंड सिद्धांत]] में इलेक्ट्रॉनों को एकल-कण ऊर्जा से बने बैंड की एक श्रृंखला पर कब्जा करने के लिए माना जाता है और प्रत्येक को ϵ द्वारा लेबल किया जाता है। यद्यपि यह एकल कण चित्र एक सन्निकटन है। यह इलेक्ट्रॉनिक व्यवहार की समझ को बहुत सरल करता है और सही ढंग से लागू होने पर यह प्राय: सही परिणाम प्रदान करता है।


फर्मी-डिराक सांख्यिकी | फर्मी-डिराक वितरण, <math>f(\epsilon)</math>, संभावना देता है कि (थर्मोडायनेमिक संतुलन पर) ऊर्जा वाले राज्य में इलेक्ट्रॉन द्वारा कब्जा कर लिया जाता है:<ref name=Kittel1980>{{cite book | last = Kittel | first = Charles | author-link = Charles Kittel |author2=Herbert Kroemer  | title = Thermal Physics | publisher = W. H. Freeman | date = 1980-01-15 | page = 357 | url = https://books.google.com/books?id=c0R79nyOoNMC&pg=PA357| isbn = 978-0-7167-1088-2 | author2-link = Herbert Kroemer | edition = 2nd }}</ref>
फर्मी-डिराक सांख्यिकी | फर्मी-डिराक वितरण, <math>f(\epsilon)</math>, संभावना देता है कि (थर्मोडायनेमिक संतुलन पर) ऊर्जा वाले राज्य में इलेक्ट्रॉन द्वारा कब्जा कर लिया जाता है:<ref name=Kittel1980>{{cite book | last = Kittel | first = Charles | author-link = Charles Kittel |author2=Herbert Kroemer  | title = Thermal Physics | publisher = W. H. Freeman | date = 1980-01-15 | page = 357 | url = https://books.google.com/books?id=c0R79nyOoNMC&pg=PA357| isbn = 978-0-7167-1088-2 | author2-link = Herbert Kroemer | edition = 2nd }}</ref>

Revision as of 13:15, 12 February 2023

भौतिक विज्ञान की ठोस अवस्था |एक ठोस-अवस्था निकाय का फर्मी स्तर शरीर में एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक थर्मोडायनामिक कार्य है। यह एक थर्मोडायनामिक मात्रा है जिसे आमतौर पर संक्षिप्तता के लिए μ या μ या EF द्वारा दर्शाया जाता है।

[1]फर्मी स्तर में इलेक्ट्रॉन को दूर करने के लिए आवश्यक कार्यसम्मिलित नहीं ह जहां से वह आया था फर्मी स्तर की एक सटीक समझ - यह इलेक्ट्रॉनिक गुणों का निर्धारण करने में इलेक्ट्रॉनिक बैंड संरचना से कैसे संबंधित है, यह इलेक्ट्रॉनिक परिपथ में वोल्टेज और आवेश के प्रवाह से कैसे संबंधित है - ठोस-अवस्था भौतिकी की समझ के लिए आवश्यक है।।

बैंड संरचना सिद्धांत में ठोस अवस्था भौतिकी में एक ठोस में ऊर्जा के स्तर का विश्लेषण करने के लिए उपयोग किया जाता है। फर्मी स्तर को एक इलेक्ट्रॉन का एक काल्पनिक ऊर्जा स्तर माना जा सकता है, जैसे कि थर्मोडायनामिक संतुलन में इस ऊर्जा स्तर की 50% संभावना होगी किसी भी समय कब्जा किया जा रहा है।[clarification needed]

विद्युत गुणों के निर्धारण में बैंड ऊर्जा स्तरों के संबंध में फर्मी स्तर की स्थिति एक महत्वपूर्ण कारक है।

फर्मी स्तर आवश्यक रूप से एक वास्तविक ऊर्जा स्तर के अनुरूप नहीं होता है (एक इन्सुलेटर में फर्मी स्तर ऊर्जा अंतराल में होता है) न ही इसे बैंड संरचना के अस्तित्व की आवश्यकता होती है।

बहरहाल फर्मी स्तर एक सटीक परिभाषित थर्मोडायनामिक मात्रा है और फर्मी स्तर में अंतर को केवल वाल्टमीटर से मापा जा सकता है।

