हाइब्रिड स्वचालित दोहराव अनुरोध: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Hybrid error-detection and correction code in communications}}
{{Short description|Hybrid error-detection and correction code in communications}}


हाइब्रिड [[ स्वचालित दोहराव अनुरोध ]] (हाइब्रिड ARQ या HARQ) हाई-रेट [[ आगे त्रुटि सुधार ]] (FEC) और ऑटोमैटिक रिपीट रिक्वेस्ट (ARQ) त्रुटि-नियंत्रण का  संयोजन है। मानक एआरक्यू में, त्रुटि-पहचान कोड | त्रुटि-पहचान (ईडी) कोड जैसे चक्रीय अतिरेक जांच (सीआरसी) का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। दूषित संदेश का पता लगाने वाले रिसीवर प्रेषक से  नए संदेश का अनुरोध करेंगे। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो तुरंत संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर  गलत संदेश का पता लगाता है। ईडी कोड तब छोड़ा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि का पता लगाने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन त्रुटि सुधार|रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के  अपेक्षित उपसमूह को ठीक करने के लिए चुना जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू खराब सिग्नल स्थितियों में सामान्य एआरक्यू से बेहतर प्रदर्शन करता है, लेकिन अपने सरलतम रूप में यह अच्छी सिग्नल स्थितियों में काफी कम थ्रूपुट की कीमत पर आता है। सामान्यतः  सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू बेहतर होता है, और जिसके ऊपर बेसिक एआरक्यू बेहतर होता है।
हाइब्रिड [[ स्वचालित दोहराव अनुरोध ]] (हाइब्रिड एआरक्यू या एचएआरक्यू) हाई-रेट [[ आगे त्रुटि सुधार ]] (एफईसी) और ऑटोमैटिक रिपीट रिक्वेस्ट (एआरक्यू) त्रुटि-नियंत्रण का  संयोजन है। मानक एआरक्यू में, त्रुटि-पहचान कोड | त्रुटि-पहचान (ईडी) कोड जैसे चक्रीय अतिरेक जांच (सीआरसी) का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। दूषित संदेश का पता लगाने वाले रिसीवर प्रेषक से  नए संदेश का अनुरोध करेंगे। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो तुरंत संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर  गलत संदेश का पता लगाता है। ईडी कोड तब छोड़ा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि का पता लगाने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन त्रुटि सुधार|रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के  अपेक्षित उपसमूह को ठीक करने के लिए चुना जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू खराब सिग्नल स्थितियों में सामान्य एआरक्यू से बेहतर प्रदर्शन करता है, लेकिन अपने सरलतम रूप में यह अच्छी सिग्नल स्थितियों में काफी कम थ्रूपुट की कीमत पर आता है। सामान्यतः  सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू बेहतर होता है, और जिसके ऊपर बेसिक एआरक्यू बेहतर होता है।


==सरल हाइब्रिड ARQ==
==सरल हाइब्रिड एआरक्यू==


HARQ का सबसे सरल संस्करण, टाइप I HARQ, ट्रांसमिशन से पहले प्रत्येक संदेश में ED और FEC दोनों जानकारी जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर पहले त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता काफी अच्छी है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता खराब है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति का पता लगाएगा, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।<ref>Comroe/Costello 1984, p.&nbsp;474</ref>
एचएआरक्यू का सबसे सरल संस्करण, टाइप I एचएआरक्यू, ट्रांसमिशन से पहले प्रत्येक संदेश में ईडी और एफईसी दोनों जानकारी जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर पहले त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता काफी अच्छी है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता खराब है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति का पता लगाएगा, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।<ref>Comroe/Costello 1984, p.&nbsp;474</ref>
अधिक परिष्कृत रूप में, टाइप II HARQ, संदेश प्रवर्तक त्रुटि-पता लगाने वाले समता बिट्स और केवल FEC समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब पहला ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो FEC समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो लगातार ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।<ref>Comroe/Costello 1984, pp.&nbsp;474–5</ref>
अधिक परिष्कृत रूप में, टाइप II एचएआरक्यू, संदेश प्रवर्तक त्रुटि-पता लगाने वाले समता बिट्स और केवल एफईसी समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब पहला ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो एफईसी समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो लगातार ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।<ref>Comroe/Costello 1984, pp.&nbsp;474–5</ref>
टाइप I और टाइप II हाइब्रिड ARQ के मध्य अंतर को समझने के लिए, ED और FEC द्वारा जोड़ी गई जानकारी के आकार पर विचार करें: त्रुटि का पता लगाने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, FEC प्रायः  त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के खिलाफ विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत खर्च करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक खर्च करता है।
टाइप I और टाइप II हाइब्रिड एआरक्यू के मध्य अंतर को समझने के लिए, ईडी और एफईसी द्वारा जोड़ी गई जानकारी के आकार पर विचार करें: त्रुटि का पता लगाने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, एफईसी प्रायः  त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के खिलाफ विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत खर्च करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक खर्च करता है।


