संदृढ़ता आव्युह: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 63: Line 63:
* {{citation |first=सी. |last=जॉनसन |year=2009 |title=परिमित तत्व विधि द्वारा आंशिक विभेदक समीकरणों का संख्यात्मक समाधान |publisher=डोवर |isbn=978-0486469003 }}
* {{citation |first=सी. |last=जॉनसन |year=2009 |title=परिमित तत्व विधि द्वारा आंशिक विभेदक समीकरणों का संख्यात्मक समाधान |publisher=डोवर |isbn=978-0486469003 }}
* {{citation |first1=ओ.सी. |last1=ज़िएनकिविज़ |author1-link=ओल्गिएर्ड ज़िएनक्यूविक्ज़ |first2=आर.एल. |last2=टेलर |first3=जे.जेड. |last3=Zhu |year=2005 |title=परिमित तत्व विधि: इसका आधार और बुनियादी बातें |publisher=एल्सेवियर बटरवर्थ-हेनमैन |edition=6th |location=ऑक्सफोर्ड, यूके |isbn=978-0750663205 }}
* {{citation |first1=ओ.सी. |last1=ज़िएनकिविज़ |author1-link=ओल्गिएर्ड ज़िएनक्यूविक्ज़ |first2=आर.एल. |last2=टेलर |first3=जे.जेड. |last3=Zhu |year=2005 |title=परिमित तत्व विधि: इसका आधार और बुनियादी बातें |publisher=एल्सेवियर बटरवर्थ-हेनमैन |edition=6th |location=ऑक्सफोर्ड, यूके |isbn=978-0750663205 }}
[[Category: व्यावहारिक गणित]] [[Category: संख्यात्मक विश्लेषण]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:व्यावहारिक गणित]]
[[Category:संख्यात्मक विश्लेषण]]

Latest revision as of 13:58, 14 August 2023

अण्डाकार आंशिक अंतर समीकरणों के संख्यात्मक समाधान के लिए परिमित तत्व विधि में, संदृढ़ता आव्युह (गणित) है जो रैखिक समीकरणों की प्रणाली का प्रतिनिधित्व करता है जिसे अंतर समीकरण के अनुमानित समाधान का पता लगाने के लिए हल किया जाना चाहिए।

पॉइसन समस्या के लिए संदृढ़ता आव्युह

सरलता के लिए, हम पहले पॉइसन समस्या पर विचार करेंगे

कुछ डोमेन पर Ω, सीमा शर्त के अधीन Ω की सीमा पर u = 0. परिमित तत्व विधि द्वारा इस समीकरण को भिन्न करने के लिए, व्यक्ति Ω पर परिभाषित आधार कार्यों {φ1, …, φn} का एक समूह चुनता है जो सीमा पर भी लुप्त हो जाता है। फिर एक अनुमान लगाता है

गुणांक u1, u2, …, un निर्धारित किया जाता है जिससे कि सन्निकटन में त्रुटि प्रत्येक आधार फलन φi के लिए ऑर्थोगोनल हो :

संदृढ़ता आव्युह n-तत्व वर्ग आव्युह A द्वारा परिभाषित है

सदिश F घटकों के साथ परिभाषित करके गुणांक ui रेखीय प्रणाली Au = F द्वारा निर्धारित किए जाते हैं। संदृढ़ता आव्युह सममित आव्युह है, अर्थात। Aij = Aji, इसलिए इसके सभी स्वदेशी मूल्य ​​​​वास्तविक हैं। इसके अतिरिक्त, यह सख्ती से धनात्मक-निश्चित आव्युह है, जिससे कि प्रणाली Au = F के पास सदैव एक अद्वितीय समाधान होता है। (अन्य समस्याओं के लिए, यह अच्छी संपत्तियाँ खो जाएँगी।)

ध्यान दें कि संदृढ़ता आव्युह डोमेन के लिए उपयोग किए गए कम्प्यूटेशनल ग्रिड और किस प्रकार के परिमित तत्व का उपयोग किया जाता है, इसके आधार पर भिन्न होगा। उदाहरण के लिए, जब टुकड़ेवार द्विघात परिमित तत्वों का उपयोग किया जाता है तब संदृढ़ता आव्युह में टुकड़ेवार रैखिक तत्वों की तुलना में स्वतंत्रता की अधिक डिग्री होगी।

अन्य समस्याओं के लिए संदृढ़ता आव्युह

अन्य पीडीई के लिए संदृढ़ता आव्युह का निर्धारण अनिवार्य रूप से ही प्रक्रिया का पालन करता है, किन्तु यह सीमा स्थितियों की पसंद से समष्टि हो सकता है। अधिक समष्टि उदाहरण के रूप में, अण्डाकार समीकरण पर विचार करें

कहाँ x डोमेन में प्रत्येक बिंदु के लिए परिभाषित धनात्मक-निश्चित आव्युह है हम रॉबिन सीमा शर्त क्रियान्वित करते हैं

