स्केल्ड व्युत्क्रम ची-वर्ग वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 23: Line 23:
   char      =<math>\frac{2}{\Gamma(\frac{\nu}{2})}\left(\frac{-i\tau^2\nu t}{2}\right)^{\!\!\frac{\nu}{4}}\!\!K_{\frac{\nu}{2}}\left(\sqrt{-2i\tau^2\nu t}\right)</math>|
   char      =<math>\frac{2}{\Gamma(\frac{\nu}{2})}\left(\frac{-i\tau^2\nu t}{2}\right)^{\!\!\frac{\nu}{4}}\!\!K_{\frac{\nu}{2}}\left(\sqrt{-2i\tau^2\nu t}\right)</math>|
}}
}}
'''स्केल्ड व्युत्क्रम ची-वर्ग वितरण''' ''x'' = 1/''s<sup>2</sup>'' के लिए वितरण है, जहां s''<sup>2</sup>'', v स्वतंत्र [[सामान्य वितरण]] यादृच्छिक चर के वर्गों का प्रतिरूप माध्य है जिसका माध्य 0 एवं व्युत्क्रम विचरण 1/σ<sup>2</sup> = τ<sup>2</sup> है। इसलिए वितरण दो मात्राओं ν एवं τ<sup>2</sup> द्वारा परिचालित है, जिसे क्रमशः स्वतंत्रता की ची-वर्ग डिग्री की संख्या एवं स्केलिंग पैरामीटर के रूप में जाना जाता है।
'''स्केल्ड व्युत्क्रम ची-वर्ग वितरण''' ''x'' = 1/''s<sup>2</sup>'' के लिए वितरण है, जहां s''<sup>2</sup>'', v स्वतंत्र [[सामान्य वितरण]] यादृच्छिक चर के वर्गों का प्रतिरूप माध्य है जिसका माध्य 0 एवं व्युत्क्रम विचरण 1/σ<sup>2</sup> = τ<sup>2</sup> है। इसलिए वितरण दो मात्राओं ν एवं τ<sup>2</sup> द्वारा परिचालित है, जिसे क्रमशः स्वतंत्रता की ची-वर्ग डिग्री की संख्या एवं स्केलिंग पैरामीटर के रूप में जाना जाता है।


