शूर अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
रैखिक बीजगणित के गणित अनुशासन में, '''शूर अपघटन''' या शूर त्रिभुज, जिसका नाम [[ कुछ नहीं | इसाई शूर]] के नाम पर रखा गया है, [[मैट्रिक्स अपघटन]] है। यह किसी को अनेैतिक रूप से जटिल वर्ग मैट्रिक्स को [[ऊपरी-त्रिकोणीय मैट्रिक्स]] के मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।
रैखिक बीजगणित के गणित अनुशासन में, '''शूर अपघटन''' या शूर त्रिभुज, जिसका नाम [[ कुछ नहीं | इसाई शूर]] के नाम पर रखा गया है, [[मैट्रिक्स अपघटन]] है। यह किसी को अनेैतिक रूप से जटिल वर्ग मैट्रिक्स को [[ऊपरी-त्रिकोणीय मैट्रिक्स]] के मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।


'''मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्णकक्ष के रूप में लिख'''
'''मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्णकक्ष के रूप में लिखनुमति देता है जिसके विकर्णकक्ष के रूप'''  


== कथन ==
== कथन ==
Line 49: Line 49:
वर्ग आव्यूह ''A''  और ''B'' को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को <math>A = QSZ^*</math> और <math>B = QTZ^*</math> के रूप में गुणनखंडित करता है, जहां Q और Z एकात्मक मैट्रिक्स हैं, और S और T [[ऊपरी त्रिकोणीय]] हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।<ref name=Golub1996/>{{rp|p=375}}
वर्ग आव्यूह ''A''  और ''B'' को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को <math>A = QSZ^*</math> और <math>B = QTZ^*</math> के रूप में गुणनखंडित करता है, जहां Q और Z एकात्मक मैट्रिक्स हैं, और S और T [[ऊपरी त्रिकोणीय]] हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।<ref name=Golub1996/>{{rp|p=375}}


सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda</math> जो मैट्रिक्स#अतिरिक्त विषयों के ईगेंडेकंपोजीशन को हल करता है <math>A\mathbf{x}=\lambda B\mathbf{x}</math> (जहाँ x अज्ञात अशून्य सदिश है) की गणना ''S'' के विकर्ण तत्वों और ''T'' के विकर्ण तत्वों के अनुपात के रूप में की जा सकती है। अर्थात्, मैट्रिक्स तत्वों को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ''i''वां सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda_i</math> संतुष्ट <math>\lambda_i = S_{ii} / T_{ii}</math>.
सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda</math> जो सामान्यीकृत आइगेनवैल्यूज़ समस्या <math>A\mathbf{x}=\lambda B\mathbf{x}</math> (जहाँ x अज्ञात अशून्य सदिश है) को हल करता है गणना ''S'' के विकर्ण तत्वों और ''T'' के विकर्ण तत्वों के अनुपात के रूप में की जा सकती है। अर्थात्, मैट्रिक्स तत्वों को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ''i''th सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda_i</math><math>\lambda_i = S_{ii} / T_{ii}</math> को संतुष्ट करता है।


== संदर्भ ==
== संदर्भ ==

Revision as of 18:06, 21 July 2023

रैखिक बीजगणित के गणित अनुशासन में, शूर अपघटन या शूर त्रिभुज, जिसका नाम इसाई शूर के नाम पर रखा गया है, मैट्रिक्स अपघटन है। यह किसी को अनेैतिक रूप से जटिल वर्ग मैट्रिक्स को ऊपरी-त्रिकोणीय मैट्रिक्स के मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।

मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्णकक्ष के रूप में लिखनुमति देता है जिसके विकर्णकक्ष के रूप

कथन

शूर अपघटन इस प्रकार पढ़ता है: यदि A जटिल संख्या प्रविष्टियों के साथ एक n × n वर्ग मैट्रिक्स है, तब A के रूप में व्यक्त किया जा सकता है[1][2][3]

जहां Q एकात्मक मैट्रिक्स है (जिससे इसका व्युत्क्रम −1Q भी Q का संयुग्मी स्थानान्तरण Q* हो), और U ऊपरी त्रिकोणीय मैट्रिक्स है, जिसे A का 'शूर फॉर्म' कहा जाता है। चूँकि U, A के समान (रैखिक बीजगणित) है, और चूंकि यह त्रिकोणीय है, इसलिए इसके आइगेनवैल्यूज़ यू की विकर्ण प्रविष्टियां हैं।

शूर अपघटन का तात्पर्य है कि ए-अपरिवर्तनीय उप-स्थानों का नेस्टेड अनुक्रम उपस्थित है {0} = V0V1 ⊂ ⋯ ⊂ Vn = Cn, और यह कि क्रमबद्ध ऑर्थोनॉर्मल आधार उपस्थित है (Cn मानक हर्मिटियन रूप के लिए) इस प्रकार कि नेस्टेड अनुक्रम में होने वाले प्रत्येक i के लिए प्रथम i आधार सदिशों Vi का विस्तार करता है। कुछ अलग ढंग से वाक्यांशित, पहला भाग कहता है कि जटिल परिमित-आयामी वेक्टर स्थान पर रैखिक ऑपरेटर जे ऑर्बिट और स्टेबलाइजर्स पूर्ण ध्वज (रैखिक बीजगणित) (V1, ..., Vn) को स्थिर करता है।