कहाँ νk k-वीं दिशा में इकाई जावक सामान्य सदिश ν का घटक है हल करने की प्रणाली है

जैसा कि ग्रीन की पहचान के एनालॉग का उपयोग करके दिखाया जा सकता है। गुणांक ui अभी भी रैखिक समीकरणों की प्रणाली को हल करके पाए जाते हैं, किन्तु प्रणाली का प्रतिनिधित्व करने वाला आव्युह सामान्य पॉइसन समस्या से स्पष्ट रूप से भिन्न है।

सामान्यतः, क्रम 2k के प्रत्येक अदिश अण्डाकार ऑपरेटर L के लिए, सोबोलेव स्पेस Hk पर एक द्विरेखीय रूप B जुड़ा होता है, ताकि समीकरण Lu = f का अशक्त सूत्रीकरण हो।

सभी कार्यों के लिए v में Hk. फिर इस समस्या के लिए संदृढ़ता आव्युह है

संदृढ़ता आव्युह की व्यावहारिक असेंबली

कंप्यूटर पर परिमित तत्व विधि को क्रियान्वित करने के लिए, किसी को पहले आधार कार्यों का समूह चुनना होगा और फिर संदृढ़ता आव्युह को परिभाषित करने वाले इंटीग्रल्स की गणना करनी होगी। सामान्यतः, डोमेन Ω को जाल निर्माण के कुछ रूपों द्वारा विभेदित किया जाता है, जिसमें इसे गैर-अतिव्यापी त्रिभुज जाल या जाल के प्रकारों में विभाजित किया जाता है, जिन्हें सामान्यतः तत्वों के रूप में जाना जाता है। फिर आधार कार्यों को प्रत्येक तत्व के अंदर कुछ क्रम के बहुपद और तत्व सीमाओं के पार निरंतर चुना जाता है। सबसे सरल विकल्प त्रिकोणीय तत्वों के लिए टुकड़ावार रैखिक फलन और आयताकार तत्वों के लिए टुकड़ावार द्विरेखीय हैं।

तत्व Tk के लिए तत्व संदृढ़ता आव्युह A[k]आव्युह है

i और j, अधिकांश मानों के लिए तत्व संदृढ़ता आव्युह शून्य है जिसके लिए संबंधित आधार फलन Tk के भीतर शून्य हैं पूर्ण संदृढ़ता आव्युह A तत्व संदृढ़ता आव्युह का योग है। विशेष रूप से, उन आधार कार्यों के लिए जो केवल स्थानीय रूप से समर्थित हैं, संदृढ़ता आव्युह विरल है।

आधार कार्यों के अनेक मानक विकल्पों के लिए, अर्थात त्रिकोणों पर टुकड़े-टुकड़े रैखिक आधार कार्यों के लिए, तत्व संदृढ़ता आव्युह के लिए सरल सूत्र हैं। उदाहरण के लिए, टुकड़ों में रैखिक तत्वों के लिए, शीर्षों (x1, y1), (x2, y2), (x3, y3) वाले त्रिभुज पर विचार करें और 2×3 आव्युह को परिभाषित करें

फिर तत्व संदृढ़ता आव्युह है

जब अंतर समीकरण अधिक समष्टि होता है, मान लीजिए कि अमानवीय प्रसार गुणांक होता है, तब तत्व संदृढ़ता आव्युह को परिभाषित करने वाले अभिन्न अंग का मूल्यांकन गॉसियन चतुर्भुज द्वारा किया जा सकता है।

संदृढ़ता आव्युह की स्थिति संख्या संख्यात्मक ग्रिड की गुणवत्ता पर दृढ़ता से निर्भर करती है। विशेष रूप से, परिमित तत्व जाल में छोटे कोण वाले त्रिकोण संदृढ़ता आव्युह के बड़े आइगेनवैल्यू ​​​​को प्रेरित करते हैं, जिससे समाधान की गुणवत्ता खराब हो जाती है।

संदर्भ

  • Ern, ए.; गुरमोंड, जे.-एल. (2004), परिमित तत्वों का सिद्धांत और अभ्यास, न्यूयॉर्क, एनवाई: स्प्रिंगर-वेरलाग, ISBN 0387205748
  • गोकेनबैक, एम.एस. (2006), परिमित तत्व विधि को समझना और लागू करना, फिलाडेल्फिया, पीए: एस.आई.ए.एम, ISBN 0898716144
  • ग्रॉसमैन, सी.; रूस, एच.-जी.; स्टाइन्स, एम. (2007), आंशिक विभेदक समीकरणों का संख्यात्मक उपचार, बर्लिन, जर्मनी: स्प्रिंगर-वेरलाग, ISBN 978-3-540-71584-9
  • जॉनसन, सी. (2009), परिमित तत्व विधि द्वारा आंशिक विभेदक समीकरणों का संख्यात्मक समाधान, डोवर, ISBN 978-0486469003
  • ज़िएनकिविज़, ओ.सी.; टेलर, आर.एल.; Zhu, जे.जेड. (2005), परिमित तत्व विधि: इसका आधार और बुनियादी बातें (6th ed.), ऑक्सफोर्ड, यूके: एल्सेवियर बटरवर्थ-हेनमैन, ISBN 978-0750663205