विशोषण: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Release of an embedded substance from another substance}}विशोषण वह भौतिक प्रक्रिया है जहां पहले से अधिशोषित पदार्थ किसी सतह से मुक्त हो जाता है। ऐसा तब होता है जब कोई अणु उसे सतह पर बनाए रखने वाली बाध्य ऊर्जा के सक्रियण अवरोध को दूर करने के लिए पर्याप्त ऊर्जा प्राप्त कर लेता है।<ref name="Hussla"/> | {{Short description|Release of an embedded substance from another substance}}'''विशोषण''' वह भौतिक प्रक्रिया है जहां पहले से अधिशोषित पदार्थ किसी सतह से मुक्त हो जाता है। ऐसा तब होता है जब कोई अणु उसे सतह पर बनाए रखने वाली बाध्य ऊर्जा के सक्रियण अवरोध को दूर करने के लिए पर्याप्त ऊर्जा प्राप्त कर लेता है।<ref name="Hussla"/> | ||
अधिशोषण को सब्सट्रेट से अलग करने वाले तंत्र के आधार पर, विशोषण के कई अलग-अलग प्रकार होते हैं; इसलिए ऐसा कोई एक समीकरण नहीं है जो प्रक्रिया का वर्णन करता हो। ध्यान दें कि विशोषण, अधिशोषण के विपरीत है, जो अवशोषण से भिन्न है क्योंकि यह पदार्थों को थोक में अवशोषित होने के विपरीत, सतह पर चिपके रहने को संदर्भित करता है। | |||
उत्प्रेरक और अधिशोषित यौगिक के बीच प्रतिक्रिया के बाद | उत्प्रेरक और अधिशोषित यौगिक के बीच प्रतिक्रिया के बाद या [[स्ट्रिपिंग (रसायन विज्ञान)|स्ट्रिपिंग]] या [[क्रोमैटोग्राफी]] के समय अवशोषण हो सकता है जो पृथक्करण प्रक्रियाओं के प्रकार हैं। | ||
== विशोषण तंत्र == | == विशोषण तंत्र == | ||
अधिशोषक-से-सतह बंधन की प्रकृति के आधार पर, विशोषण के लिए कई तंत्र हैं। सॉर्बेंट के सतह बंधन को रासायनिक प्रतिक्रियाओं या विकिरण के माध्यम से थर्मल रूप से | अधिशोषक-से-सतह बंधन की प्रकृति के आधार पर, विशोषण के लिए कई तंत्र हैं। सॉर्बेंट के सतह बंधन को रासायनिक प्रतिक्रियाओं या विकिरण के माध्यम से थर्मल रूप से स्वच्छ किया जा सकता है, जिसके परिणामस्वरूप प्रजातियों का अवशोषण हो सकता है। | ||
=== तापीय विशोषण === | === तापीय विशोषण === | ||
ऊष्मीय विशोषण वह प्रक्रिया है जिसके द्वारा किसी अधिशोषक को गर्म किया जाता है और यह सतह से परमाणुओं या अणुओं के विशोषण को प्रेरित करता है। तापीय विशोषण का पहला प्रयोग 1948 में [[लेरॉय एपकर]] द्वारा किया गया था।<ref>L. Apker, Ind. Eng. Chem. 40 (1948) 846</ref> यह विशोषण के सबसे अधिक उपयोग किए जाने | ऊष्मीय विशोषण वह प्रक्रिया है, जिसके द्वारा किसी अधिशोषक को गर्म किया जाता है और यह सतह से परमाणुओं या अणुओं के विशोषण को प्रेरित करता है। तापीय विशोषण का पहला प्रयोग 1948 में [[लेरॉय एपकर]] द्वारा किया गया था।<ref>L. Apker, Ind. Eng. Chem. 40 (1948) 846</ref> यह विशोषण के सबसे अधिक उपयोग किए जाने वाली विधियों में से एक है, और इसका उपयोग अधिशोषक की सतह क्षेत्र को निर्धारित करने और विशोषण की [[सक्रियण ऊर्जा]] का मूल्यांकन करने के लिए किया जा सकता है।<ref name="foo"> THERMAL DESORPTION ANALYSIS: COMPARATIVE TEST OF TEN COMMONLY APPLIED PROCEDURES A.M. de JONG and J.W. NIEMANTSVERDRIET * Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands Received 8 January 1990</ref> | ||
थर्मल विशोषण को सामान्यतः पोलैनी-विग्नर समीकरण द्वारा वर्णित किया गया है: | थर्मल विशोषण को सामान्यतः पोलैनी-विग्नर समीकरण द्वारा वर्णित किया गया है: | ||
Line 16: | Line 16: | ||
जहाँ r विशोषण की दर है, <math>\theta</math> अधिशोषित कवरेज है, t समय, n विशोषण का क्रम है, <math>\upsilon</math> पूर्व-घातीय कारक, E सक्रियण ऊर्जा है, R [[गैस स्थिरांक]] है और T पूर्ण तापमान है। अधिशोषित कवरेज को अधिगृहीत और उपलब्ध अधिशोषण साइटों के बीच के अनुपात के रूप में परिभाषित किया गया है।<ref name="foo" /> | जहाँ r विशोषण की दर है, <math>\theta</math> अधिशोषित कवरेज है, t समय, n विशोषण का क्रम है, <math>\upsilon</math> पूर्व-घातीय कारक, E सक्रियण ऊर्जा है, R [[गैस स्थिरांक]] है और T पूर्ण तापमान है। अधिशोषित कवरेज को अधिगृहीत और उपलब्ध अधिशोषण साइटों के बीच के अनुपात के रूप में परिभाषित किया गया है।<ref name="foo" /> | ||
विशोषण का क्रम, जिसे गतिज क्रम के रूप में भी जाना जाता है, अधिशोषित कवरेज और विशोषण की दर के बीच संबंध का वर्णन करता है। प्रथम क्रम में विशोषण, {{nobr|n {{=}} 1}}, कणों की दर अधिशोषित कवरेज के सीधे आनुपातिक है।<ref name="basic" /> परमाणु या सरल आणविक विशोषण पहले क्रम का होता है और इस स्थितियों में जिस तापमान पर अधिकतम विशोषण होता | विशोषण का क्रम, जिसे गतिज क्रम के रूप में भी जाना जाता है, अधिशोषित कवरेज और विशोषण की दर के बीच संबंध का वर्णन करता है। प्रथम क्रम में विशोषण, {{nobr|n {{=}} 1}}, कणों की दर अधिशोषित कवरेज के सीधे आनुपातिक है।<ref name="basic" /> परमाणु या सरल आणविक विशोषण पहले क्रम का होता है और इस स्थितियों में जिस तापमान पर अधिकतम विशोषण होता है। वह प्रारंभिक अधिशोषण कवरेज से स्वतंत्र होता है। जबकि, दूसरे क्रम के विशोषण में प्रारंभिक अधिशोषण कवरेज में वृद्धि के साथ विशोषण की अधिकतम दर का तापमान कम हो जाता है। इसका कारण यह है कि दूसरा क्रम पुनः संयोजक विशोषण है और बड़े प्रारंभिक कवरेज के साथ इस बात की अधिक संभावना है कि दोनों कण एक-दूसरे को ढूंढ लेंगे और पुनर्संयोजन उत्पाद में पुनः संयोजित हो जाएंगे। दूसरे क्रम के विशोषण का उदाहरण, {{nobr|n {{=}} 2}}, तब होता है जब सतह पर दो हाइड्रोजन परमाणु अवशोषित होते हैं और गैसीय पदार्थ बनाते हैं {{chem|H|2}} अणु. शून्य क्रम का विशोषण भी होता है जो सामान्यतः मोटी आणविक परतों पर होता है, इस स्थितियों में विशोषण दर कण सांद्रता पर निर्भर नहीं करती है। शून्यवें क्रम के स्थितियों में, {{nobr|n {{=}} 0}}, तापमान के साथ अवशोषण तब तक बढ़ता रहेगा जब तक कि सभी अणुओं के अवशोषित हो जाने के बाद अचानक गिरावट न हो जाए।<ref name="basic" /> | ||