वोल्टेज माप

एक वाल्टमीटर इलेक्ट्रॉन चार्ज द्वारा विभाजित फर्मी स्तर में अंतर को मापता है।

कभी-कभी यह कहा जाता है कि विद्युत धाराएं इलेक्ट्रोस्टैटिक क्षमता (गैलवानी क्षमता) में अंतर से संचालित होती हैं लेकिन यह बिल्कुल सच नहीं है।[2]

एक प्रति उदाहरण के रूप में पी-एन जंक्शन जैसे बहु-भौतिक उपकरणों में संतुलन पर आंतरिक इलेक्ट्रोस्टैटिक संभावित अंतर होते हैं फिर भी बिना किसी नेट धारा के यदि एक वाल्टमीटर जंक्शन से जुड़ा हुआ है, तो एक शून्य वोल्ट को मापता है।

[3]स्पष्ट रूप से इलेक्ट्रोस्टैटिक क्षमता सामग्री में आवेश के प्रवाह को प्रभावित करने वाला एकमात्र कारक नहीं है - पाउली प्रतिकर्षण, वाहक सांद्रता प्रवणता, विद्युत चुम्बकीय प्रेरण और तापीय प्रभाव भी एक महत्वपूर्ण भूमिका निभाते हैं।


वास्तव में इलेक्ट्रॉनिक परिपथ में मापी गई वोल्टेज नामक मात्रा का इलेक्ट्रॉनों (फर्मी स्तर) के लिए रासायनिक क्षमता से सीधा संबंध होता है।

जब एक वाल्टमीटर की लीड एक परिपथ में दो बिंदुओं से जुड़ी होती है, तो प्रदर्शित वोल्टेज एक यूनिट चार्ज को एक बिंदु से दूसरे तक जाने की अनुमति देने पर स्थानांतरित किए गए कुल कार्य का एक माप होता है।

यदि भिन्न वोल्टेज (शार्ट परिपथ बनाने) के दो बिंदुओं के बीच एक साधारण तार जुड़ा हुआ है, तो वर्तमान धनात्मक से ऋणात्मक वोल्टेज में प्रवाहित होगा जो उपलब्ध कार्य को ऊष्मा में परिवर्तित करेगा।

किसी पिंड का फर्मी स्तर उसमें एक इलेक्ट्रॉन जोड़ने के लिए आवश्यक कार्य को व्यक्त करता है या समान रूप से एक इलेक्ट्रॉन को हटाकर प्राप्त कार्य को व्यक्त करता है।

इसलिए VA- VB, इलेक्ट्रॉनिक परिपथ में दो बिंदुओं A और B के बीच वोल्टेज में देखा गया अंतर संबंधित रासायनिक संभावित अंतर μA- μB से बिल्कुल संबंधित है।फर्मी स्तर में सूत्र द्वारा[4]

जहाँ -e इलेक्ट्रॉन आवेश है।

उपरोक्त चर्चा से यह देखा जा सकता है कि यदि एक सरल पथ प्रदान किया जाता है तो इलेक्ट्रॉन उच्च μ (कम वोल्टेज) से कम μ (उच्च वोल्टेज) की ओर बढ़ेंगे।

इलेक्ट्रॉनों के इस प्रवाह के कारण निम्न μ बढ़ेगा (चार्जिंग या अन्य प्रतिकर्षण प्रभावों के कारण) और इसी तरह उच्च μ घटने का कारण होगा।

आखिरकार μ दोनों निकायों में समान मान पर स्थिर हो जाएगा।

यह इलेक्ट्रॉनिक परिपथ के संतुलन (बंद) स्थिति के संबंध में एक महत्वपूर्ण तथ्य की ओर ले जाता है:

An electronic circuit in thermodynamic equilibrium will have a constant Fermi level throughout its connected parts.[according to whom?]