स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का यह परिवार दो अन्य वितरण परिवारों [[व्युत्क्रम-ची-वर्ग वितरण]] एवं [[व्युत्क्रम-गामा वितरण]] से निकटता से संबंधित है। व्युत्क्रम ची-वर्ग वितरण की अपेक्षा में, स्केल किए गए वितरण में अतिरिक्त पैरामीटर τ<sup>2</sup> होता है, जो वितरण को क्षैतिज एवं लंबवत रूप से मापता है, जो मूल अंतर्निहित प्रक्रिया के व्युत्क्रम-विचरण का प्रतिनिधित्व करता है। साथ ही, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण को उनके योग के व्युत्क्रम के अतिरिक्त ν वर्ग विचलन के माध्य के व्युत्क्रम के वितरण के रूप में प्रस्तुत किया जाता है। इस प्रकार दोनों वितरणों में यह संबंध है कि यदि
स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का यह परिवार दो अन्य वितरण परिवारों [[व्युत्क्रम-ची-वर्ग वितरण]] एवं [[व्युत्क्रम-गामा वितरण]] से निकटता से संबंधित है। व्युत्क्रम ची-वर्ग वितरण की अपेक्षा में, स्केल किए गए वितरण में अतिरिक्त पैरामीटर τ<sup>2</sup> होता है, जो वितरण को क्षैतिज एवं लंबवत रूप से मापता है, जो मूल अंतर्निहित प्रक्रिया के व्युत्क्रम-विचरण का प्रतिनिधित्व करता है। साथ ही, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण को उनके योग के व्युत्क्रम के अतिरिक्त ν वर्ग विचलन के माध्य के व्युत्क्रम के वितरण के रूप में प्रस्तुत किया जाता है। इस प्रकार दोनों वितरणों में यह संबंध है कि यदि;
:<math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> \frac{X}{\tau^2 \nu} \sim \mbox{inv-}\chi^2(\nu)</math> होता है।
:<math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> \frac{X}{\tau^2 \nu} \sim \mbox{inv-}\chi^2(\nu)</math> होता है।
व्युत्क्रम गामा वितरण की अपेक्षा में, स्केल्ड व्युत्क्रम ची-वर्ग वितरण समान डेटा वितरण का वर्णन करता है, परन्तु भिन्न [[सांख्यिकीय पैरामीटर]] का उपयोग करता है, जो कुछ परिस्थितियों में अधिक सुविधाजनक हो सकता है। विशेष रूप से, यदि
व्युत्क्रम गामा वितरण की अपेक्षा में, स्केल्ड व्युत्क्रम ची-वर्ग वितरण समान डेटा वितरण का वर्णन करता है, परन्तु भिन्न [[सांख्यिकीय पैरामीटर]] का उपयोग करता है, जो कुछ परिस्थितियों में अधिक सुविधाजनक हो सकता है। विशेष रूप से, यदि;
:<math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math>X \sim \textrm{Inv-Gamma}\left(\frac{\nu}{2}, \frac{\nu\tau^2}{2}\right)</math> होता है।
:<math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math>X \sim \textrm{Inv-Gamma}\left(\frac{\nu}{2}, \frac{\nu\tau^2}{2}\right)</math> होता है।
किसी भी रूप का उपयोग निश्चित प्रथम व्युत्क्रम [[क्षण (गणित)]] के लिए [[अधिकतम एन्ट्रापी संभाव्यता वितरण]], वितरण का प्रतिनिधित्व करने के लिए किया जा सकता है। <math>(E(1/X))</math> एवं प्रथम लघुगणक क्षण <math>(E(\ln(X))</math> है।
किसी भी रूप का उपयोग निश्चित प्रथम व्युत्क्रम [[क्षण (गणित)]] के लिए [[अधिकतम एन्ट्रापी संभाव्यता वितरण]], वितरण का प्रतिनिधित्व करने के लिए किया जा सकता है। <math>(E(1/X))</math> एवं प्रथम लघुगणक क्षण <math>(E(\ln(X))</math> है।


स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का बायेसियन सांख्यिकी में भी विशेष उपयोग होता है, जो x = 1/s<sup>2</sup> के लिए पूर्वानुमानित वितरण के रूप में इसके उपयोग से कुछ सीमा तक असंबंधित है। विशेष रूप से, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का उपयोग सामान्य वितरण के विचरण पैरामीटर के लिए संयुग्म पूर्व के रूप में किया जा सकता है। इस संदर्भ में स्केलिंग पैरामीटर को τ<sup>2</sup> के अतिरिक्त σ<sub>0</sub><sup>2</sup> द्वारा प्रदर्शित किया गया है, एवं इसकी भिन्न व्याख्या है। इसके अतिरिक्त एप्लिकेशन को सामान्यतः व्युत्क्रम-गामा वितरण फॉर्मूलेशन का उपयोग करके प्रस्तुत किया गया है; चूँकि, कुछ लेखक, विशेष रूप से गेलमैन एट अल (1995/2004) का अनुसरण कर रहे हैं जिसका तर्क है कि व्युत्क्रम ची-स्क्वेर्ड पैरामीट्रिज़ेशन अधिक सहज है।
स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का बायेसियन सांख्यिकी में भी विशेष उपयोग होता है, जो x = 1/s<sup>2</sup> के लिए पूर्वानुमानित वितरण के रूप में इसके उपयोग से कुछ सीमा तक असंबंधित है। विशेष रूप से, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का उपयोग सामान्य वितरण के विचरण पैरामीटर के लिए संयुग्म पूर्व के रूप में किया जा सकता है। इस संदर्भ में स्केलिंग पैरामीटर को τ<sup>2</sup> के अतिरिक्त σ<sub>0</sub><sup>2</sup> द्वारा प्रदर्शित किया गया है, एवं इसकी भिन्न व्याख्या है। इसके अतिरिक्त एप्लिकेशन को सामान्यतः व्युत्क्रम-गामा वितरण फॉर्मूलेशन का उपयोग करके प्रस्तुत किया गया है; चूँकि, कुछ लेखक, विशेष रूप से गेलमैन एट अल (1995/2004) का अनुसरण कर रहे हैं जिसका तर्क है कि व्युत्क्रम ची-स्क्वेर्ड पैरामीट्रिज़ेशन अधिक सहज है।