विशिष्ट तापीय विशोषण प्रयोग में, अधिकांशतः यह मान लिया जाता है कि नमूना निरंतर गर्म हो रहा है, और इसलिए समय के साथ तापमान रैखिक रूप से बढ़ेगा। हीटिंग की दर का प्रतिनिधित्व किया जा सकता है | विशिष्ट तापीय विशोषण प्रयोग में, अधिकांशतः यह मान लिया जाता है कि नमूना निरंतर गर्म हो रहा है, और इसलिए समय के साथ तापमान रैखिक रूप से बढ़ेगा। हीटिंग की दर का प्रतिनिधित्व किया जा सकता है, | ||
: <math>\beta = \frac{\mathrm{d}T}{\mathrm{d}t}</math> | : <math>\beta = \frac{\mathrm{d}T}{\mathrm{d}t}</math> | ||
इसलिए, तापमान का प्रतिनिधित्व इस प्रकार किया जा सकता है: | इसलिए, तापमान का प्रतिनिधित्व इस प्रकार किया जा सकता है: | ||
: <math>T(t) = \beta(t - t_0) + T_0</math> | : <math>T(t) = \beta(t - t_0) + T_0</math> | ||
जहाँ <math> t_0 </math> आरंभिक समय है और <math> T_0 </math> प्रारंभिक तापमान | जहाँ <math> t_0 </math> आरंभिक समय है और <math> T_0 </math> प्रारंभिक तापमान है।<ref name="basic">BASIC TECHNIQUES OF SURFACE PHYSICS Surface Analysis with Temperature Programmed Desorption and Low-Energy Electron Diffraction, Versuch Nr. 89 F-Praktikum in den Bachelor- und Masterstudiengängen, SS2017 Physik Department Lehrstuhl E20, Raum 205 Contacts: Dr. Y.-Q. Zhang, Dr. T. Lin and Dr. habil. F. Allegretti</ref> विशोषण तापमान पर, अणुओं के लिए सतह से बाहर निकलने के लिए पर्याप्त तापीय ऊर्जा होती है। किसी धातु की बंधन ऊर्जा की जांच के लिए थर्मल विशोषण का उपयोग तकनीक के रूप में किया जा सकता है।<ref name="basic" /> | ||
तापीय विशोषण का विश्लेषण करने के लिए कई अलग-अलग प्रक्रियाएँ हैं। उदाहरण के लिए, रेडहेड की शिखर अधिकतम विधि<ref name = "redhead">Redhead, P.A. (1962). "Thermal desorption of gases". Vacuum. 12 (4): 203–211. Bibcode:1962Vacuu..12..203R. doi:10.1016/0042-207X(62)90978-8</ref> विशोषण प्रयोगों में सक्रियण ऊर्जा निर्धारित करने | तापीय विशोषण का विश्लेषण करने के लिए कई अलग-अलग प्रक्रियाएँ हैं। उदाहरण के लिए, रेडहेड की शिखर अधिकतम विधि<ref name = "redhead">Redhead, P.A. (1962). "Thermal desorption of gases". Vacuum. 12 (4): 203–211. Bibcode:1962Vacuu..12..203R. doi:10.1016/0042-207X(62)90978-8</ref> विशोषण प्रयोगों में सक्रियण ऊर्जा निर्धारित करने की विधियों में से एक है। पहले क्रम के विशोषण के लिए, सक्रियण ऊर्जा का अनुमान तापमान (T<sub>''p''</sub>) से लगाया जाता है।) जिस पर विशोषण दर अधिकतम होती है। विशोषण की दर (पॉलीनी वाइनर समीकरण) के लिए समीकरण का उपयोग करके, कोई (''T<sub>p</sub>'') प्राप्त कर सकता है और रेडहेड दर्शाता है कि ''T<sub>p</sub>'' और E के बीच संबंध रैखिक होने का अनुमान लगाया जा सकता है, यह देखते हुए कि हीटिंग दर के लिए स्थिर दर का अनुपात 10<sup>8</sup> – 10<sup>13</sup> की सीमा के अन्दर है। हीटिंग दर को अलग-अलग करके, और फिर <math>\log(T_p)</math> के विरुद्ध <math>\log(\beta)</math> का ग्राफ़ बनाकर, कोई निम्नलिखित समीकरण का उपयोग करके सक्रियण ऊर्जा प्राप्त कर सकता है: | ||
: <math>\frac{\mathrm{d}\log(\beta)}{\mathrm{d}\log(T_p)} = \frac{E}{RT_p} + 2 </math><ref name = "redhead"/> | : <math>\frac{\mathrm{d}\log(\beta)}{\mathrm{d}\log(T_p)} = \frac{E}{RT_p} + 2 </math><ref name = "redhead"/> | ||
यह विधि | यह विधि साधारण है, नियमित रूप से प्रयुक्त की जाती है और 30% की त्रुटि के अन्दर सक्रियण ऊर्जा का मूल्य दे सकती है। चूंकि, इस पद्धति का दोष यह है कि पोलैनी-विग्नर समीकरण में दर स्थिरांक और सक्रियण ऊर्जा को सतह कवरेज से स्वतंत्र माना जाता है।<ref name = "redhead"/> | ||
कम्प्यूटेशनल शक्ति में | कम्प्यूटेशनल शक्ति में संशोधन के कारण, अब दर स्थिरांक और सक्रियण ऊर्जा की स्वतंत्रता को ध्यान में रखे बिना थर्मल विशोषण विश्लेषण करने की कई विधियाँ हैं।<ref name="foo" /> उदाहरण के लिए, संपूर्ण विश्लेषण विधि<ref>King, David A. (1975). "Thermal desorption from metal surfaces: A review". Surface Science. 47 (1): 384–402. Bibcode:1975SurSc..47..384K. doi:10.1016/0039-6028(75)90302-7.</ref> कई अलग-अलग सतह कवरेज के लिए विशोषण वक्रों के परिवार का उपयोग करता है और तापमान के फलन के रूप में कवरेज प्राप्त करने के लिए एकीकृत होता है। इसके बाद, विशेष कवरेज के लिए विशोषण दर प्रत्येक वक्र से निर्धारित की जाती है और 1/T के विरुद्ध विशोषण की दर के लघुगणक का अरहेनियस प्लॉट बनाया जाता है। [[अरहेनियस कथानक]] का उदाहरण दाईं ओर के चित्र में देखा जा सकता है। सक्रियण ऊर्जा इस अरहेनियस प्लॉट के ग्रेडिएंट से पाई जा सकती है।<ref name=thesis>Zaki, E. (2019). Surface-Sensitive Adsorption of Water and Carbon Dioxide on Magnetite: Fe3O4(111) versus Fe3O4(001). PhD Thesis, Technische Universität, Berlin.</ref> | ||
[[File:Arrhenius.svg|thumb|right|तापमान पर एक के विरुद्ध प्लॉट की गई प्रतिक्रिया की दर (k) के प्राकृतिक लघुगणक के साथ अरहेनियस प्लॉट का उदाहरण।]]अन्य विश्लेषण तकनीक में थर्मल | [[File:Arrhenius.svg|thumb|right|तापमान पर एक के विरुद्ध प्लॉट की गई प्रतिक्रिया की दर (k) के प्राकृतिक लघुगणक के साथ अरहेनियस प्लॉट का उदाहरण।]]अन्य विश्लेषण तकनीक में थर्मल विशोषण स्पेक्ट्रा का अनुकरण करना और प्रयोगात्मक डेटा की तुलना करना सम्मिलित है। यह तकनीक गतिज मोंटे कार्लो पद्धति पर निर्भर करती है और इसके लिए अधिशोषित परमाणुओं की जाली अंतःक्रिया की समझ की आवश्यकता होती है। इन अंतःक्रियाओं का वर्णन लैटिस गैस हैमिल्टनियन द्वारा पहले सिद्धांतों से किया गया है, जो परमाणुओं की व्यवस्था के आधार पर भिन्न होता है। रोडियम से ऑक्सीजन के विशोषण की जांच करने के लिए उपयोग की जाने वाली इस विधि का उदाहरण "O/Rh(111) के तापमान क्रमादेशित विशोषण का काइनेटिक [[मोंटे कार्लो विधि|मोंटे कार्लो सिमुलेशन]]" निम्नलिखित पेपर में पाया जा सकता है।<ref>Kinetic Monte Carlo simulations of temperature programed desorption of O/Rh(111) J. Chem. Phys. 132, 194701 (2010) T. Franza and F. Mittendorfer</ref> | ||
=== रिडक्टिव या ऑक्सीडेटिव | === रिडक्टिव या ऑक्सीडेटिव विशोषण === | ||