इसका अर्थ यह भी है कि किसी भी दो बिंदुओं के बीच वोल्टेज (वाल्टमीटर से मापा जाता है) संतुलन पर शून्य होगा।

ध्यान दें कि यहां थर्मोडायनामिक संतुलन के लिए आवश्यक है कि परिपथ आंतरिक रूप से जुड़ा हो और इसमें कोई बैटरी या अन्य शक्ति स्रोत न हों, न ही तापमान में कोई भिन्नता हो।

ठोस पदार्थों की बैंड संरचना

संतुलन पर विभिन्न प्रकार की सामग्रियों में इलेक्ट्रॉनिक अवस्थाओं को भरना। यहां, ऊंचाई ऊर्जा है जबकि चौड़ाई सूचीबद्ध सामग्री में एक निश्चित ऊर्जा के लिए उपलब्ध राज्यों का घनत्व है। Tवह शेड फर्मी-डिराक वितरण (काला: सभी राज्य भर गए, सफेद: कोई राज्य नहीं भरा) का अनुसरण करता है। धातुएस और सेमीमेटलएस में फर्मी स्तर F कम से कम एक बैंड के अंदर स्थित है।
इंसुलेटरएस और सेमीकंडक्टरएस में फर्मी स्तर एक बैंड गैप के अंदर होता है; हालाँकि, अर्धचालकों में बैंड इलेक्ट्रॉनों या होलएस के साथ थर्मली पॉप्युलेट होने के लिए फर्मी स्तर के काफी करीब होते हैं।
फर्मी-डिराक वितरण बनाम ऊर्जा , μ = 0.55 eV के साथ और सीमा में विभिन्न तापमानों के लिए 50 K ≤ T ≤ 375 K.

ठोस पदार्थों के बैंड सिद्धांत में इलेक्ट्रॉनों को एकल-कण ऊर्जा से बने बैंड की एक श्रृंखला पर कब्जा करने के लिए माना जाता है और प्रत्येक को ϵ द्वारा लेबल किया जाता है। यद्यपि यह एकल कण चित्र एक सन्निकटन है। यह इलेक्ट्रॉनिक व्यवहार की समझ को बहुत सरल करता है और सही ढंग से लागू होने पर यह प्राय: सही परिणाम प्रदान करता है।

फर्मी-डिराक सांख्यिकी | फर्मी-डिराक वितरण, , संभावना देता है कि (थर्मोडायनेमिक संतुलन पर) ऊर्जा वाले राज्य में इलेक्ट्रॉन द्वारा कब्जा कर लिया जाता है:[5]

यहाँ, T थर्मोडायनामिक तापमान है और kB बोल्ट्जमैन स्थिरांक है। यदि फर्मी स्तर (ϵ = µ) पर कोई राज्य है, तो इस राज्य के कब्जे में होने की 50% संभावना होगी। वितरण को बाएं चित्र में प्लॉट किया गया है। f 1 के जितना करीब होता है, इस अवस्था के कब्जे में होने की संभावना उतनी ही अधिक होती है। f 0 के जितना करीब होगा, इस स्थिति के खाली होने की संभावना उतनी ही अधिक होगी।

सामग्री के विद्युत व्यवहार को निर्धारित करने में सामग्री की बैंड संरचना के भीतर μ का स्थान महत्वपूर्ण है।

  • एक इन्सुलेटर (बिजली) में, μ एक बड़े बैंड गैप के भीतर होता है, जो किसी भी राज्य से दूर होता है जो करंट ले जाने में सक्षम होता है।
  • एक धातु, अर्द्ध धातु या पतित अर्धचालक में, μ एक डेलोकलाइज्ड बैंड के भीतर होता है। μ के आस-पास बड़ी संख्या में राज्य तापीय रूप से सक्रिय हैं और आसानी से करंट ले जाते हैं।
  • एक आंतरिक या हल्के से डोप किए गए अर्धचालक में, μ एक बैंड किनारे के काफी करीब है कि उस बैंड किनारे के पास रहने वाले तापीय उत्साहित वाहकों की एक पतली संख्या होती है।

सेमीकंडक्टर्स और सेमीमेटल्स में बैंड संरचना के सापेक्ष μ की स्थिति को आमतौर पर डोपिंग या गेटिंग द्वारा काफी हद तक नियंत्रित किया जा सकता है। ये नियंत्रण μ नहीं बदलते हैं जो इलेक्ट्रोड द्वारा तय किया जाता है, बल्कि वे पूरे बैंड संरचना को ऊपर और नीचे स्थानांतरित करने का कारण बनते हैं (कभी-कभी बैंड संरचना के आकार को भी बदलते हैं)। सेमीकंडक्टर्स के फर्मी स्तर के बारे में अधिक जानकारी के लिए देखें (उदाहरण के लिए) Sze.[6]