==विशेषता==
==विशेषता==
स्केल किए गए व्युत्क्रम ची-वर्ग वितरण की संभाव्यता घनत्व फलन डोमेन <math>x>0</math> पर विस्तृत है एवं  
स्केल किए गए व्युत्क्रम ची-वर्ग वितरण की संभाव्यता घनत्व फलन डोमेन <math>x>0</math> पर विस्तृत है एवं  


:<math>  
:<math>  
Line 47: Line 47:
\left/\Gamma\left(\frac{\nu}{2}\right)\right.</math>
\left/\Gamma\left(\frac{\nu}{2}\right)\right.</math>
:<math>=Q\left(\frac{\nu}{2},\frac{\tau^2\nu}{2x}\right)</math> है,
:<math>=Q\left(\frac{\nu}{2},\frac{\tau^2\nu}{2x}\right)</math> है,
जहाँ <math>\Gamma(a,x)</math> अधूरा गामा फलन है, <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] है एवं <math>Q(a,x)</math> [[नियमित गामा फ़ंक्शन|नियमित गामा फलन]] है। विशेषता फलन (संभावना सिद्धांत) है
जहाँ <math>\Gamma(a,x)</math> अधूरा गामा फलन है, <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] है एवं <math>Q(a,x)</math> [[नियमित गामा फ़ंक्शन|नियमित गामा फलन]] है। विशेषता फलन है:


:<math>\varphi(t;\nu,\tau^2)=</math>
:<math>\varphi(t;\nu,\tau^2)=</math>
Line 63: Line 63:


:<math>\frac{\nu}{2} = \frac{\bar{x}}{\bar{x} - \tau^2}</math> है।
:<math>\frac{\nu}{2} = \frac{\bar{x}}{\bar{x} - \tau^2}</math> है।
==सामान्य वितरण के विचरण का बायेसियन अनुमान==
==सामान्य वितरण के विचरण का बायेसियन अनुमान==


सामान्य वितरण के विचरण के बायेसियन अनुमान में स्केल्ड व्युत्क्रम ची-वर्ग वितरण का दूसरा महत्वपूर्ण अनुप्रयोग है।
सामान्य वितरण के विचरण के बायेसियन अनुमान में स्केल्ड व्युत्क्रम ची-वर्ग वितरण का दूसरा महत्वपूर्ण अनुप्रयोग है।


बेयस प्रमेय के अनुसार, ब्याज की मात्राओं के लिए [[पश्च संभाव्यता वितरण]], मात्राओं एवं संभावना फलन के लिए [[पूर्व वितरण]] के उत्पाद के समानुपाती होता है:
बेयस प्रमेय के अनुसार, ब्याज की मात्राओं के लिए [[पश्च संभाव्यता वितरण]], मात्राओं एवं संभावना फलन के लिए [[पूर्व वितरण]] के उत्पाद के समानुपाती होता है:
:<math>p(\sigma^2|D,I) \propto p(\sigma^2|I) \; p(D|\sigma^2)</math> जहां D डेटा का प्रतिनिधित्व करता है एवं I, σ<sup>2</sup> के विषय में किसी प्रारंभिक जानकारी का प्रतिनिधित्व करता है, जो हमारे पास पूर्व से ही हो सकता है।
:<math>p(\sigma^2|D,I) \propto p(\sigma^2|I) \; p(D|\sigma^2)</math> जहां D डेटा का प्रतिनिधित्व करता है एवं I, σ<sup>2</sup> के विषय में किसी प्रारंभिक जानकारी का प्रतिनिधित्व करता है, जो हमारे पास पूर्व से ही हो सकता है।


सबसे सरल परिदृश्य तब उत्पन्न होता है जब माध्य μ पनिवारणे से ही ज्ञात हो; या, वैकल्पिक रूप से, यदि यह σ<sup>2</sup> की सशर्त संभावना है, जो कि μ के  विशेष कल्पित मान के लिए लिया गया है।
सबसे सरल परिदृश्य तब उत्पन्न होता है जब माध्य μ पूर्व से ही ज्ञात हो; या, वैकल्पिक रूप से, यदि यह σ<sup>2</sup> की सशर्त संभावना है, जो कि μ के  विशेष कल्पित मान के लिए लिया गया है।