कुछ स्थितियों में, अधिशोषित अणु रासायनिक रूप से सतह/सामग्री से जुड़ा होता है, जो | कुछ स्थितियों में, अधिशोषित अणु रासायनिक रूप से सतह/सामग्री से जुड़ा होता है, जो कठोर आसंजन प्रदान करता है और अवशोषण को सीमित करता है। यदि यह स्थितियाँ है, तो अवशोषण के लिए रासायनिक प्रतिक्रिया की आवश्यकता होती है, जो [[रासायनिक बंध]] को तोड़ देती है। इसे पूर्ण करने की विधि सतह पर वोल्टेज प्रयुक्त करना है, जिसके परिणामस्वरूप अधिशोषित अणु में कमी या ऑक्सीकरण होता है। पूर्वाग्रह और अधिशोषित अणुओं के आधार पर होता है। | ||
रिडक्टिव | रिडक्टिव विशोषण के विशिष्ट उदाहरण में, सोने की सतह पर [[थिओल]] की स्व-इकट्ठी मोनोलेयर को सतह पर नकारात्मक पूर्वाग्रह प्रयुक्त करके हटाया जा सकता है जिसके परिणामस्वरूप सल्फर हेड-ग्रुप में कमी आती है। इस प्रक्रिया के लिए रासायनिक प्रतिक्रिया होगी: | ||
: <math>R - S - Au + e^- \longrightarrow R - S^- + Au </math> | : <math>R - S - Au + e^- \longrightarrow R - S^- + Au </math> | ||
जहां R एल्काइल श्रृंखला है (जैसे CH<sub>3</sub>), S थियोल समूह का सल्फर परमाणु है, Au सोने की सतह वाला परमाणु है और e<sup>−</sup>बाहरी वोल्टेज स्रोत द्वारा आपूर्ति किया गया इलेक्ट्रॉन है।<ref>Sun, K., Jiang, B., & Jiang, X. (2011). Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. ''Journal of Electroanalytical Chemistry'', ''656''(1), 223-230.</ref> | जहां R एल्काइल श्रृंखला है (जैसे CH<sub>3</sub>), S थियोल समूह का सल्फर परमाणु है, Au सोने की सतह वाला परमाणु है और e<sup>−</sup> बाहरी वोल्टेज स्रोत द्वारा आपूर्ति किया गया इलेक्ट्रॉन है।<ref>Sun, K., Jiang, B., & Jiang, X. (2011). Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. ''Journal of Electroanalytical Chemistry'', ''656''(1), 223-230.</ref> | ||
रिडक्टिव/ऑक्सीडेटिव | रिडक्टिव/ऑक्सीडेटिव विशोषण के लिए अन्य अनुप्रयोग [[विद्युत रासायनिक पुनर्जनन]] के माध्यम से सक्रिय कार्बन सामग्री को स्वच्छ करना है। | ||
===इलेक्ट्रॉन-उत्तेजित विशोषण=== | ===इलेक्ट्रॉन-उत्तेजित विशोषण=== | ||
[[File:Electron Stimulated Desorption Video.webm|thumb|अधिशोषित अणुओं पर आपतित इलेक्ट्रॉन किरण के प्रभाव को दर्शाता है]]इलेक्ट्रॉन-उत्तेजित विशोषण निर्वात में सतह पर इलेक्ट्रॉन किरण घटना के परिणामस्वरूप होता है, जैसा कि कण भौतिकी और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) जैसी औद्योगिक प्रक्रियाओं में सामान्य है। वायुमंडलीय दबाव पर, अणु असक्त रूप से सतहों से जुड़ सकते हैं जिसे सोखना कहा जाता है। ये अणु 10<sup>15</sup> के घनत्व पर मोनोलेयर बना सकते हैं परमाणु/सेमी<sup>2</sup> पूरी तरह से चिकनी सतह के लिए।<ref>M. H. Hablanian (1997). ''High-Volume Technology, A Practical Guide''. Second Edition. Marcel Dekker, Inc.</ref> अणुओं की बंधन क्षमताओं के आधार पर, मोनोलेयर या कई बन सकते हैं। यदि कोई इलेक्ट्रॉन किरण सतह पर आपतित होती है, तो यह अधिशोषित मोनोलेयर में अणुओं के साथ सतह के बंधन को तोड़ने के लिए ऊर्जा प्रदान करती है, जिससे प्रणाली में दबाव बढ़ जाता है। एक बार जब कोई अणु | [[File:Electron Stimulated Desorption Video.webm|thumb|अधिशोषित अणुओं पर आपतित इलेक्ट्रॉन किरण के प्रभाव को दर्शाता है]]इलेक्ट्रॉन-उत्तेजित विशोषण निर्वात में सतह पर इलेक्ट्रॉन किरण घटना के परिणामस्वरूप होता है, जैसा कि कण भौतिकी और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) जैसी औद्योगिक प्रक्रियाओं में सामान्य है। वायुमंडलीय दबाव पर, अणु असक्त रूप से सतहों से जुड़ सकते हैं जिसे सोखना कहा जाता है। ये अणु 10<sup>15</sup> के घनत्व पर मोनोलेयर बना सकते हैं परमाणु/सेमी<sup>2</sup> पूरी तरह से चिकनी सतह के लिए।<ref>M. H. Hablanian (1997). ''High-Volume Technology, A Practical Guide''. Second Edition. Marcel Dekker, Inc.</ref> अणुओं की बंधन क्षमताओं के आधार पर, मोनोलेयर या कई बन सकते हैं। यदि कोई इलेक्ट्रॉन किरण सतह पर आपतित होती है, तो यह अधिशोषित मोनोलेयर में अणुओं के साथ सतह के बंधन को तोड़ने के लिए ऊर्जा प्रदान करती है, जिससे प्रणाली में दबाव बढ़ जाता है। एक बार जब कोई अणु निर्वात वॉल्यूम में अवशोषित हो जाता है, तो इसे निर्वात के पंपिंग तंत्र के माध्यम से हटा दिया जाता है (पुनः सोखना नगण्य है)। इसलिए, विशोषण के लिए कम अणु उपलब्ध होते हैं, और निरंतर विशोषण को बनाए रखने के लिए इलेक्ट्रॉनों की बढ़ती संख्या की आवश्यकता होती है। | ||
इलेक्ट्रॉन प्रेरित विशोषण पर अग्रणी मॉडलों में से एक का वर्णन पीटर एंटोनिविज़ द्वारा किया गया | इलेक्ट्रॉन प्रेरित विशोषण पर अग्रणी मॉडलों में से एक का वर्णन पीटर एंटोनिविज़ द्वारा किया गया है।<ref name="peter"> | ||
Model for electron- and photon-stimulated desorption, Antoniewicz, Peter R., Phys. Rev. B 21.9, pages: 3811—3815, May 1980, American Physical Society, doi = {10.1103/PhysRevB.21.3811},</ref> संक्षेप में, उनका सिद्धांत यह है कि आपतित इलेक्ट्रॉनों द्वारा अधिशोषक आयनित हो जाता है और फिर आयन छवि आवेश क्षमता का अनुभव करता है जो इसे सतह की ओर आकर्षित करता है। जैसे-जैसे आयन सतह के समीप आता है, सब्सट्रेट से इलेक्ट्रॉन टनलिंग की संभावना बढ़ जाती है और इस प्रक्रिया के माध्यम से आयन न्यूट्रलाइजेशन हो सकता है। निष्प्रभावी आयन में अभी भी पहले से गतिज ऊर्जा है, और यदि यह ऊर्जा और प्राप्त संभावित ऊर्जा बंधनकारी ऊर्जा से अधिक | Model for electron- and photon-stimulated desorption, Antoniewicz, Peter R., Phys. Rev. B 21.9, pages: 3811—3815, May 1980, American Physical Society, doi = {10.1103/PhysRevB.21.3811},</ref> संक्षेप में, उनका सिद्धांत यह है कि आपतित इलेक्ट्रॉनों द्वारा अधिशोषक आयनित हो जाता है और फिर आयन छवि आवेश क्षमता का अनुभव करता है जो इसे सतह की ओर आकर्षित करता है। जैसे-जैसे आयन सतह के समीप आता है, सब्सट्रेट से इलेक्ट्रॉन टनलिंग की संभावना बढ़ जाती है और इस प्रक्रिया के माध्यम से आयन न्यूट्रलाइजेशन हो सकता है। निष्प्रभावी आयन में अभी भी पहले से गतिज ऊर्जा है, और यदि यह ऊर्जा और प्राप्त संभावित ऊर्जा बंधनकारी ऊर्जा से अधिक है। तो आयन सतह से विघटित हो सकता है। चूँकि इस प्रक्रिया के लिए आयनीकरण की आवश्यकता होती है, इससे पता चलता है कि परमाणु कम उत्तेजना ऊर्जा पर विघटित नहीं हो सकता है, जो इलेक्ट्रॉन अनुरूपित विशोषण पर प्रयोगात्मक डेटा से सहमत है।