मानक एआरक्यू में त्रुटि का पता लगाने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होगा। टाइप II हाइब्रिड एआरक्यू में, पहले ट्रांसमिशन में केवल डेटा और त्रुटि का पता लगाना सम्मिलित है (मानक एआरक्यू से अलग नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में FEC समानताएं और त्रुटि का पता लगाना सम्मिलित होगा। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त जानकारी को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।
मानक एआरक्यू में त्रुटि का पता लगाने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होगा। टाइप II हाइब्रिड एआरक्यू में, पहले ट्रांसमिशन में केवल डेटा और त्रुटि का पता लगाना सम्मिलित है (मानक एआरक्यू से अलग नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में एफईसी समानताएं और त्रुटि का पता लगाना सम्मिलित होगा। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त जानकारी को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।


केवल टाइप I हाइब्रिड एआरक्यू को मजबूत सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार बाद के पुन: प्रसारण पर प्रसारित होते हैं। मजबूत सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी अच्छी क्षमता के साथ प्रदर्शन करता है। खराब सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी जितनी अच्छी संवेदनशीलता के साथ प्रदर्शन करता है।
केवल टाइप I हाइब्रिड एआरक्यू को मजबूत सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार बाद के पुन: प्रसारण पर प्रसारित होते हैं। मजबूत सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी अच्छी क्षमता के साथ प्रदर्शन करता है। खराब सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी जितनी अच्छी संवेदनशीलता के साथ प्रदर्शन करता है।
Line 15: Line 15:
==नरम संयोजन के साथ हाइब्रिड एआरक्यू==
==नरम संयोजन के साथ हाइब्रिड एआरक्यू==


व्यवहार में, गलत तरीके से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः  रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे नरम संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। हालांकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के बिना स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पहले से गलती से प्राप्त ट्रांसमिशन का संयोजन हमें सही ढंग से डिकोड करने के लिए पर्याप्त जानकारी देता है। HARQ में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:
व्यवहार में, गलत तरीके से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः  रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे नरम संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। हालांकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के बिना स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पहले से गलती से प्राप्त ट्रांसमिशन का संयोजन हमें सही ढंग से डिकोड करने के लिए पर्याप्त जानकारी देता है। एचएआरक्यू में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:


* चेज़ संयोजन: प्रत्येक पुन: प्रसारण में समान जानकारी (डेटा और समता बिट्स) होती है। रिसीवर पिछले ट्रांसमिशन से समान बिट्स के साथ प्राप्त बिट्स को संयोजित करने के लिए [[अधिकतम-अनुपात संयोजन]] | अधिकतम-अनुपात संयोजन का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त [[पुनरावृत्ति कोड]] के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
* चेज़ संयोजन: प्रत्येक पुन: प्रसारण में समान जानकारी (डेटा और समता बिट्स) होती है। रिसीवर पिछले ट्रांसमिशन से समान बिट्स के साथ प्राप्त बिट्स को संयोजित करने के लिए [[अधिकतम-अनुपात संयोजन]] | अधिकतम-अनुपात संयोजन का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त [[पुनरावृत्ति कोड]] के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
Line 22: Line 22:
दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेज़ संयोजन में मूल ट्रांसमिशन में बिट्स का केवल  सबसेट फिर से प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, [[व्यवस्थित कोड]] बिट्स को हमेशा सम्मिलित किया जाता है ताकि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल हो।
दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेज़ संयोजन में मूल ट्रांसमिशन में बिट्स का केवल  सबसेट फिर से प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, [[व्यवस्थित कोड]] बिट्स को हमेशा सम्मिलित किया जाता है ताकि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल हो।