तब संभाव्यता पद L(σ)<sup>2</sup>|D) = p(D|p<sup>2</sup>) का परिचित रूप  
तब संभाव्यता पद L(σ)<sup>2</sup>|D) = p(D|p<sup>2</sup>) का परिचित रूप  
:<math>\mathcal{L}(\sigma^2|D,\mu) = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^n} \; \exp \left[ -\frac{\sum_i^n(x_i-\mu)^2}{2\sigma^2} \right]</math> है।
:<math>\mathcal{L}(\sigma^2|D,\mu) = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^n} \; \exp \left[ -\frac{\sum_i^n(x_i-\mu)^2}{2\sigma^2} \right]</math> है।
इसे पुनर्स्केलिंग-अपरिवर्तनीय पूर्व p(σ)<sup>2</sup>|I) = 1/s<sup>2</sup> के साथ संयोजित करना, जिसके विषय में तर्क दिया जा सकता है (उदाहरण के लिए मानक विचलन पैरामीटर के साथ जेफरीज़ का अनुसरण करते हुए) कि यह समस्या में σ<sup>2</sup> के लिए पूर्व संभव सबसे कम जानकारीपूर्ण है, संयुक्त पश्चवर्ती संभावना देता है
इसे पुनर्स्केलिंग-अपरिवर्तनीय पूर्व p(σ)<sup>2</sup>|I) = 1/s<sup>2</sup> के साथ संयोजित करना, जिसके विषय में तर्क दिया जा सकता है (उदाहरण के लिए मानक विचलन पैरामीटर के साथ जेफरीज़ का अनुसरण करते हुए) कि यह समस्या में σ<sup>2</sup> के लिए पूर्व संभव सबसे कम सूचनापूर्ण है, संयुक्त पश्चवर्ती संभावना देता है:
:<math>p(\sigma^2|D, I, \mu) \propto \frac{1}{\sigma^{n+2}} \; \exp \left[ -\frac{\sum_i^n(x_i-\mu)^2}{2\sigma^2} \right]</math>,
:<math>p(\sigma^2|D, I, \mu) \propto \frac{1}{\sigma^{n+2}} \; \exp \left[ -\frac{\sum_i^n(x_i-\mu)^2}{2\sigma^2} \right]</math>,
इस फॉर्म को स्केल किए गए व्युत्क्रम ची-वर्ग वितरण के रूप में पैरामीटर ν = n एवं  के साथ τ<sup>2</sup> = ''s''<sup>2</sup> = (1/''n'') Σ (x<sub>i</sub>-μ)<sup>2</sup> के साथ पहचाना जा सकता है।
इस फॉर्म को स्केल किए गए व्युत्क्रम ची-वर्ग वितरण के रूप में पैरामीटर ν = n एवं  के साथ τ<sup>2</sup> = ''s''<sup>2</sup> = (1/''n'') Σ (x<sub>i</sub>-μ)<sup>2</sup> के साथ पहचाना जा सकता है।


गेलमैन एट अल की टिप्पणी है कि इस वितरण की पुन: उपस्थिति, जिसे पनिवारणे प्रतिरूप संदर्भ में देखा गया था, उल्लेखनीय लग सकता है; परन्तु पनिवारणे के विकल्प को देखते हुए परिणाम आश्चर्यजनक नहीं है।<ref>Gelman ''et al'' (1995), ''Bayesian Data Analysis'' (1st ed), p.68</ref>विशेष रूप से, σ<sup>2</sup> के लिए पनिवारणे पुनर्स्केलिंग-अपरिवर्तनीय का विकल्प का परिणाम यह है कि σ <sup>2</sup>/s<sup>2</sup> के अनुपात की संभावना रूप कंडीशनिंग चर से स्वतंत्र) समान होता है जब s<sup>2</sup> पर वातानुकूलित किया जाता है, जैसे कि जब σ<sup>2</sup> पर वातानुकूलित किया जाता है:
गेलमैन एट अल की टिप्पणी है कि इस वितरण की पुन: उपस्थिति, जिसे पनिवारणे प्रतिरूप संदर्भ में देखा गया था, उल्लेखनीय लग सकता है; परन्तु पनिवारणे के विकल्प को देखते हुए परिणाम आश्चर्यजनक नहीं है।<ref>Gelman ''et al'' (1995), ''Bayesian Data Analysis'' (1st ed), p.68</ref> विशेष रूप से, σ<sup>2</sup> के लिए पनिवारणे पुनर्स्केलिंग-अपरिवर्तनीय का विकल्प का परिणाम यह है कि σ <sup>2</sup>/s<sup>2</sup> के अनुपात की संभावना रूप कंडीशनिंग चर से स्वतंत्र) समान होता है जब s<sup>2</sup> पर अनुकूलित किया जाता है, जैसे कि जब σ<sup>2</sup> पर अनुकूलित किया जाता है:


:<math>p(\tfrac{\sigma^2}{s^2}|s^2) = p(\tfrac{\sigma^2}{s^2}|\sigma^2)</math>,
:<math>p(\tfrac{\sigma^2}{s^2}|s^2) = p(\tfrac{\sigma^2}{s^2}|\sigma^2)</math>,
प्रतिरूप-सिद्धांत विषय में, σ<sup>2</sup> पर वातानुकूलित, (1/s<sup>2</sup>) के लिए संभाव्यता वितरण) स्केल्ड व्युत्क्रम ची-वर्ग वितरण है; एवं इसलिए s<sup>2</sup> पर वातानुकूलित σ<sup>2</sup> के लिए संभाव्यता वितरण, स्केल-अज्ञेयवादी पूर्व दिया गया स्केल्ड व्युत्क्रम ची-वर्ग वितरण भी है।
प्रतिरूप-सिद्धांत विषय में, σ<sup>2</sup> पर अनुकूलित, (1/s<sup>2</sup>) के लिए संभाव्यता वितरण) स्केल्ड व्युत्क्रम ची-वर्ग वितरण है; एवं इसलिए s<sup>2</sup> पर अनुकूलित σ<sup>2</sup> के लिए संभाव्यता वितरण, स्केल-अज्ञेयवादी पूर्व दिया गया स्केल्ड व्युत्क्रम ची-वर्ग वितरण भी है।