<ref name="peter" /> इलेक्ट्रॉन प्रेरित विशोषण को समझना [[ लार्ज हैड्रान कोलाइडर |लार्ज हैड्रान कोलाइडर]] जैसे त्वरक के लिए महत्वपूर्ण है, जहां सतहों पर ऊर्जावान इलेक्ट्रॉनों की तीव्र बमबारी होती है। विशेष रूप से, बीम निर्वात प्रणाली में गैसों का अवशोषण सतहों की द्वितीयक इलेक्ट्रॉन उपज को संशोधित करके त्वरक के प्रदर्शन को दृढ़ता से प्रभावित कर सकता है।<ref>Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces (September 2005) Dipl. Ing. Herbert Tratnik Matrikelnr. 9226169, page:3 </ref> | ||
===आईआर प्रकाशअवशोषण=== | ===आईआर प्रकाशअवशोषण=== | ||
आईआर फोटोडेसोर्प्शन एक प्रकार का | आईआर फोटोडेसोर्प्शन एक प्रकार का विशोषण है जो तब होता है जब अवरक्त प्रकाश सतह से टकराता है। और पहले से अवशोषित अणुओं के आंतरिक कंपन मोड की उत्तेजना से जुड़ी प्रक्रियाओं को सक्रिय करता है, जिसके बाद गैस चरण में प्रजातियों का विशोषण होता है।<ref name="Hussla">PHYSICAL REVIEW 8, volume 32, number 615. September 1985. Infrared-laser-induced photodesorption of NH3 and ND3 adsorbed single crystal Cu(100) and Ag film. IngoHussla, H.Seki, T.J.Chuang. IBMResearchLaboratory, SanJose, California.</ref> कोई अधिशोषक या अधिशोष्य-सब्सट्रेट युग्मित प्रणाली के इलेक्ट्रॉनों या कंपनों को विशेष रूप से उत्तेजित कर सकता है। आपतित प्रकाश से प्रणाली में पर्याप्त ऊर्जा विनिमय के साथ बंधों की यह शिथिलता अंततः विशोषण को जन्म देगी।<ref name="Brivio">Surface Science Reports 17 (1993) 1-84 North-Holland. Dynamics of adsorption/desorption at solid surfaces G.P. Brivio a and T.B. Grimley b,1 Dipartimento di Fisica dell'Universith di Milano, Via Celoria 16, 20133 Milano, Italy h The Donnan Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK Manuscript received in final form 25 August 1992 </ref> सामान्यतः, यह घटना अशक्त-बद्ध फ़िज़ियोसॉर्बड प्रजातियों के लिए अधिक प्रभावी होती है, जिनकी अवशोषित करने की क्षमता रसायनयुक्त प्रजातियों की तुलना में कम होती है। वास्तव में उथली क्षमता के लिए अणु को सतह से मुक्त करने और आईआर-फोटोडेसोरशन प्रयोगों को संभव बनाने के लिए कम लेजर तीव्रता की आवश्यकता होती है, क्योंकि मापा गया विशोषण समय सामान्यतः समस्या में अन्य विश्राम दरों के व्युत्क्रम से अधिक लंबा होता है।<ref name="Brivio" /> | ||
=== | ==='''फ़ोनोन''' सक्रिय विशोषण=== | ||
2005 में, जॉन वीवर और अन्य द्वारा विशोषण की विधि की खोज की गई थी। इसमें तापीय और इलेक्ट्रॉन प्रेरित विशोषण दोनों के तत्व हैं। यह विधा विशेष रुचि की है क्योंकि बाहरी उत्तेजना के बिना बंद प्रणाली में विशोषण हो सकता है।<ref> Physics Today 58, 5, 9 (2005); doi: 10.1063/1.1995718</ref> [[स्कैनिंग टनलिंग माइक्रोस्कोप]] का उपयोग करके सिलिकॉन पर अवशोषित ब्रोमीन की जांच करते समय इस मोड की खोज की गई थी। प्रयोग में, Si-Br वेफर्स को 620 से 775 K तक के तापमान तक गर्म किया गया।<ref>Electron-stimulated desorption from an unexpected source: Internal hot electrons for Br–Si(1 0 0)-(2 · 1) B.R. Trenhaile, V.N. Antonov, G.J. Xu, Koji S. Nakayama, J.H. Weaver * Department of Physics, Department of Materials Science and Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States Received 14 February 2005; accepted for publication</ref> चूंकि, यह साधारण थर्मल | 2005 में, जॉन वीवर और अन्य द्वारा विशोषण की विधि की खोज की गई थी। इसमें तापीय और इलेक्ट्रॉन प्रेरित विशोषण दोनों के तत्व हैं। यह विधा विशेष रुचि की है क्योंकि बाहरी उत्तेजना के बिना बंद प्रणाली में विशोषण हो सकता है।<ref> Physics Today 58, 5, 9 (2005); doi: 10.1063/1.1995718</ref> [[स्कैनिंग टनलिंग माइक्रोस्कोप]] का उपयोग करके सिलिकॉन पर अवशोषित ब्रोमीन की जांच करते समय इस मोड की खोज की गई थी। प्रयोग में, Si-Br वेफर्स को 620 से 775 K तक के तापमान तक गर्म किया गया।<ref>Electron-stimulated desorption from an unexpected source: Internal hot electrons for Br–Si(1 0 0)-(2 · 1) B.R. Trenhaile, V.N. Antonov, G.J. Xu, Koji S. Nakayama, J.H. Weaver * Department of Physics, Department of Materials Science and Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States Received 14 February 2005; accepted for publication</ref> चूंकि, यह साधारण थर्मल विशोषण बॉन्ड ब्रेकिंग नहीं था जिसे अरहेनियस प्लॉट से गणना की गई सक्रियण ऊर्जा Si-Br बॉन्ड शक्ति से कम पाया गया था। इसके अतिरिक्त, सिलिकॉन के ऑप्टिकल फोनन कंपन के माध्यम से सतह के बंधन को असक्त करते हैं और इलेक्ट्रॉन को एंटीबॉडी आणविक कक्षीय अवस्था में उत्तेजित करने के लिए ऊर्जा भी प्रदान करते हैं। | ||
== | == अनुप्रयोग == | ||
विशोषण भौतिक प्रक्रिया है जो कई अनुप्रयोगों के लिए बहुत उपयोगी हो सकती है। इस खंड में तापीय विशोषण के दो अनुप्रयोगों की व्याख्या की गई है। उनमें से वास्तव में अनुप्रयोग के अतिरिक्त थर्मल विशोषण, तापमान क्रमादेशित विशोषण की | विशोषण भौतिक प्रक्रिया है जो कई अनुप्रयोगों के लिए बहुत उपयोगी हो सकती है। इस खंड में तापीय विशोषण के दो अनुप्रयोगों की व्याख्या की गई है। उनमें से वास्तव में अनुप्रयोग के अतिरिक्त थर्मल विशोषण, तापमान क्रमादेशित विशोषण की विधि है, लेकिन इसमें बहुत सारे महत्वपूर्ण अनुप्रयोग हैं। दूसरा प्रदूषण को कम करने के उद्देश्य से तापीय विशोषण का अनुप्रयोग है। | ||
===तापमान क्रमादेशित विशोषण (टीपीडी)=== | ===तापमान क्रमादेशित विशोषण (टीपीडी)=== | ||