वृद्धिशील अतिरेक HARQ का  उदाहरण HSDPA है: डेटा ब्लॉक को पहले  पंचर कोड 1/3 [[टर्बो कोड]] के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के दौरान कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल  अंश चुना जाता है) और भेजा जाता है। प्रत्येक (पुनः) ट्रांसमिशन के दौरान उपयोग किया जाने वाला पंचर पैटर्न अलग होता है, इसलिए हर समय अलग-अलग कोडित बिट्स भेजे जाते हैं। यद्यपि [[एचएसडीपीए]] मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, लेकिन यह दिखाया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग हमेशा चेस संयोजन से बेहतर प्रदर्शन करता है।<ref>{{cite book |doi=10.1109/VTC.2001.956516 |chapter=Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA |date=October 2001 |title=Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th |first=P. |last=Frenger |author2=S. Parkvall |author3=E. Dahlman |volume=3 |pages=1829–1833 |isbn=0-7803-7005-8 |publisher=IEEE Operations Center |location=[[Piscataway Township, New Jersey]]}}</ref>
वृद्धिशील अतिरेक एचएआरक्यू का  उदाहरण HSDPA है: डेटा ब्लॉक को पहले  पंचर कोड 1/3 [[टर्बो कोड]] के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के दौरान कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल  अंश चुना जाता है) और भेजा जाता है। प्रत्येक (पुनः) ट्रांसमिशन के दौरान उपयोग किया जाने वाला पंचर पैटर्न अलग होता है, इसलिए हर समय अलग-अलग कोडित बिट्स भेजे जाते हैं। यद्यपि [[एचएसडीपीए]] मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, लेकिन यह दिखाया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग हमेशा चेस संयोजन से बेहतर प्रदर्शन करता है।<ref>{{cite book |doi=10.1109/VTC.2001.956516 |chapter=Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA |date=October 2001 |title=Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th |first=P. |last=Frenger |author2=S. Parkvall |author3=E. Dahlman |volume=3 |pages=1829–1833 |isbn=0-7803-7005-8 |publisher=IEEE Operations Center |location=[[Piscataway Township, New Jersey]]}}</ref>
HARQ का उपयोग [[रुकें और प्रतीक्षा करें ARQ]]|स्टॉप-एंड-वेट मोड या [[चयनात्मक दोहराएँ ARQ]] मोड में किया जा सकता है। रुकें और प्रतीक्षा करें आसान है, लेकिन प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता कम हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट HARQ प्रक्रियाएं प्रायः  व्यवहार में समानांतर में की जाती हैं: जब  HARQ प्रक्रिया पावती की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।
एचएआरक्यू का उपयोग [[रुकें और प्रतीक्षा करें ARQ|रुकें और प्रतीक्षा करें एआरक्यू]]|स्टॉप-एंड-वेट मोड या [[चयनात्मक दोहराएँ ARQ|चयनात्मक दोहराएँ एआरक्यू]] मोड में किया जा सकता है। रुकें और प्रतीक्षा करें आसान है, लेकिन प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता कम हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट एचएआरक्यू प्रक्रियाएं प्रायः  व्यवहार में समानांतर में की जाती हैं: जब  एचएआरक्यू प्रक्रिया पावती की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।


टर्बो कोड के अतिरिक्त अन्य फॉरवर्ड त्रुटि सुधार कोड भी हैं जिनका उपयोग HARQ योजना में किया जा सकता है, उदाहरण के लिए विस्तारित अनियमित दोहराव-संचय (ईआईआरए) कोड और कुशल-एन्कोडेबल दर-संगत (ई2आरसी) कोड, जो दोनों कम-घनत्व समता-जांच कोड हैं।
टर्बो कोड के अतिरिक्त अन्य फॉरवर्ड त्रुटि सुधार कोड भी हैं जिनका उपयोग एचएआरक्यू योजना में किया जा सकता है, उदाहरण के लिए विस्तारित अनियमित दोहराव-संचय (ईआईआरए) कोड और कुशल-एन्कोडेबल दर-संगत (ई2आरसी) कोड, जो दोनों कम-घनत्व समता-जांच कोड हैं।