=== पूर्व सूचनात्मक के रूप में उपयोग करें ===
=== पूर्व सूचनात्मक के रूप में उपयोग करें ===
यदि σ<sup>2</sup> के संभावित मूल्यों के विषय में अधिक जानकारी है, स्केल्ड व्युत्क्रम ची-स्क्वायर परिवार से वितरण, जैसे स्केल-इनव-χ<sup>2</sup>(''n''<sub>0</sub>, ''s''<sub>0</sub><sup>2</sup>),  σ<sup>2</sup> के लिए अधिक जानकारीपूर्ण पूर्व का प्रतिनिधित्व करने के लिए सुविधाजनक रूप हो सकता है,  n<sub>0</sub> के परिणाम से पूर्व अवलोकन के परिणाम से (चूँकि n<sub>0</sub> आवश्यक नहीं कि पूर्ण संख्या हो):
यदि σ<sup>2</sup> के संभावित मूल्यों के विषय में अधिक सूचना है, स्केल्ड व्युत्क्रम ची-स्क्वायर परिवार से वितरण, जैसे स्केल-इनव-χ<sup>2</sup>(''n''<sub>0</sub>, ''s''<sub>0</sub><sup>2</sup>),  σ<sup>2</sup> के लिए अधिक सूचनापूर्ण पूर्व का प्रतिनिधित्व करने के लिए सुविधाजनक रूप हो सकता है,  n<sub>0</sub> के परिणाम से पूर्व अवलोकन के परिणाम से (चूँकि n<sub>0</sub> आवश्यक नहीं कि पूर्ण संख्या हो):
:<math>p(\sigma^2|I^\prime, \mu) \propto \frac{1}{\sigma^{n_0+2}} \; \exp \left[ -\frac{n_0 s_0^2}{2\sigma^2} \right]</math>,
:<math>p(\sigma^2|I^\prime, \mu) \propto \frac{1}{\sigma^{n_0+2}} \; \exp \left[ -\frac{n_0 s_0^2}{2\sigma^2} \right]</math>,
इस प्रकार के पूर्व से पश्चवर्ती वितरण को बढ़ावा मिलता है,
इस प्रकार के पूर्व से पश्चवर्ती वितरण को बढ़ावा मिलता है,
Line 111: Line 109:
==संबंधित वितरण==
==संबंधित वितरण==
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> k X \sim \mbox{Scale-inv-}\chi^2(\nu, k \tau^2)\, </math>होता है।
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> k X \sim \mbox{Scale-inv-}\chi^2(\nu, k \tau^2)\, </math>होता है।
* यदि <math>X \sim \mbox{inv-}\chi^2(\nu) \, </math> (उलटा-ची-वर्ग वितरण) तो <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, 1/\nu) \,</math>होता है।
* यदि <math>X \sim \mbox{inv-}\chi^2(\nu) \, </math> (विपरीत-ची-वर्ग वितरण) तो <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, 1/\nu) \,</math>होता है।
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> \frac{X}{\tau^2 \nu} \sim \mbox{inv-}\chi^2(\nu) \, </math> (व्युत्क्रम-ची-वर्ग वितरण) होता है।
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math> \frac{X}{\tau^2 \nu} \sim \mbox{inv-}\chi^2(\nu) \, </math> (व्युत्क्रम-ची-वर्ग वितरण) होता है।
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math>X \sim \textrm{Inv-Gamma}\left(\frac{\nu}{2}, \frac{\nu\tau^2}{2}\right)</math> (उलटा-गामा वितरण) होता है।
* यदि <math>X \sim \mbox{Scale-inv-}\chi^2(\nu, \tau^2)</math> तब <math>X \sim \textrm{Inv-Gamma}\left(\frac{\nu}{2}, \frac{\nu\tau^2}{2}\right)</math> (विपरीत-गामा वितरण) होता है।
* स्केल्ड व्युत्क्रम ची वर्ग वितरण प्रकार 5 [[पियर्सन वितरण]] का विशेष विषय है।
* स्केल्ड व्युत्क्रम ची वर्ग वितरण प्रकार 5 [[पियर्सन वितरण]] का विशेष विषय है।



Revision as of 15:58, 13 July 2023

Scaled inverse chi-squared
Probability density function
Scaled inverse chi squared.svg
Cumulative distribution function
Scaled inverse chi squared cdf.svg
Parameters
Support
PDF
CDF
Mean for
Mode
Variance for
Skewness for
Ex. kurtosis for
Entropy

MGF
CF

स्केल्ड व्युत्क्रम ची-वर्ग वितरण x = 1/s2 के लिए वितरण है, जहां s2, v स्वतंत्र सामान्य वितरण यादृच्छिक चर के वर्गों का प्रतिरूप माध्य है जिसका माध्य 0 एवं व्युत्क्रम विचरण 1/σ2 = τ2 है। इसलिए वितरण दो मात्राओं ν एवं τ2 द्वारा परिचालित है, जिसे क्रमशः स्वतंत्रता की ची-वर्ग डिग्री की संख्या एवं स्केलिंग पैरामीटर के रूप में जाना जाता है।

स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का यह परिवार दो अन्य वितरण परिवारों व्युत्क्रम-ची-वर्ग वितरण एवं व्युत्क्रम-गामा वितरण से निकटता से संबंधित है। व्युत्क्रम ची-वर्ग वितरण की अपेक्षा में, स्केल किए गए वितरण में अतिरिक्त पैरामीटर τ2 होता है, जो वितरण को क्षैतिज एवं लंबवत रूप से मापता है, जो मूल अंतर्निहित प्रक्रिया के व्युत्क्रम-विचरण का प्रतिनिधित्व करता है। साथ ही, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण को उनके योग के व्युत्क्रम के अतिरिक्त ν वर्ग विचलन के माध्य के व्युत्क्रम के वितरण के रूप में प्रस्तुत किया जाता है। इस प्रकार दोनों वितरणों में यह संबंध है कि यदि;