तापमान क्रमादेशित विशोषण (टीपीडी) सामग्री अनुसंधान विज्ञान के लिए उपलब्ध सबसे व्यापक रूप से उपयोग की जाने वाली सतह विश्लेषण | तापमान क्रमादेशित विशोषण (टीपीडी) सामग्री अनुसंधान विज्ञान के लिए उपलब्ध सबसे व्यापक रूप से उपयोग की जाने वाली सतह विश्लेषण विधियों में से एक है। इसके कई अनुप्रयोग हैं जैसे कि रासायनिक यौगिकों और तत्वों की अवशोषण दर और बंधन ऊर्जा को जानना, उत्प्रेरक सतहों पर सक्रिय साइटों का मूल्यांकन और सोखना, सतह प्रतिक्रिया और अवशोषण सहित उत्प्रेरक प्रतिक्रियाओं के तंत्र की समझ, सामग्री रचनाओं का विश्लेषण, सतह की बातचीत और सतह प्रदूषित करती है. इसलिए, टीपीडी कई उद्योगों में तीव्रता से महत्वपूर्ण हो गया है, जिसमें बहुलक, फार्मास्यूटिकल्स, मिट्टी और खनिज, खाद्य पैकेजिंग, और धातु और मिश्र धातु जैसे उत्पादों पर गुणवत्ता नियंत्रण और औद्योगिक अनुसंधान सम्मिलित है, लेकिन यह इन्हीं तक सीमित नहीं है।<ref>Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) Application note</ref> | ||
जब टीपीडी का उपयोग उन उत्पादों की विशोषण दर जानने के उद्देश्य से किया जाता है जो पहले किसी सतह पर सोख लिए गए थे, तो इसमें ठंडी क्रिस्टल सतह को गर्म करना सम्मिलित होता है जो गैस या गैसों के मिश्रण को नियंत्रित दर पर सोख लेती है। फिर, गर्म होने पर अधिशोषक प्रतिक्रिया करेंगे और फिर वे सतह से सोख लेंगे।<ref>Temperature Programmed DesorptionTakafumi Ishii, Takashi Kyotani, in Materials Science and Engineering of Carbon, 2016</ref> टीपीडी लगाने के परिणाम प्रत्येक उत्पाद प्रजाति की विशोषण दर हैं जिन्हें सतह के तापमान के आधार पर अवशोषित किया गया है, इसे उत्पाद का टीपीडी स्पेक्ट्रम कहा जाता है। साथ ही, चूंकि वह तापमान ज्ञात है जिस पर प्रत्येक सतह यौगिक को अवशोषित किया गया है, उस ऊर्जा की गणना करना संभव है जो सतह पर अवशोषित यौगिक को सक्रियण ऊर्जा से बांधती है। | जब टीपीडी का उपयोग उन उत्पादों की विशोषण दर जानने के उद्देश्य से किया जाता है जो पहले किसी सतह पर सोख लिए गए थे, तो इसमें ठंडी क्रिस्टल सतह को गर्म करना सम्मिलित होता है जो गैस या गैसों के मिश्रण को नियंत्रित दर पर सोख लेती है। फिर, गर्म होने पर अधिशोषक प्रतिक्रिया करेंगे और फिर वे सतह से सोख लेंगे।<ref>Temperature Programmed DesorptionTakafumi Ishii, Takashi Kyotani, in Materials Science and Engineering of Carbon, 2016</ref> टीपीडी लगाने के परिणाम प्रत्येक उत्पाद प्रजाति की विशोषण दर हैं जिन्हें सतह के तापमान के आधार पर अवशोषित किया गया है, इसे उत्पाद का टीपीडी स्पेक्ट्रम कहा जाता है। साथ ही, चूंकि वह तापमान ज्ञात है जिस पर प्रत्येक सतह यौगिक को अवशोषित किया गया है, उस ऊर्जा की गणना करना संभव है जो सतह पर अवशोषित यौगिक को सक्रियण ऊर्जा से बांधती है। | ||
===प्रदूषण हटाने के लिए थर्मल अवशोषण=== | ===प्रदूषण हटाने के लिए थर्मल अवशोषण=== | ||
विशोषण, विशेष रूप से थर्मल विशोषण, को पर्यावरणीय उपचार तकनीक के रूप में प्रयुक्त किया जा सकता है। यह भौतिक प्रक्रिया ठोस मैट्रिक्स से 90 से 560 डिग्री सेल्सियस तक के अपेक्षाकृत कम तापमान पर दूषित पदार्थों को हटाने के लिए डिज़ाइन की गई है। दूषित मीडिया को पानी और कार्बनिक संदूषकों को अस्थिर करने के लिए गर्म किया जाता है, इसके बाद गैस उपचार प्रणाली में उपचार किया जाता है जिसमें हटाने के बाद, संदूषकों को एकत्र किया जाता है या थर्मल रूप से नष्ट कर दिया जाता है। उन्हें कम विषैले यौगिकों को हटाने/परिवर्तन के लिए वाहक गैस या | विशोषण, विशेष रूप से थर्मल विशोषण, को पर्यावरणीय उपचार तकनीक के रूप में प्रयुक्त किया जा सकता है। यह भौतिक प्रक्रिया ठोस मैट्रिक्स से 90 से 560 डिग्री सेल्सियस तक के अपेक्षाकृत कम तापमान पर दूषित पदार्थों को हटाने के लिए डिज़ाइन की गई है। दूषित मीडिया को पानी और कार्बनिक संदूषकों को अस्थिर करने के लिए गर्म किया जाता है, इसके बाद गैस उपचार प्रणाली में उपचार किया जाता है जिसमें हटाने के बाद, संदूषकों को एकत्र किया जाता है या थर्मल रूप से नष्ट कर दिया जाता है। उन्हें कम विषैले यौगिकों को हटाने/परिवर्तन के लिए वाहक गैस या निर्वात का उपयोग करके वाष्प उपचार प्रणाली में ले जाया जाता है।<ref name="web">{{Cite web|url=https://frtr.gov/matrix/Desorption-Incineration/|title=Desorption and Incineration| FRTR Remediation Technologies Screening Matrix}}</ref> | ||
थर्मल | थर्मल विशोषण प्रणालियाँ कम डिज़ाइन तापमान पर काम करती हैं, जो कार्बनिक संदूषकों के पर्याप्त वाष्पीकरण को प्राप्त करने के लिए पर्याप्त रूप से उच्च है। तापमान और निवास समय को चयनित संदूषकों को अस्थिर करने के लिए डिज़ाइन किया गया है, लेकिन सामान्यतः वे उन्हें ऑक्सीकरण नहीं करेंगे। यह उन साइटों पर प्रयुक्त होता है, जहां उच्च प्रत्यक्ष अपशिष्ट अंत्येष्टि उपस्थित है, और साइट के निरंतर उपयोग या पुनर्विकास की अनुमति देने के लिए छोटी समय सीमा आवश्यक है।<ref name="web" /> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* | * विशोषण | ||
*अवशोषक क्षमता | *अवशोषक क्षमता | ||
* [[सोरशन इज़ोटेर्म]] | * [[सोरशन इज़ोटेर्म]] | ||
Line 84: | Line 84: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:Created On 19/07/2023]] | [[Category:Created On 19/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:भूतल विज्ञान]] | |||
[[Category:वीडियो क्लिप युक्त लेख]] |
Latest revision as of 10:47, 14 August 2023
विशोषण वह भौतिक प्रक्रिया है जहां पहले से अधिशोषित पदार्थ किसी सतह से मुक्त हो जाता है। ऐसा तब होता है जब कोई अणु उसे सतह पर बनाए रखने वाली बाध्य ऊर्जा के सक्रियण अवरोध को दूर करने के लिए पर्याप्त ऊर्जा प्राप्त कर लेता है।[1]
अधिशोषण को सब्सट्रेट से अलग करने वाले तंत्र के आधार पर, विशोषण के कई अलग-अलग प्रकार होते हैं; इसलिए ऐसा कोई एक समीकरण नहीं है जो प्रक्रिया का वर्णन करता हो। ध्यान दें कि विशोषण, अधिशोषण के विपरीत है, जो अवशोषण से भिन्न है क्योंकि यह पदार्थों को थोक में अवशोषित होने के विपरीत, सतह पर चिपके रहने को संदर्भित करता है।