== अनुप्रयोग ==
== अनुप्रयोग ==
HARQ का उपयोग HSDPA और [[HSUPA]] में किया जाता है जो [[UMTS]] जैसे मोबाइल फोन नेटवर्क के लिए उच्च गति डेटा ट्रांसमिशन (क्रमशः [[डाउनलिंक]] और [[अपलिंक]] पर) प्रदान करता है, और मोबाइल ब्रॉडबैंड वायरलेस ्सेस के लिए 802.16e|IEEE 802.16-2005 मानक में, जिसे वाईमैक्स| मोबाइल वाईमैक्स. इसका उपयोग [[विकास-डेटा अनुकूलित]] और LTE (दूरसंचार) वायरलेस नेटवर्क में भी किया जाता है।
एचएआरक्यू का उपयोग HSDPA और [[HSUPA]] में किया जाता है जो [[UMTS]] जैसे मोबाइल फोन नेटवर्क के लिए उच्च गति डेटा ट्रांसमिशन (क्रमशः [[डाउनलिंक]] और [[अपलिंक]] पर) प्रदान करता है, और मोबाइल ब्रॉडबैंड वायरलेस ्सेस के लिए 802.16e|IEEE 802.16-2005 मानक में, जिसे वाईमैक्स| मोबाइल वाईमैक्स. इसका उपयोग [[विकास-डेटा अनुकूलित]] और LTE (दूरसंचार) वायरलेस नेटवर्क में भी किया जाता है।


टाइप I हाइब्रिड ARQ का उपयोग [[ITU-T]] G.hn में किया जाता है, जो  हाई-स्पीड [[लोकल एरिया नेटवर्क]] मानक है जो मौजूदा होम वायरिंग (पावर लाइन संचार, फोन लाइन और [[मनाना पर ईथरनेट]]) पर 1 Gbit/s तक डेटा दर पर काम कर सकता है। G.hn त्रुटि का पता लगाने के लिए चक्रीय अतिरेक जांच | CRC-32C, फॉरवर्ड त्रुटि सुधार के लिए कम घनत्व समता-जांच कोड और ARQ के लिए चयनात्मक दोहराव ARQ का उपयोग करता है।
टाइप I हाइब्रिड एआरक्यू का उपयोग [[ITU-T]] G.hn में किया जाता है, जो  हाई-स्पीड [[लोकल एरिया नेटवर्क]] मानक है जो मौजूदा होम वायरिंग (पावर लाइन संचार, फोन लाइन और [[मनाना पर ईथरनेट]]) पर 1 Gbit/s तक डेटा दर पर काम कर सकता है। G.hn त्रुटि का पता लगाने के लिए चक्रीय अतिरेक जांच | CRC-32C, फॉरवर्ड त्रुटि सुधार के लिए कम घनत्व समता-जांच कोड और एआरक्यू के लिए चयनात्मक दोहराव एआरक्यू का उपयोग करता है।


== संदर्भ ==
== संदर्भ ==

Revision as of 11:46, 29 July 2023

हाइब्रिड स्वचालित दोहराव अनुरोध (हाइब्रिड एआरक्यू या एचएआरक्यू) हाई-रेट आगे त्रुटि सुधार (एफईसी) और ऑटोमैटिक रिपीट रिक्वेस्ट (एआरक्यू) त्रुटि-नियंत्रण का संयोजन है। मानक एआरक्यू में, त्रुटि-पहचान कोड | त्रुटि-पहचान (ईडी) कोड जैसे चक्रीय अतिरेक जांच (सीआरसी) का उपयोग करके प्रसारित किए जाने वाले डेटा में अनावश्यक बिट्स जोड़े जाते हैं। दूषित संदेश का पता लगाने वाले रिसीवर प्रेषक से नए संदेश का अनुरोध करेंगे। हाइब्रिड एआरक्यू में, मूल डेटा को एफईसी कोड के साथ एन्कोड किया जाता है, और समता बिट्स या तो तुरंत संदेश के साथ भेजे जाते हैं या केवल अनुरोध पर प्रसारित होते हैं जब रिसीवर गलत संदेश का पता लगाता है। ईडी कोड तब छोड़ा जा सकता है जब ऐसे कोड का उपयोग किया जाता है जो त्रुटि का पता लगाने के अतिरिक्त फॉरवर्ड त्रुटि सुधार (एफईसी) दोनों कर सकता है, जैसे रीड-सोलोमन त्रुटि सुधार|रीड-सोलोमन कोड। एफईसी कोड को होने वाली सभी त्रुटियों के अपेक्षित उपसमूह को ठीक करने के लिए चुना जाता है, जबकि एआरक्यू विधि का उपयोग उन त्रुटियों को ठीक करने के लिए फ़ॉल-बैक के रूप में किया जाता है जो केवल प्रारंभिक ट्रांसमिशन में भेजे गए अतिरेक का उपयोग करके ठीक नहीं की जा सकती हैं। परिणामस्वरूप, हाइब्रिड एआरक्यू खराब सिग्नल स्थितियों में सामान्य एआरक्यू से बेहतर प्रदर्शन करता है, लेकिन अपने सरलतम रूप में यह अच्छी सिग्नल स्थितियों में काफी कम थ्रूपुट की कीमत पर आता है। सामान्यतः सिग्नल गुणवत्ता क्रॉस-ओवर पॉइंट होता है जिसके नीचे सरल हाइब्रिड एआरक्यू बेहतर होता है, और जिसके ऊपर बेसिक एआरक्यू बेहतर होता है।