तब होता है।

व्युत्क्रम गामा वितरण की अपेक्षा में, स्केल्ड व्युत्क्रम ची-वर्ग वितरण समान डेटा वितरण का वर्णन करता है, परन्तु भिन्न सांख्यिकीय पैरामीटर का उपयोग करता है, जो कुछ परिस्थितियों में अधिक सुविधाजनक हो सकता है। विशेष रूप से, यदि;

तब होता है।

किसी भी रूप का उपयोग निश्चित प्रथम व्युत्क्रम क्षण (गणित) के लिए अधिकतम एन्ट्रापी संभाव्यता वितरण, वितरण का प्रतिनिधित्व करने के लिए किया जा सकता है। एवं प्रथम लघुगणक क्षण है।

स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का बायेसियन सांख्यिकी में भी विशेष उपयोग होता है, जो x = 1/s2 के लिए पूर्वानुमानित वितरण के रूप में इसके उपयोग से कुछ सीमा तक असंबंधित है। विशेष रूप से, स्केल किए गए व्युत्क्रम ची-वर्ग वितरण का उपयोग सामान्य वितरण के विचरण पैरामीटर के लिए संयुग्म पूर्व के रूप में किया जा सकता है। इस संदर्भ में स्केलिंग पैरामीटर को τ2 के अतिरिक्त σ02 द्वारा प्रदर्शित किया गया है, एवं इसकी भिन्न व्याख्या है। इसके अतिरिक्त एप्लिकेशन को सामान्यतः व्युत्क्रम-गामा वितरण फॉर्मूलेशन का उपयोग करके प्रस्तुत किया गया है; चूँकि, कुछ लेखक, विशेष रूप से गेलमैन एट अल (1995/2004) का अनुसरण कर रहे हैं जिसका तर्क है कि व्युत्क्रम ची-स्क्वेर्ड पैरामीट्रिज़ेशन अधिक सहज है।

विशेषता

स्केल किए गए व्युत्क्रम ची-वर्ग वितरण की संभाव्यता घनत्व फलन डोमेन पर विस्तृत है एवं

है,

जहाँ स्वतंत्रता की डिग्री (सांख्यिकी) पैरामीटर है एवं स्केल पैरामीटर है, संचयी वितरण फलन

है,

जहाँ अधूरा गामा फलन है, गामा फलन है एवं नियमित गामा फलन है। विशेषता फलन है:

जहाँ दूसरे प्रकार का संशोधित बेसेल फलन है।

पैरामीटर अनुमान

की अधिकतम संभावना अनुमान

है,

की अधिकतम संभावना अनुमान न्यूटन की विधि का उपयोग करके पाया जा सकता है:

जहाँ डिगामा फलन है। माध्य का सूत्र लेकर एवं इसका निवारण करके प्रारंभिक अनुमान प्राप्त किया जा सकता है। प्रतिरूप माध्य हो, फिर प्रारंभिक अनुमान द्वारा दिया गया है:

है।

सामान्य वितरण के विचरण का बायेसियन अनुमान

सामान्य वितरण के विचरण के बायेसियन अनुमान में स्केल्ड व्युत्क्रम ची-वर्ग वितरण का दूसरा महत्वपूर्ण अनुप्रयोग है।

बेयस प्रमेय के अनुसार, ब्याज की मात्राओं के लिए पश्च संभाव्यता वितरण, मात्राओं एवं संभावना फलन के लिए पूर्व वितरण के उत्पाद के समानुपाती होता है:

जहां D डेटा का प्रतिनिधित्व करता है एवं I, σ2 के विषय में किसी प्रारंभिक जानकारी का प्रतिनिधित्व करता है, जो हमारे पास पूर्व से ही हो सकता है।

सबसे सरल परिदृश्य तब उत्पन्न होता है जब माध्य μ पूर्व से ही ज्ञात हो; या, वैकल्पिक रूप से, यदि यह σ2 की सशर्त संभावना है, जो कि μ के विशेष कल्पित मान के लिए लिया गया है।