स्थानीय चालन बैंड संदर्भित, आंतरिक रासायनिक क्षमता और पैरामीटर ζ

यदि प्रतीक ℰ का उपयोग इसके संलग्न बैंड के किनारे की ऊर्जा के सापेक्ष मापे गए इलेक्ट्रॉन ऊर्जा स्तर को दर्शाने के लिए किया जाता है, ϵC, तो सामान्य तौर पर हमारे पास एल = ϵ - ϵ हैC. हम एक पैरामीटर ζ परिभाषित कर सकते हैं[7] जो बैंड किनारे के संबंध में फर्मी स्तर को संदर्भित करता है:

यह निम्नानुसार है कि फर्मी-डिराक वितरण समारोह को इस रूप में लिखा जा सकता है
धातुओं की इलेक्ट्रॉनिक बैंड संरचना शुरू में 1927 से सोमरफेल्ड द्वारा विकसित की गई थी, जिन्होंने अंतर्निहित ऊष्मप्रवैगिकी और सांख्यिकीय यांत्रिकी पर बहुत ध्यान दिया। भ्रामक रूप से, कुछ संदर्भों में बैंड-संदर्भित मात्रा ζ को फर्मी स्तर, रासायनिक क्षमता या विद्युत रासायनिक क्षमता कहा जा सकता है, जिससे विश्व स्तर पर संदर्भित फर्मी स्तर के साथ अस्पष्टता हो सकती है। इस लेख में, कंडक्शन-बैंड संदर्भित फर्मी स्तर या आंतरिक रासायनिक क्षमता का उपयोग ζ को संदर्भित करने के लिए किया जाता है।

कंडक्शन बैंड एज ई में भिन्नता का उदाहरणC GaAs/AlGaAs heterojunction-आधारित उच्च-इलेक्ट्रॉन-गतिशीलता ट्रांजिस्टर के एक बैंड आरेख में।

ζ सीधे सक्रिय आवेश वाहकों की संख्या के साथ-साथ उनकी विशिष्ट गतिज ऊर्जा से संबंधित है, और इसलिए यह सीधे सामग्री के स्थानीय गुणों (जैसे विद्युत चालकता) को निर्धारित करने में शामिल है।

इस कारण से एक एकल, सजातीय प्रवाहकीय सामग्री में इलेक्ट्रॉनों के गुणों पर ध्यान केंद्रित करते समय ζ के मान पर ध्यान केंद्रित करना आम बात है। एक मुक्त इलेक्ट्रॉन की ऊर्जा अवस्थाओं के अनुरूप, किसी अवस्था का ℰ उस अवस्था की गतिज ऊर्जा होती है और ϵC इसकी संभावित ऊर्जा है। इसे ध्यान में रखते हुए, पैरामीटर, ζ, को फर्मी गतिज ऊर्जा भी कहा जा सकता है।

μ के विपरीत, पैरामीटर, ζ, संतुलन पर स्थिर नहीं है, बल्कि ϵ में भिन्नता के कारण सामग्री में स्थान से स्थान पर भिन्न होता है।C, जो सामग्री की गुणवत्ता और अशुद्धियों/डोपेंट्स जैसे कारकों द्वारा निर्धारित किया जाता है। सेमीकंडक्टर या सेमीमेटल की सतह के पास, ζ को बाहरी रूप से लगाए गए विद्युत क्षेत्रों द्वारा दृढ़ता से नियंत्रित किया जा सकता है, जैसा कि क्षेत्र प्रभाव ट्रांजिस्टर में किया जाता है। मल्टी-बैंड सामग्री में, ζ एक ही स्थान पर कई मान भी ले सकता है। उदाहरण के लिए, एल्यूमीनियम धातु के एक टुकड़े में फर्मी स्तर को पार करने वाले दो चालन बैंड होते हैं (अन्य सामग्रियों में और भी अधिक बैंड);[8] प्रत्येक बैंड की एक अलग धार ऊर्जा होती है, ϵC, और एक अलग ζ।

पूर्ण शून्य पर ζ का मान व्यापक रूप से फर्मी ऊर्जा के रूप में जाना जाता है, जिसे कभी-कभी ζ लिखा जाता है0. भ्रामक रूप से (फिर से), फर्मी ऊर्जा नाम का उपयोग कभी-कभी गैर-शून्य तापमान पर ζ को संदर्भित करने के लिए किया जाता है।