सरल हाइब्रिड एआरक्यू

एचएआरक्यू का सबसे सरल संस्करण, टाइप I एचएआरक्यू, ट्रांसमिशन से पहले प्रत्येक संदेश में ईडी और एफईसी दोनों जानकारी जोड़ता है। जब कोडित डेटा ब्लॉक प्राप्त होता है, तो रिसीवर पहले त्रुटि-सुधार कोड को डीकोड करता है। यदि चैनल की गुणवत्ता काफी अच्छी है, तो सभी ट्रांसमिशन त्रुटियां सुधार योग्य होनी चाहिए, और रिसीवर सही डेटा ब्लॉक प्राप्त कर सकता है। यदि चैनल की गुणवत्ता खराब है, और सभी ट्रांसमिशन त्रुटियों को ठीक नहीं किया जा सकता है, तो रिसीवर त्रुटि-पहचान कोड का उपयोग करके इस स्थिति का पता लगाएगा, फिर प्राप्त कोडित डेटा ब्लॉक को अस्वीकार कर दिया जाता है और एआरक्यू के समान, रिसीवर द्वारा पुनः ट्रांसमिशन का अनुरोध किया जाता है।[1] अधिक परिष्कृत रूप में, टाइप II एचएआरक्यू, संदेश प्रवर्तक त्रुटि-पता लगाने वाले समता बिट्स और केवल एफईसी समता बिट्स के साथ संदेश बिट्स के मध्य वैकल्पिक करता है। जब पहला ट्रांसमिशन त्रुटि रहित प्राप्त होता है, तो एफईसी समता बिट्स कभी नहीं भेजे जाते हैं। इसके अतिरिक्त, त्रुटि सुधार के लिए दो लगातार ट्रांसमिशन को जोड़ा जा सकता है यदि कोई भी त्रुटि मुक्त नहीं है।[2] टाइप I और टाइप II हाइब्रिड एआरक्यू के मध्य अंतर को समझने के लिए, ईडी और एफईसी द्वारा जोड़ी गई जानकारी के आकार पर विचार करें: त्रुटि का पता लगाने से सामान्यतः संदेश में केवल कुछ बाइट्स जुड़ते हैं, जो केवल लंबाई में वृद्धिशील वृद्धि है। दूसरी ओर, एफईसी प्रायः त्रुटि सुधार समता के साथ संदेश की लंबाई को दोगुना या तिगुना कर सकता है। थ्रूपुट के संदर्भ में, मानक एआरक्यू सामान्यतः त्रुटि के खिलाफ विश्वसनीय सुरक्षा के लिए चैनल क्षमता का कुछ प्रतिशत खर्च करता है, जबकि एफईसी सामान्यतः चैनल सुधार के लिए सभी चैनल क्षमता का आधा या अधिक खर्च करता है।