उत्प्रेरक और अधिशोषित यौगिक के बीच प्रतिक्रिया के बाद या स्ट्रिपिंग या क्रोमैटोग्राफी के समय अवशोषण हो सकता है जो पृथक्करण प्रक्रियाओं के प्रकार हैं।
विशोषण तंत्र
अधिशोषक-से-सतह बंधन की प्रकृति के आधार पर, विशोषण के लिए कई तंत्र हैं। सॉर्बेंट के सतह बंधन को रासायनिक प्रतिक्रियाओं या विकिरण के माध्यम से थर्मल रूप से स्वच्छ किया जा सकता है, जिसके परिणामस्वरूप प्रजातियों का अवशोषण हो सकता है।
तापीय विशोषण
ऊष्मीय विशोषण वह प्रक्रिया है, जिसके द्वारा किसी अधिशोषक को गर्म किया जाता है और यह सतह से परमाणुओं या अणुओं के विशोषण को प्रेरित करता है। तापीय विशोषण का पहला प्रयोग 1948 में लेरॉय एपकर द्वारा किया गया था।[2] यह विशोषण के सबसे अधिक उपयोग किए जाने वाली विधियों में से एक है, और इसका उपयोग अधिशोषक की सतह क्षेत्र को निर्धारित करने और विशोषण की सक्रियण ऊर्जा का मूल्यांकन करने के लिए किया जा सकता है।[3]
थर्मल विशोषण को सामान्यतः पोलैनी-विग्नर समीकरण द्वारा वर्णित किया गया है:
जहाँ r विशोषण की दर है, अधिशोषित कवरेज है, t समय, n विशोषण का क्रम है, पूर्व-घातीय कारक, E सक्रियण ऊर्जा है, R गैस स्थिरांक है और T पूर्ण तापमान है। अधिशोषित कवरेज को अधिगृहीत और उपलब्ध अधिशोषण साइटों के बीच के अनुपात के रूप में परिभाषित किया गया है।[3]
विशोषण का क्रम, जिसे गतिज क्रम के रूप में भी जाना जाता है, अधिशोषित कवरेज और विशोषण की दर के बीच संबंध का वर्णन करता है। प्रथम क्रम में विशोषण, n = 1, कणों की दर अधिशोषित कवरेज के सीधे आनुपातिक है।[4] परमाणु या सरल आणविक विशोषण पहले क्रम का होता है और इस स्थितियों में जिस तापमान पर अधिकतम विशोषण होता है। वह प्रारंभिक अधिशोषण कवरेज से स्वतंत्र होता है। जबकि, दूसरे क्रम के विशोषण में प्रारंभिक अधिशोषण कवरेज में वृद्धि के साथ विशोषण की अधिकतम दर का तापमान कम हो जाता है। इसका कारण यह है कि दूसरा क्रम पुनः संयोजक विशोषण है और बड़े प्रारंभिक कवरेज के साथ इस बात की अधिक संभावना है कि दोनों कण एक-दूसरे को ढूंढ लेंगे और पुनर्संयोजन उत्पाद में पुनः संयोजित हो जाएंगे। दूसरे क्रम के विशोषण का उदाहरण, n = 2, तब होता है जब सतह पर दो हाइड्रोजन परमाणु अवशोषित होते हैं और गैसीय पदार्थ बनाते हैं H
2 अणु. शून्य क्रम का विशोषण भी होता है जो सामान्यतः मोटी आणविक परतों पर होता है, इस स्थितियों में विशोषण दर कण सांद्रता पर निर्भर नहीं करती है। शून्यवें क्रम के स्थितियों में, n = 0, तापमान के साथ अवशोषण तब तक बढ़ता रहेगा जब तक कि सभी अणुओं के अवशोषित हो जाने के बाद अचानक गिरावट न हो जाए।[4]
विशिष्ट तापीय विशोषण प्रयोग में, अधिकांशतः यह मान लिया जाता है कि नमूना निरंतर गर्म हो रहा है, और इसलिए समय के साथ तापमान रैखिक रूप से बढ़ेगा। हीटिंग की दर का प्रतिनिधित्व किया जा सकता है,
इसलिए, तापमान का प्रतिनिधित्व इस प्रकार किया जा सकता है:
जहाँ आरंभिक समय है और प्रारंभिक तापमान है।[4] विशोषण तापमान पर, अणुओं के लिए सतह से बाहर निकलने के लिए पर्याप्त तापीय ऊर्जा होती है। किसी धातु की बंधन ऊर्जा की जांच के लिए थर्मल विशोषण का उपयोग तकनीक के रूप में किया जा सकता है।[4]
तापीय विशोषण का विश्लेषण करने के लिए कई अलग-अलग प्रक्रियाएँ हैं। उदाहरण के लिए, रेडहेड की शिखर अधिकतम विधि[5] विशोषण प्रयोगों में सक्रियण ऊर्जा निर्धारित करने की विधियों में से एक है। पहले क्रम के विशोषण के लिए, सक्रियण ऊर्जा का अनुमान तापमान (Tp) से लगाया जाता है।) जिस पर विशोषण दर अधिकतम होती है। विशोषण की दर (पॉलीनी वाइनर समीकरण) के लिए समीकरण का उपयोग करके, कोई (Tp) प्राप्त कर सकता है और रेडहेड दर्शाता है कि Tp और E के बीच संबंध रैखिक होने का अनुमान लगाया जा सकता है, यह देखते हुए कि हीटिंग दर के लिए स्थिर दर का अनुपात 108 – 1013 की सीमा के अन्दर है। हीटिंग दर को अलग-अलग करके, और फिर के विरुद्ध का ग्राफ़ बनाकर, कोई निम्नलिखित समीकरण का उपयोग करके सक्रियण ऊर्जा प्राप्त कर सकता है:
यह विधि साधारण है, नियमित रूप से प्रयुक्त की जाती है और 30% की त्रुटि के अन्दर सक्रियण ऊर्जा का मूल्य दे सकती है। चूंकि, इस पद्धति का दोष यह है कि पोलैनी-विग्नर समीकरण में दर स्थिरांक और सक्रियण ऊर्जा को सतह कवरेज से स्वतंत्र माना जाता है।[5]
कम्प्यूटेशनल शक्ति में संशोधन के कारण, अब दर स्थिरांक और सक्रियण ऊर्जा की स्वतंत्रता को ध्यान में रखे बिना थर्मल विशोषण विश्लेषण करने की कई विधियाँ हैं।[3] उदाहरण के लिए, संपूर्ण विश्लेषण विधि[6] कई अलग-अलग सतह कवरेज के लिए विशोषण वक्रों के परिवार का उपयोग करता है और तापमान के फलन के रूप में कवरेज प्राप्त करने के लिए एकीकृत होता है। इसके बाद, विशेष कवरेज के लिए विशोषण दर प्रत्येक वक्र से निर्धारित की जाती है और 1/T के विरुद्ध विशोषण की दर के लघुगणक का अरहेनियस प्लॉट बनाया जाता है। अरहेनियस कथानक का उदाहरण दाईं ओर के चित्र में देखा जा सकता है। सक्रियण ऊर्जा इस अरहेनियस प्लॉट के ग्रेडिएंट से पाई जा सकती है।[7]
अन्य विश्लेषण तकनीक में थर्मल विशोषण स्पेक्ट्रा का अनुकरण करना और प्रयोगात्मक डेटा की तुलना करना सम्मिलित है। यह तकनीक गतिज मोंटे कार्लो पद्धति पर निर्भर करती है और इसके लिए अधिशोषित परमाणुओं की जाली अंतःक्रिया की समझ की आवश्यकता होती है। इन अंतःक्रियाओं का वर्णन लैटिस गैस हैमिल्टनियन द्वारा पहले सिद्धांतों से किया गया है, जो परमाणुओं की व्यवस्था के आधार पर भिन्न होता है। रोडियम से ऑक्सीजन के विशोषण की जांच करने के लिए उपयोग की जाने वाली इस विधि का उदाहरण "O/Rh(111) के तापमान क्रमादेशित विशोषण का काइनेटिक मोंटे कार्लो सिमुलेशन" निम्नलिखित पेपर में पाया जा सकता है।[8]
रिडक्टिव या ऑक्सीडेटिव विशोषण
कुछ स्थितियों में, अधिशोषित अणु रासायनिक रूप से सतह/सामग्री से जुड़ा होता है, जो कठोर आसंजन प्रदान करता है और अवशोषण को सीमित करता है। यदि यह स्थितियाँ है, तो अवशोषण के लिए रासायनिक प्रतिक्रिया की आवश्यकता होती है, जो रासायनिक बंध को तोड़ देती है। इसे पूर्ण करने की विधि सतह पर वोल्टेज प्रयुक्त करना है, जिसके परिणामस्वरूप अधिशोषित अणु में कमी या ऑक्सीकरण होता है। पूर्वाग्रह और अधिशोषित अणुओं के आधार पर होता है।