तापमान संतुलन से बाहर

फर्मी स्तर, μ, और तापमान, टी, थर्मोडायनामिक संतुलन स्थिति में एक ठोस-अवस्था डिवाइस के लिए अच्छी तरह से परिभाषित स्थिरांक हैं, जैसे कि जब यह शेल्फ पर कुछ भी नहीं कर रहा हो। जब डिवाइस को संतुलन से बाहर लाया जाता है और उपयोग में लाया जाता है, तो फर्मी स्तर और तापमान को सख्ती से परिभाषित नहीं किया जाता है। सौभाग्य से, किसी दिए गए स्थान के लिए अर्ध-फर्मी स्तर और अर्ध-तापमान को परिभाषित करना अक्सर संभव होता है, जो थर्मोकपल वितरण के संदर्भ में राज्यों के व्यवसाय का सटीक वर्णन करता है। डिवाइस को अर्ध-संतुलन में कहा जाता है जब और जहां ऐसा वर्णन संभव होता है।

अर्ध-संतुलन दृष्टिकोण किसी को धातु के एक टुकड़े की विद्युत चालकता के रूप में कुछ गैर-संतुलन प्रभावों की एक साधारण तस्वीर बनाने की अनुमति देता है (जैसा कि μ के ढाल से उत्पन्न होता है) या इसकी तापीय चालकता (जैसा कि टी में ढाल से उत्पन्न होता है)। अर्ध-μ और अर्ध-टी किसी भी गैर-संतुलन स्थिति में भिन्न हो सकते हैं (या बिल्कुल मौजूद नहीं हैं), जैसे:

  • यदि सिस्टम में रासायनिक असंतुलन है (जैसे बैटरी (बिजली) में)।
  • यदि सिस्टम बदलते विद्युत चुम्बकीय क्षेत्रों (संधारित्र, प्रारंभ करनेवाला्स और ट्रांसफार्मर के रूप में) के संपर्क में है।
  • एक अलग तापमान वाले प्रकाश स्रोत से रोशनी के तहत, जैसे सूर्य (सौर कोशिकाओं में),
  • जब उपकरण के भीतर तापमान स्थिर नहीं होता है (थर्मोक्यूल्स के रूप में),
  • जब डिवाइस को बदल दिया गया हो, लेकिन उसे फिर से संतुलित करने के लिए पर्याप्त समय नहीं मिला हो (जैसा कि piezoelectricity या pyroelectricity पदार्थों में होता है)।

कुछ स्थितियों में, जैसे किसी सामग्री के तुरंत बाद एक उच्च-ऊर्जा लेजर पल्स का अनुभव होता है, इलेक्ट्रॉन वितरण को किसी भी थर्मल वितरण द्वारा वर्णित नहीं किया जा सकता है। कोई इस मामले में अर्ध-फर्मी स्तर या अर्ध-तापमान को परिभाषित नहीं कर सकता है; इलेक्ट्रॉनों को केवल गैर-तापीय कहा जाता है। कम नाटकीय स्थितियों में, जैसे निरंतर रोशनी के तहत एक सौर सेल में, एक अर्ध-संतुलन विवरण संभव हो सकता है लेकिन μ और T के अलग-अलग मानों को अलग-अलग बैंड (कंडक्शन बैंड बनाम वैलेंस बैंड) के असाइनमेंट की आवश्यकता होती है। तब भी, μ और T के मान एक सामग्री इंटरफ़ेस (जैसे, p-n जंक्शन) पर असतत रूप से कूद सकते हैं, जब एक करंट चलाया जा रहा हो, और इंटरफ़ेस में ही खराब परिभाषित हो।