मानक एआरक्यू में त्रुटि का पता लगाने के लिए किसी भी ट्रांसमिशन पर ट्रांसमिशन को त्रुटि मुक्त प्राप्त करना होगा। टाइप II हाइब्रिड एआरक्यू में, पहले ट्रांसमिशन में केवल डेटा और त्रुटि का पता लगाना सम्मिलित है (मानक एआरक्यू से अलग नहीं)। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि डेटा त्रुटिपूर्ण रूप से प्राप्त होता है, तो दूसरे ट्रांसमिशन में एफईसी समानताएं और त्रुटि का पता लगाना सम्मिलित होगा। यदि त्रुटि रहित प्राप्त हुआ, तो यह हो गया। यदि त्रुटि प्राप्त होती है, तो दोनों ट्रांसमिशन से प्राप्त जानकारी को मिलाकर त्रुटि सुधार का प्रयास किया जा सकता है।

केवल टाइप I हाइब्रिड एआरक्यू को मजबूत सिग्नल स्थितियों में क्षमता हानि का सामना करना पड़ता है। टाइप II हाइब्रिड एआरक्यू ऐसा नहीं करता है क्योंकि एफईसी बिट्स केवल आवश्यकतानुसार बाद के पुन: प्रसारण पर प्रसारित होते हैं। मजबूत सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एआरक्यू जितनी अच्छी क्षमता के साथ प्रदर्शन करता है। खराब सिग्नल स्थितियों में, टाइप II हाइब्रिड एआरक्यू मानक एफईसी जितनी अच्छी संवेदनशीलता के साथ प्रदर्शन करता है।

नरम संयोजन के साथ हाइब्रिड एआरक्यू

व्यवहार में, गलत तरीके से प्राप्त कोडित डेटा ब्लॉक को त्यागने के अतिरिक्त प्रायः रिसीवर पर संग्रहीत किया जाता है, और जब पुन: प्रेषित ब्लॉक प्राप्त होता है, तो दोनों ब्लॉक संयुक्त हो जाते हैं। इसे नरम संयोजन के साथ हाइब्रिड एआरक्यू कहा जाता है (डहलमैन एट अल., पृष्ठ 120)। हालांकि यह संभव है कि दो दिए गए ट्रांसमिशन को त्रुटि के बिना स्वतंत्र रूप से डिकोड नहीं किया जा सकता है, ऐसा हो सकता है कि पहले से गलती से प्राप्त ट्रांसमिशन का संयोजन हमें सही ढंग से डिकोड करने के लिए पर्याप्त जानकारी देता है। एचएआरक्यू में दो मुख्य सॉफ्ट संयोजन विधियाँ हैं:

  • चेज़ संयोजन: प्रत्येक पुन: प्रसारण में समान जानकारी (डेटा और समता बिट्स) होती है। रिसीवर पिछले ट्रांसमिशन से समान बिट्स के साथ प्राप्त बिट्स को संयोजित करने के लिए अधिकतम-अनुपात संयोजन | अधिकतम-अनुपात संयोजन का उपयोग करता है। क्योंकि सभी प्रसारण समान हैं, चेस संयोजन को अतिरिक्त पुनरावृत्ति कोड के रूप में देखा जा सकता है। प्रत्येक पुन:संचरण को बढ़े हुए Eb/N0 के माध्यम से प्राप्त संचरण में अतिरिक्त ऊर्जा जोड़ने के रूप में सोचा जा सकता है।
  • वृद्धिशील अतिरेक: प्रत्येक पुन: प्रसारण में पिछले वाले की तुलना में भिन्न जानकारी होती है। कोडित बिट्स के ाधिक सेट उत्पन्न होते हैं, प्रत्येक सूचना बिट्स के समान सेट का प्रतिनिधित्व करते हैं। री-ट्रांसमिशन सामान्यतः पिछले ट्रांसमिशन की तुलना में कोडित बिट्स के अलग सेट का उपयोग करता है, जिसमें छिद्रित कोड एनकोडर आउटपुट द्वारा उत्पन्न विभिन्न रिडंडेंसी संस्करण होते हैं। इस प्रकार, प्रत्येक पुनः प्रसारण पर रिसीवर को अतिरिक्त जानकारी प्राप्त होती है।

दो मुख्य विधियों के कई प्रकार उपस्थित हैं। उदाहरण के लिए, आंशिक चेज़ संयोजन में मूल ट्रांसमिशन में बिट्स का केवल सबसेट फिर से प्रसारित किया जाता है। आंशिक वृद्धिशील अतिरेक में, व्यवस्थित कोड बिट्स को हमेशा सम्मिलित किया जाता है ताकि प्रत्येक पुन: प्रसारण स्व-डिकोडेबल हो।