तब संभाव्यता पद L(σ)2|D) = p(D|p2) का परिचित रूप

है।

इसे पुनर्स्केलिंग-अपरिवर्तनीय पूर्व p(σ)2|I) = 1/s2 के साथ संयोजित करना, जिसके विषय में तर्क दिया जा सकता है (उदाहरण के लिए मानक विचलन पैरामीटर के साथ जेफरीज़ का अनुसरण करते हुए) कि यह समस्या में σ2 के लिए पूर्व संभव सबसे कम सूचनापूर्ण है, संयुक्त पश्चवर्ती संभावना देता है:

,

इस फॉर्म को स्केल किए गए व्युत्क्रम ची-वर्ग वितरण के रूप में पैरामीटर ν = n एवं के साथ τ2 = s2 = (1/n) Σ (xi-μ)2 के साथ पहचाना जा सकता है।

गेलमैन एट अल की टिप्पणी है कि इस वितरण की पुन: उपस्थिति, जिसे पनिवारणे प्रतिरूप संदर्भ में देखा गया था, उल्लेखनीय लग सकता है; परन्तु पनिवारणे के विकल्प को देखते हुए परिणाम आश्चर्यजनक नहीं है।[1] विशेष रूप से, σ2 के लिए पनिवारणे पुनर्स्केलिंग-अपरिवर्तनीय का विकल्प का परिणाम यह है कि σ 2/s2 के अनुपात की संभावना रूप कंडीशनिंग चर से स्वतंत्र) समान होता है जब s2 पर अनुकूलित किया जाता है, जैसे कि जब σ2 पर अनुकूलित किया जाता है:

,

प्रतिरूप-सिद्धांत विषय में, σ2 पर अनुकूलित, (1/s2) के लिए संभाव्यता वितरण) स्केल्ड व्युत्क्रम ची-वर्ग वितरण है; एवं इसलिए s2 पर अनुकूलित σ2 के लिए संभाव्यता वितरण, स्केल-अज्ञेयवादी पूर्व दिया गया स्केल्ड व्युत्क्रम ची-वर्ग वितरण भी है।

पूर्व सूचनात्मक के रूप में उपयोग करें

यदि σ2 के संभावित मूल्यों के विषय में अधिक सूचना है, स्केल्ड व्युत्क्रम ची-स्क्वायर परिवार से वितरण, जैसे स्केल-इनव-χ2(n0, s02), σ2 के लिए अधिक सूचनापूर्ण पूर्व का प्रतिनिधित्व करने के लिए सुविधाजनक रूप हो सकता है, n0 के परिणाम से पूर्व अवलोकन के परिणाम से (चूँकि n0 आवश्यक नहीं कि पूर्ण संख्या हो):

,

इस प्रकार के पूर्व से पश्चवर्ती वितरण को बढ़ावा मिलता है,

,

जो स्वयं स्केल्ड व्युत्क्रम ची-वर्ग वितरण है। इस प्रकार स्केल किए गए व्युत्क्रम ची-वर्ग वितरण σ2 अनुमान के लिए सुविधाजनक संयुग्मित पूर्व परिवार हैं।

माध्य अज्ञात होने पर विचरण का अनुमान

यदि माध्य ज्ञात नहीं है, तो इसके लिए जो सबसे असूचनात्मक पूर्व लिया जा सकता है, वह संभवतः अनुवाद-अपरिवर्तनीय पूर्व p(μ|I) ∝ स्थिरांक है, जो μ एवं σ2 के लिए निम्नलिखित संयुक्त पश्च वितरण देता है,

σ2 के लिए सीमांत पश्च μ वितरण पर एकीकृत करके संयुक्त पश्च वितरण से प्राप्त किया जाता है,

यह पुनः एवं मापदंडों के साथ स्केल्ड व्युत्क्रम ची-वर्ग वितरण है।

संबंधित वितरण

  • यदि तब होता है।
  • यदि (विपरीत-ची-वर्ग वितरण) तो होता है।
  • यदि तब (व्युत्क्रम-ची-वर्ग वितरण) होता है।
  • यदि तब (विपरीत-गामा वितरण) होता है।
  • स्केल्ड व्युत्क्रम ची वर्ग वितरण प्रकार 5 पियर्सन वितरण का विशेष विषय है।

संदर्भ

  • Gelman A. et al (1995), Bayesian Data Analysis, pp 474–475; also pp 47, 480
  1. Gelman et al (1995), Bayesian Data Analysis (1st ed), p.68