रिडक्टिव विशोषण के विशिष्ट उदाहरण में, सोने की सतह पर थिओल की स्व-इकट्ठी मोनोलेयर को सतह पर नकारात्मक पूर्वाग्रह प्रयुक्त करके हटाया जा सकता है जिसके परिणामस्वरूप सल्फर हेड-ग्रुप में कमी आती है। इस प्रक्रिया के लिए रासायनिक प्रतिक्रिया होगी:
जहां R एल्काइल श्रृंखला है (जैसे CH3), S थियोल समूह का सल्फर परमाणु है, Au सोने की सतह वाला परमाणु है और e− बाहरी वोल्टेज स्रोत द्वारा आपूर्ति किया गया इलेक्ट्रॉन है।[9]
रिडक्टिव/ऑक्सीडेटिव विशोषण के लिए अन्य अनुप्रयोग विद्युत रासायनिक पुनर्जनन के माध्यम से सक्रिय कार्बन सामग्री को स्वच्छ करना है।
इलेक्ट्रॉन-उत्तेजित विशोषण
इलेक्ट्रॉन-उत्तेजित विशोषण निर्वात में सतह पर इलेक्ट्रॉन किरण घटना के परिणामस्वरूप होता है, जैसा कि कण भौतिकी और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) जैसी औद्योगिक प्रक्रियाओं में सामान्य है। वायुमंडलीय दबाव पर, अणु असक्त रूप से सतहों से जुड़ सकते हैं जिसे सोखना कहा जाता है। ये अणु 1015 के घनत्व पर मोनोलेयर बना सकते हैं परमाणु/सेमी2 पूरी तरह से चिकनी सतह के लिए।[10] अणुओं की बंधन क्षमताओं के आधार पर, मोनोलेयर या कई बन सकते हैं। यदि कोई इलेक्ट्रॉन किरण सतह पर आपतित होती है, तो यह अधिशोषित मोनोलेयर में अणुओं के साथ सतह के बंधन को तोड़ने के लिए ऊर्जा प्रदान करती है, जिससे प्रणाली में दबाव बढ़ जाता है। एक बार जब कोई अणु निर्वात वॉल्यूम में अवशोषित हो जाता है, तो इसे निर्वात के पंपिंग तंत्र के माध्यम से हटा दिया जाता है (पुनः सोखना नगण्य है)। इसलिए, विशोषण के लिए कम अणु उपलब्ध होते हैं, और निरंतर विशोषण को बनाए रखने के लिए इलेक्ट्रॉनों की बढ़ती संख्या की आवश्यकता होती है।
इलेक्ट्रॉन प्रेरित विशोषण पर अग्रणी मॉडलों में से एक का वर्णन पीटर एंटोनिविज़ द्वारा किया गया है।[11] संक्षेप में, उनका सिद्धांत यह है कि आपतित इलेक्ट्रॉनों द्वारा अधिशोषक आयनित हो जाता है और फिर आयन छवि आवेश क्षमता का अनुभव करता है जो इसे सतह की ओर आकर्षित करता है। जैसे-जैसे आयन सतह के समीप आता है, सब्सट्रेट से इलेक्ट्रॉन टनलिंग की संभावना बढ़ जाती है और इस प्रक्रिया के माध्यम से आयन न्यूट्रलाइजेशन हो सकता है। निष्प्रभावी आयन में अभी भी पहले से गतिज ऊर्जा है, और यदि यह ऊर्जा और प्राप्त संभावित ऊर्जा बंधनकारी ऊर्जा से अधिक है। तो आयन सतह से विघटित हो सकता है। चूँकि इस प्रक्रिया के लिए आयनीकरण की आवश्यकता होती है, इससे पता चलता है कि परमाणु कम उत्तेजना ऊर्जा पर विघटित नहीं हो सकता है, जो इलेक्ट्रॉन अनुरूपित विशोषण पर प्रयोगात्मक डेटा से सहमत है।[11] इलेक्ट्रॉन प्रेरित विशोषण को समझना लार्ज हैड्रान कोलाइडर जैसे त्वरक के लिए महत्वपूर्ण है, जहां सतहों पर ऊर्जावान इलेक्ट्रॉनों की तीव्र बमबारी होती है। विशेष रूप से, बीम निर्वात प्रणाली में गैसों का अवशोषण सतहों की द्वितीयक इलेक्ट्रॉन उपज को संशोधित करके त्वरक के प्रदर्शन को दृढ़ता से प्रभावित कर सकता है।[12]
आईआर प्रकाशअवशोषण
आईआर फोटोडेसोर्प्शन एक प्रकार का विशोषण है जो तब होता है जब अवरक्त प्रकाश सतह से टकराता है। और पहले से अवशोषित अणुओं के आंतरिक कंपन मोड की उत्तेजना से जुड़ी प्रक्रियाओं को सक्रिय करता है, जिसके बाद गैस चरण में प्रजातियों का विशोषण होता है।[1] कोई अधिशोषक या अधिशोष्य-सब्सट्रेट युग्मित प्रणाली के इलेक्ट्रॉनों या कंपनों को विशेष रूप से उत्तेजित कर सकता है। आपतित प्रकाश से प्रणाली में पर्याप्त ऊर्जा विनिमय के साथ बंधों की यह शिथिलता अंततः विशोषण को जन्म देगी।[13] सामान्यतः, यह घटना अशक्त-बद्ध फ़िज़ियोसॉर्बड प्रजातियों के लिए अधिक प्रभावी होती है, जिनकी अवशोषित करने की क्षमता रसायनयुक्त प्रजातियों की तुलना में कम होती है। वास्तव में उथली क्षमता के लिए अणु को सतह से मुक्त करने और आईआर-फोटोडेसोरशन प्रयोगों को संभव बनाने के लिए कम लेजर तीव्रता की आवश्यकता होती है, क्योंकि मापा गया विशोषण समय सामान्यतः समस्या में अन्य विश्राम दरों के व्युत्क्रम से अधिक लंबा होता है।[13]
फ़ोनोन सक्रिय विशोषण
2005 में, जॉन वीवर और अन्य द्वारा विशोषण की विधि की खोज की गई थी। इसमें तापीय और इलेक्ट्रॉन प्रेरित विशोषण दोनों के तत्व हैं। यह विधा विशेष रुचि की है क्योंकि बाहरी उत्तेजना के बिना बंद प्रणाली में विशोषण हो सकता है।[14] स्कैनिंग टनलिंग माइक्रोस्कोप का उपयोग करके सिलिकॉन पर अवशोषित ब्रोमीन की जांच करते समय इस मोड की खोज की गई थी। प्रयोग में, Si-Br वेफर्स को 620 से 775 K तक के तापमान तक गर्म किया गया।[15] चूंकि, यह साधारण थर्मल विशोषण बॉन्ड ब्रेकिंग नहीं था जिसे अरहेनियस प्लॉट से गणना की गई सक्रियण ऊर्जा Si-Br बॉन्ड शक्ति से कम पाया गया था। इसके अतिरिक्त, सिलिकॉन के ऑप्टिकल फोनन कंपन के माध्यम से सतह के बंधन को असक्त करते हैं और इलेक्ट्रॉन को एंटीबॉडी आणविक कक्षीय अवस्था में उत्तेजित करने के लिए ऊर्जा भी प्रदान करते हैं।
अनुप्रयोग
विशोषण भौतिक प्रक्रिया है जो कई अनुप्रयोगों के लिए बहुत उपयोगी हो सकती है। इस खंड में तापीय विशोषण के दो अनुप्रयोगों की व्याख्या की गई है। उनमें से वास्तव में अनुप्रयोग के अतिरिक्त थर्मल विशोषण, तापमान क्रमादेशित विशोषण की विधि है, लेकिन इसमें बहुत सारे महत्वपूर्ण अनुप्रयोग हैं। दूसरा प्रदूषण को कम करने के उद्देश्य से तापीय विशोषण का अनुप्रयोग है।
तापमान क्रमादेशित विशोषण (टीपीडी)
तापमान क्रमादेशित विशोषण (टीपीडी) सामग्री अनुसंधान विज्ञान के लिए उपलब्ध सबसे व्यापक रूप से उपयोग की जाने वाली सतह विश्लेषण विधियों में से एक है। इसके कई अनुप्रयोग हैं जैसे कि रासायनिक यौगिकों और तत्वों की अवशोषण दर और बंधन ऊर्जा को जानना, उत्प्रेरक सतहों पर सक्रिय साइटों का मूल्यांकन और सोखना, सतह प्रतिक्रिया और अवशोषण सहित उत्प्रेरक प्रतिक्रियाओं के तंत्र की समझ, सामग्री रचनाओं का विश्लेषण, सतह की बातचीत और सतह प्रदूषित करती है. इसलिए, टीपीडी कई उद्योगों में तीव्रता से महत्वपूर्ण हो गया है, जिसमें बहुलक, फार्मास्यूटिकल्स, मिट्टी और खनिज, खाद्य पैकेजिंग, और धातु और मिश्र धातु जैसे उत्पादों पर गुणवत्ता नियंत्रण और औद्योगिक अनुसंधान सम्मिलित है, लेकिन यह इन्हीं तक सीमित नहीं है।[16]