तकनीकीताएं

शब्दावली की समस्याएं

फ़र्मी स्तर शब्द का उपयोग मुख्य रूप से अर्धचालकों में इलेक्ट्रॉनों की ठोस अवस्था भौतिकी पर चर्चा करने के लिए किया जाता है, और डोपिंग के विभिन्न स्तरों के साथ विभिन्न सामग्रियों वाले उपकरणों में बैंड आरेखों का वर्णन करने के लिए इस शब्द का सटीक उपयोग आवश्यक है। हालांकि, इन संदर्भों में, कोई यह भी देख सकता है कि बैंड-संदर्भित फर्मी स्तर, μ − ϵ को संदर्भित करने के लिए फर्मी स्तर का गलत तरीके से उपयोग किया जाता हैC, ऊपर ζ कहा जाता है। वैज्ञानिकों और इंजीनियरों को यह देखना आम है कि जब वे वास्तव में ϵ में परिवर्तन का वर्णन कर रहे होते हैं, तो एक कंडक्टर के अंदर फर्मी स्तर को नियंत्रित करने, फर्मी स्तर को पिन करने या ट्यूनिंग करने का उल्लेख करते हैं।C डोपिंग (सेमीकंडक्टर) या क्षेत्र प्रभाव (अर्धचालक) के कारण। वास्तव में, थर्मोडायनामिक संतुलन यह गारंटी देता है कि कंडक्टर में फर्मी स्तर हमेशा इलेक्ट्रोड के फर्मी स्तर के बराबर होना तय होता है; डोपिंग या क्षेत्र प्रभाव द्वारा केवल बैंड संरचना (फर्मी स्तर नहीं) को बदला जा सकता है (बैंड आरेख भी देखें)। एक विद्युत रासायनिक क्षमता # परस्पर विरोधी शब्दावली शर्तों, रासायनिक क्षमता और विद्युत रासायनिक क्षमता के बीच मौजूद है।

यह भी ध्यान रखना महत्वपूर्ण है कि फर्मी स्तर आवश्यक रूप से फर्मी ऊर्जा के समान नहीं है। क्वांटम यांत्रिकी के व्यापक संदर्भ में, फर्मी ऊर्जा शब्द आमतौर पर एक आदर्श गैर-अंतःक्रियात्मक, विकार मुक्त, शून्य तापमान फर्मी गैस में एक फर्मियन की अधिकतम गतिज ऊर्जा को संदर्भित करता है। यह अवधारणा बहुत सैद्धांतिक है (गैर-अंतःक्रियात्मक फर्मी गैस जैसी कोई चीज नहीं है, और शून्य तापमान प्राप्त करना असंभव है)। हालांकि, यह एक धातु में लगभग सफेद बौने, न्यूट्रॉन स्टार, परमाणु नाभिक और इलेक्ट्रॉनों का वर्णन करने में कुछ उपयोग पाता है। दूसरी ओर, अर्धचालक भौतिकी और इंजीनियरिंग के क्षेत्र में, फर्मी ऊर्जा का उपयोग अक्सर इस लेख में वर्णित फर्मी स्तर को संदर्भित करने के लिए किया जाता है।[9]


फर्मी स्तर का संदर्भ और शून्य फर्मी स्तर का स्थान

एक समन्वय प्रणाली में उत्पत्ति की पसंद की तरह, ऊर्जा के शून्य बिंदु को मनमाने ढंग से परिभाषित किया जा सकता है। अवलोकन योग्य घटनाएं केवल ऊर्जा अंतर पर निर्भर करती हैं। अलग-अलग पिंडों की तुलना करते समय, हालांकि, यह महत्वपूर्ण है कि वे सभी शून्य ऊर्जा के स्थान के अपने चुनाव में सुसंगत हों, अन्यथा बेतुके परिणाम प्राप्त होंगे। इसलिए यह सुनिश्चित करने के लिए एक सामान्य बिंदु को स्पष्ट रूप से नाम देना मददगार हो सकता है कि विभिन्न घटक समझौते में हैं। दूसरी ओर, यदि कोई संदर्भ बिंदु स्वाभाविक रूप से अस्पष्ट है (जैसे कि वैक्यूम, नीचे देखें) तो यह इसके बजाय और अधिक समस्याएं पैदा करेगा।

सामान्य बिंदु का एक व्यावहारिक और अच्छी तरह से न्यायोचित विकल्प एक भारी, भौतिक कंडक्टर है, जैसे विद्युत जमीन या पृथ्वी। इस तरह के कंडक्टर को एक अच्छे थर्मोडायनामिक संतुलन में माना जा सकता है और इसलिए इसका μ अच्छी तरह परिभाषित है। यह चार्ज का भंडार प्रदान करता है, ताकि बिना चार्जिंग प्रभाव के बड़ी संख्या में इलेक्ट्रॉनों को जोड़ा या हटाया जा सके। इसके सुलभ होने का भी लाभ है, ताकि किसी अन्य वस्तु के फर्मी स्तर को केवल वोल्टमीटर से मापा जा सके।

शून्य में संदर्भ शून्य के रूप में ऊर्जा का उपयोग करने की सलाह क्यों नहीं दी जाती है