वृद्धिशील अतिरेक एचएआरक्यू का उदाहरण HSDPA है: डेटा ब्लॉक को पहले पंचर कोड 1/3 टर्बो कोड के साथ कोडित किया जाता है, फिर प्रत्येक (पुनः) ट्रांसमिशन के दौरान कोडित ब्लॉक को सामान्यतः आगे पंचर किया जाता है (अर्थात कोडित बिट्स का केवल अंश चुना जाता है) और भेजा जाता है। प्रत्येक (पुनः) ट्रांसमिशन के दौरान उपयोग किया जाने वाला पंचर पैटर्न अलग होता है, इसलिए हर समय अलग-अलग कोडित बिट्स भेजे जाते हैं। यद्यपि एचएसडीपीए मानक चेस संयोजन और वृद्धिशील अतिरेक दोनों का समर्थन करता है, लेकिन यह दिखाया गया है कि बढ़ी हुई जटिलता की कीमत पर वृद्धिशील अतिरेक लगभग हमेशा चेस संयोजन से बेहतर प्रदर्शन करता है।[3] एचएआरक्यू का उपयोग रुकें और प्रतीक्षा करें एआरक्यू|स्टॉप-एंड-वेट मोड या चयनात्मक दोहराएँ एआरक्यू मोड में किया जा सकता है। रुकें और प्रतीक्षा करें आसान है, लेकिन प्राप्तकर्ता की स्वीकृति की प्रतीक्षा करने से दक्षता कम हो जाती है। इस प्रकार कई स्टॉप-एंड-वेट एचएआरक्यू प्रक्रियाएं प्रायः व्यवहार में समानांतर में की जाती हैं: जब एचएआरक्यू प्रक्रिया पावती की प्रतीक्षा कर रही होती है, तो दूसरी प्रक्रिया कुछ और डेटा भेजने के लिए चैनल का उपयोग कर सकती है।

टर्बो कोड के अतिरिक्त अन्य फॉरवर्ड त्रुटि सुधार कोड भी हैं जिनका उपयोग एचएआरक्यू योजना में किया जा सकता है, उदाहरण के लिए विस्तारित अनियमित दोहराव-संचय (ईआईआरए) कोड और कुशल-एन्कोडेबल दर-संगत (ई2आरसी) कोड, जो दोनों कम-घनत्व समता-जांच कोड हैं।

अनुप्रयोग

एचएआरक्यू का उपयोग HSDPA और HSUPA में किया जाता है जो UMTS जैसे मोबाइल फोन नेटवर्क के लिए उच्च गति डेटा ट्रांसमिशन (क्रमशः डाउनलिंक और अपलिंक पर) प्रदान करता है, और मोबाइल ब्रॉडबैंड वायरलेस ्सेस के लिए 802.16e|IEEE 802.16-2005 मानक में, जिसे वाईमैक्स| मोबाइल वाईमैक्स. इसका उपयोग विकास-डेटा अनुकूलित और LTE (दूरसंचार) वायरलेस नेटवर्क में भी किया जाता है।

टाइप I हाइब्रिड एआरक्यू का उपयोग ITU-T G.hn में किया जाता है, जो हाई-स्पीड लोकल एरिया नेटवर्क मानक है जो मौजूदा होम वायरिंग (पावर लाइन संचार, फोन लाइन और मनाना पर ईथरनेट) पर 1 Gbit/s तक डेटा दर पर काम कर सकता है। G.hn त्रुटि का पता लगाने के लिए चक्रीय अतिरेक जांच | CRC-32C, फॉरवर्ड त्रुटि सुधार के लिए कम घनत्व समता-जांच कोड और एआरक्यू के लिए चयनात्मक दोहराव एआरक्यू का उपयोग करता है।

संदर्भ

  1. Comroe/Costello 1984, p. 474
  2. Comroe/Costello 1984, pp. 474–5
  3. Frenger, P.; S. Parkvall; E. Dahlman (October 2001). "Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA". Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th. Vol. 3. Piscataway Township, New Jersey: IEEE Operations Center. pp. 1829–1833. doi:10.1109/VTC.2001.956516. ISBN 0-7803-7005-8.

अग्रिम पठन