जब टीपीडी का उपयोग उन उत्पादों की विशोषण दर जानने के उद्देश्य से किया जाता है जो पहले किसी सतह पर सोख लिए गए थे, तो इसमें ठंडी क्रिस्टल सतह को गर्म करना सम्मिलित होता है जो गैस या गैसों के मिश्रण को नियंत्रित दर पर सोख लेती है। फिर, गर्म होने पर अधिशोषक प्रतिक्रिया करेंगे और फिर वे सतह से सोख लेंगे।[17] टीपीडी लगाने के परिणाम प्रत्येक उत्पाद प्रजाति की विशोषण दर हैं जिन्हें सतह के तापमान के आधार पर अवशोषित किया गया है, इसे उत्पाद का टीपीडी स्पेक्ट्रम कहा जाता है। साथ ही, चूंकि वह तापमान ज्ञात है जिस पर प्रत्येक सतह यौगिक को अवशोषित किया गया है, उस ऊर्जा की गणना करना संभव है जो सतह पर अवशोषित यौगिक को सक्रियण ऊर्जा से बांधती है।
प्रदूषण हटाने के लिए थर्मल अवशोषण
विशोषण, विशेष रूप से थर्मल विशोषण, को पर्यावरणीय उपचार तकनीक के रूप में प्रयुक्त किया जा सकता है। यह भौतिक प्रक्रिया ठोस मैट्रिक्स से 90 से 560 डिग्री सेल्सियस तक के अपेक्षाकृत कम तापमान पर दूषित पदार्थों को हटाने के लिए डिज़ाइन की गई है। दूषित मीडिया को पानी और कार्बनिक संदूषकों को अस्थिर करने के लिए गर्म किया जाता है, इसके बाद गैस उपचार प्रणाली में उपचार किया जाता है जिसमें हटाने के बाद, संदूषकों को एकत्र किया जाता है या थर्मल रूप से नष्ट कर दिया जाता है। उन्हें कम विषैले यौगिकों को हटाने/परिवर्तन के लिए वाहक गैस या निर्वात का उपयोग करके वाष्प उपचार प्रणाली में ले जाया जाता है।[18]
थर्मल विशोषण प्रणालियाँ कम डिज़ाइन तापमान पर काम करती हैं, जो कार्बनिक संदूषकों के पर्याप्त वाष्पीकरण को प्राप्त करने के लिए पर्याप्त रूप से उच्च है। तापमान और निवास समय को चयनित संदूषकों को अस्थिर करने के लिए डिज़ाइन किया गया है, लेकिन सामान्यतः वे उन्हें ऑक्सीकरण नहीं करेंगे। यह उन साइटों पर प्रयुक्त होता है, जहां उच्च प्रत्यक्ष अपशिष्ट अंत्येष्टि उपस्थित है, और साइट के निरंतर उपयोग या पुनर्विकास की अनुमति देने के लिए छोटी समय सीमा आवश्यक है।[18]
यह भी देखें
- विशोषण
- अवशोषक क्षमता
- सोरशन इज़ोटेर्म
- रसायनशोषण
- गिब्स इज़ोटेर्म
- नमी सोखना इज़ोटेर्म
- लैंगमुइर समीकरण
संदर्भ
- ↑ 1.0 1.1 PHYSICAL REVIEW 8, volume 32, number 615. September 1985. Infrared-laser-induced photodesorption of NH3 and ND3 adsorbed single crystal Cu(100) and Ag film. IngoHussla, H.Seki, T.J.Chuang. IBMResearchLaboratory, SanJose, California.
- ↑ L. Apker, Ind. Eng. Chem. 40 (1948) 846
- ↑ 3.0 3.1 3.2 THERMAL DESORPTION ANALYSIS: COMPARATIVE TEST OF TEN COMMONLY APPLIED PROCEDURES A.M. de JONG and J.W. NIEMANTSVERDRIET * Laboratory of Inorganic Chemistry and Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands Received 8 January 1990
- ↑ 4.0 4.1 4.2 4.3 BASIC TECHNIQUES OF SURFACE PHYSICS Surface Analysis with Temperature Programmed Desorption and Low-Energy Electron Diffraction, Versuch Nr. 89 F-Praktikum in den Bachelor- und Masterstudiengängen, SS2017 Physik Department Lehrstuhl E20, Raum 205 Contacts: Dr. Y.-Q. Zhang, Dr. T. Lin and Dr. habil. F. Allegretti
- ↑ 5.0 5.1 5.2 Redhead, P.A. (1962). "Thermal desorption of gases". Vacuum. 12 (4): 203–211. Bibcode:1962Vacuu..12..203R. doi:10.1016/0042-207X(62)90978-8
- ↑ King, David A. (1975). "Thermal desorption from metal surfaces: A review". Surface Science. 47 (1): 384–402. Bibcode:1975SurSc..47..384K. doi:10.1016/0039-6028(75)90302-7.
- ↑ Zaki, E. (2019). Surface-Sensitive Adsorption of Water and Carbon Dioxide on Magnetite: Fe3O4(111) versus Fe3O4(001). PhD Thesis, Technische Universität, Berlin.
- ↑ Kinetic Monte Carlo simulations of temperature programed desorption of O/Rh(111) J. Chem. Phys. 132, 194701 (2010) T. Franza and F. Mittendorfer
- ↑ Sun, K., Jiang, B., & Jiang, X. (2011). Electrochemical desorption of self-assembled monolayers and its applications in surface chemistry and cell biology. Journal of Electroanalytical Chemistry, 656(1), 223-230.
- ↑ M. H. Hablanian (1997). High-Volume Technology, A Practical Guide. Second Edition. Marcel Dekker, Inc.
- ↑ 11.0 11.1 Model for electron- and photon-stimulated desorption, Antoniewicz, Peter R., Phys. Rev. B 21.9, pages: 3811—3815, May 1980, American Physical Society, doi = {10.1103/PhysRevB.21.3811},
- ↑ Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces (September 2005) Dipl. Ing. Herbert Tratnik Matrikelnr. 9226169, page:3
- ↑ 13.0 13.1 Surface Science Reports 17 (1993) 1-84 North-Holland. Dynamics of adsorption/desorption at solid surfaces G.P. Brivio a and T.B. Grimley b,1 Dipartimento di Fisica dell'Universith di Milano, Via Celoria 16, 20133 Milano, Italy h The Donnan Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK Manuscript received in final form 25 August 1992
- ↑ Physics Today 58, 5, 9 (2005); doi: 10.1063/1.1995718
- ↑ Electron-stimulated desorption from an unexpected source: Internal hot electrons for Br–Si(1 0 0)-(2 · 1) B.R. Trenhaile, V.N. Antonov, G.J. Xu, Koji S. Nakayama, J.H. Weaver * Department of Physics, Department of Materials Science and Engineering, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States Received 14 February 2005; accepted for publication
- ↑ Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) Application note
- ↑ Temperature Programmed DesorptionTakafumi Ishii, Takashi Kyotani, in Materials Science and Engineering of Carbon, 2016
- ↑ 18.0 18.1 "Desorption and Incineration| FRTR Remediation Technologies Screening Matrix".