जब यहां दर्शाई गई दो धातुएं थर्मोडायनामिक संतुलन में हैं जैसा कि दिखाया गया है (बराबर फर्मी स्तर ईF), समारोह का कार्य में अंतर के कारण वैक्यूम इलेक्ट्रोस्टैटिक क्षमता ϕ समतल नहीं है।

सिद्धांत रूप में, ऊर्जा के संदर्भ बिंदु के रूप में निर्वात में एक स्थिर इलेक्ट्रॉन की स्थिति का उपयोग करने पर विचार किया जा सकता है।

यह दृष्टिकोण तब तक उचित नहीं है जब तक कोई यह परिभाषित करने के लिए सावधान न हो कि निर्वात कहाँ है।[10] समस्या यह है कि निर्वात में सभी बिंदु समतुल्य नहीं होते हैं।

थर्मोडायनामिक संतुलन पर, यह वैक्यूम (वोल्टा क्षमता) में मौजूद ऑर्डर 1 V के विद्युत संभावित अंतर के लिए विशिष्ट है। इस वैक्यूम संभावित भिन्नता का स्रोत वैक्यूम के संपर्क में आने वाली विभिन्न संवाहक सामग्रियों के बीच कार्य फलन में भिन्नता है। एक कंडक्टर के ठीक बाहर, इलेक्ट्रोस्टैटिक क्षमता सामग्री पर संवेदनशील रूप से निर्भर करती है, साथ ही किस सतह का चयन किया जाता है (इसकी क्रिस्टल अभिविन्यास, संदूषण और अन्य विवरण)।

सार्वभौमिकता के लिए सबसे अच्छा सन्निकटन देने वाला पैरामीटर ऊपर सुझाया गया पृथ्वी-संदर्भित फर्मी स्तर है। इसका यह भी फायदा है कि इसे वोल्टमीटर से मापा जा सकता है।

छोटी प्रणालियों में असतत चार्जिंग प्रभाव

ऐसे मामलों में जहां एक इलेक्ट्रॉन के कारण चार्जिंग प्रभाव गैर-नगण्य हैं, उपरोक्त परिभाषाओं को स्पष्ट किया जाना चाहिए। उदाहरण के लिए, दो समान समानांतर-प्लेटों से बने संधारित्र पर विचार करें। यदि संधारित्र अपरिवर्तित है, तो फर्मी स्तर दोनों तरफ समान है, इसलिए कोई सोच सकता है कि एक इलेक्ट्रॉन को एक प्लेट से दूसरी प्लेट में ले जाने के लिए कोई ऊर्जा नहीं लेनी चाहिए। लेकिन जब इलेक्ट्रॉन को स्थानांतरित किया गया है, तो संधारित्र (थोड़ा) आवेशित हो गया है, इसलिए इसमें थोड़ी मात्रा में ऊर्जा लगती है। एक सामान्य कैपेसिटर में, यह नगण्य है, लेकिन एक नैनोटेक्नोलॉजी|नैनो-स्केल कैपेसिटर में यह अधिक महत्वपूर्ण हो सकता है।

इस मामले में रासायनिक क्षमता के साथ-साथ डिवाइस की स्थिति की थर्मोडायनामिक परिभाषा के बारे में सटीक होना चाहिए: क्या यह विद्युत रूप से पृथक है, या यह इलेक्ट्रोड से जुड़ा है?

  • जब शरीर एक इलेक्ट्रोड (भंडार) के साथ इलेक्ट्रॉनों और ऊर्जा का आदान-प्रदान करने में सक्षम होता है, तो इसे भव्य विहित पहनावा द्वारा वर्णित किया जाता है। रासायनिक क्षमता का मूल्य µ कहा जा सकता है कि इलेक्ट्रोड, और इलेक्ट्रॉनों की संख्या द्वारा तय किया जा सकता है N शरीर पर उतार-चढ़ाव हो सकता है। इस मामले में, किसी पिंड की रासायनिक क्षमता एक अतिसूक्ष्म राशि द्वारा इलेक्ट्रॉनों की औसत संख्या को बढ़ाने के लिए आवश्यक कार्य की असीम मात्रा है (भले ही किसी भी समय इलेक्ट्रॉनों की संख्या एक पूर्णांक हो, औसत संख्या लगातार बदलती रहती है।):
    कहाँ F(N, T) ग्रैंड कैनोनिकल पहनावा का हेल्महोल्ट्ज़ मुक्त ऊर्जा कार्य है।
  • यदि शरीर में इलेक्ट्रॉनों की संख्या निश्चित है (लेकिन शरीर अभी भी ऊष्मीय रूप से ऊष्मा स्नान से जुड़ा हुआ है), तो यह विहित पहनावा में है। हम इस मामले में एक रासायनिक क्षमता को शाब्दिक रूप से परिभाषित कर सकते हैं क्योंकि एक इलेक्ट्रॉन को एक शरीर में जोड़ने के लिए आवश्यक कार्य जो पहले से ही ठीक है N इलेक्ट्रॉन,[11]
    कहाँ F(N, T) कैनोनिकल पहनावा का मुक्त ऊर्जा कार्य है, वैकल्पिक रूप से,

ये रासायनिक क्षमता समतुल्य नहीं हैं, µµ′ ≠ µथर्मोडायनामिक सीमा को छोड़कर। कूलम्ब नाकाबंदी दिखाने वाली छोटी प्रणालियों में अंतर महत्वपूर्ण है।[12] पैरामीटर, µ, (यानी, उस मामले में जहां इलेक्ट्रॉनों की संख्या में उतार-चढ़ाव की अनुमति है) वोल्टमीटर वोल्टेज से संबंधित रहता है, यहां तक ​​कि छोटी प्रणालियों में भी। सटीक होने के लिए, फर्मी स्तर को एक इलेक्ट्रॉन चार्ज द्वारा नियतात्मक चार्जिंग घटना द्वारा परिभाषित नहीं किया जाता है, बल्कि एक इलेक्ट्रॉन के एक असीम अंश द्वारा एक सांख्यिकीय चार्जिंग घटना होती है।

फुटनोट्स और संदर्भ

  1. Kittel, Charles. Introduction to Solid State Physics (7th ed.). Wiley.
  2. Riess, I (1997). "What does a voltmeter measure?". Solid State Ionics. 95 (3–4): 327–328. doi:10.1016/S0167-2738(96)00542-5.
  3. Sah, Chih-Tang (1991). Fundamentals of Solid-State Electronics. World Scientific. p. 404. ISBN 978-9810206376.
  4. Datta, Supriyo (2005). Quantum Transport: Atom to Transistor. Cambridge University Press. p. 7. ISBN 9780521631457.
  5. Kittel, Charles; Herbert Kroemer (1980-01-15). Thermal Physics (2nd ed.). W. H. Freeman. p. 357. ISBN 978-0-7167-1088-2.
  6. Sze, S. M. (1964). Physics of Semiconductor Devices. Wiley. ISBN 978-0-471-05661-4.
  7. Sommerfeld, Arnold (1964). Thermodynamics and Statistical Mechanics. Academic Press.
  8. "3D Fermi Surface Site". Phys.ufl.edu. 1998-05-27. Retrieved 2013-04-22.
  9. For example: D. Chattopadhyay (2006). Electronics (fundamentals And Applications). ISBN 978-81-224-1780-7. and Balkanski and Wallis (2000-09-01). Semiconductor Physics and Applications. ISBN 978-0-19-851740-5.
  10. Technically, it is possible to consider the vacuum to be an insulator and in fact its Fermi level is defined if its surroundings are in equilibrium. Typically however the Fermi level is two to five electron volts below the vacuum electrostatic potential energy, depending on the work function of the nearby vacuum wall material. Only at high temperatures will the equilibrium vacuum be populated with a significant number of electrons (this is the basis of thermionic emission).
  11. Shegelski, Mark R. A. (May 2004). "The chemical potential of an ideal intrinsic semiconductor". American Journal of Physics. 72 (5): 676–678. Bibcode:2004AmJPh..72..676S. doi:10.1119/1.1629090. Archived from the original on 2013-07-03.
  12. Beenakker, C. W. J. (1991). "Theory of Coulomb-blockade oscillations in the conductance of a quantum dot" (PDF). Physical Review B. 44 (4): 1646–1656. Bibcode:1991PhRvB..44.1646B. doi:10.1103/PhysRevB.44.1646. hdl:1887/3358. PMID 9999698.

श्रेणी:इलेक्ट्रॉनिक बैंड संरचनाएं श्रेणी:Fermi-Dirac सांख्यिकी

डी: फर्मीएनर्जी वें: फर्मी ऊर्जा स्तर vi:Mức Fermi