प्रमाण

शूर अपघटन के लिए रचनात्मक प्रमाण इस प्रकार है: जटिल परिमित-आयामी वेक्टर स्थान पर प्रत्येक ऑपरेटर A में आइगेनवेल्यू λ होता है, जो कुछ आइजेनस्पेस Vλ के अनुरूप होता है। मान लीजिए Vλ इसके ऑर्थोगोनल पूरक है। यह स्पष्ट है कि, इस ऑर्थोगोनल अपघटन के संबंध में, A में मैट्रिक्स प्रतिनिधित्व है (कोई यहां क्रमशः Vλ और Vλ तक फैले किसी भी ऑर्थोनॉर्मल आधार Z1 और Z2 को चुन सकता है)

जहां Iλ Vλ पर पहचान ऑपरेटर है। A22 को छोड़कर उपरोक्त मैट्रिक्स ऊपरी-त्रिकोणीय होगा। किंतु सम्पूर्ण रूप में यही प्रक्रिया सब-मैट्रिक्स A22 पर भी क्रियान्वित की जा सकती है जिसे Vλ और इसके सबमैट्रिसेस पर ऑपरेटर के रूप में देखा गया है। इस प्रकार तब तक जारी रखें जब तक परिणामी मैट्रिक्स ऊपरी त्रिकोणीय न हो जाए। चूँकि प्रत्येक संयुग्मन ऊपरी-त्रिकोणीय ब्लॉक के आयाम को कम से कम बढ़ाता है, इसलिए इस प्रक्रिया में अधिकतम n चरण लगते हैं। इस प्रकार स्थान Cn समाप्त हो जाएगा और प्रक्रिया ने वांछित परिणाम प्राप्त कर लिया है।[4]

उपरोक्त तर्क को थोड़ा इस प्रकार दोहराया जा सकता है: मान लीजिए कि λ, A का आइगेनवैल्यूज़ है, जो कुछ ईजेनस्पेस Vλ के अनुरूप है। A ऑपरेटर T को भागफल स्थान (रैखिक बीजगणित) Cn/Vλ पर प्रेरित करता है। यह ऑपरेटर ऊपर से सम्पूर्ण रूप में A22 सबमैट्रिक्स है। पहले की तरह, T के पास ईजेनस्पेस होगा, मान लीजिए WμCn modulo Vλ. ध्यान दें की भागफल मानचित्र के अंतर्गत Wμ की पूर्वछवि A का अपरिवर्तनीय उपस्थान है जिसमे Vλ सम्मिलित है। इस तरह से जारी रखें जब तक कि परिणामी भागफल स्थान का आयाम 0 न हो जाए। फिर प्रत्येक चरण पर पाए जाने वाले आइगेनस्पेस की क्रमिक पूर्वछवियाँ ध्वज बनाती हैं जिसे A स्थिर करता है।

टिप्पणियाँ

चूँकि प्रत्येक वर्ग मैट्रिक्स में एक शूर अपघटन होता है, सामान्यतः यह अपघटन अद्वितीय नहीं होता है। उदाहरण के लिए, आइजेनस्पेस Vλ का आयाम > 1 हो सकता है, ऐसी स्थिति में Vλ के लिए कोई भी ऑर्थोनॉर्मल आधार वांछित परिणाम की ओर ले जाएगा।

त्रिकोणीय मैट्रिक्स U को U = D + N के रूप में लिखें, जहां D विकर्ण है और N सख्ती से ऊपरी त्रिकोणीय है (और इस प्रकार एक शून्यपोटेंट मैट्रिक्स है)। विकर्ण मैट्रिक्स D में अनेैतिक रूप से क्रम में A के eigenvalues ​​सम्मिलित हैं (इसलिए इसका फ्रोबेनियस मानदंड, वर्ग, A के eigenvalues ​​के वर्ग मापांक का योग है, जबकि A का फ्रोबेनियस मानदंड, वर्ग, A के वर्ग एकवचन मानों का योग है)। निलपोटेंट भाग N सामान्यतः अद्वितीय नहीं है, किंतु इसका फ्रोबेनियस मानदंड विशिष्ट रूप से A द्वारा निर्धारित किया जाता है (सिर्फ इसलिए कि A का फ्रोबेनियस मानदंड U = D + N के फ्रोबेनियस मानदंड के सामान्तर है)।[5]

यह स्पष्ट है कि यदि ए एक सामान्य मैट्रिक्स है, तब इसके शूर अपघटन से U एक विकर्ण मैट्रिक्स होना चाहिए और Q के कॉलम वैक्टर A के आइजनवेक्टर हैं। इसलिए, शूर अपघटन वर्णक्रमीय अपघटन का विस्तार करता है। विशेष रूप से, यदि A सकारात्मक निश्चित है, तब A का शूर अपघटन, इसका वर्णक्रमीय अपघटन, और इसका एकवचन मूल्य अपघटन मेल खाता है।

मैट्रिक्स के एक कम्यूटिंग वर्ग {Ai} को एक साथ त्रिकोणीय बनाया जा सकता है, अर्थात एक एकात्मक मैट्रिक्स Q उपस्थित है, जैसे कि, दिए गए वर्ग में प्रत्येक Ai के लिए, Q Ai Q* ऊपरी त्रिकोणीय है। इसका अनुमान उपरोक्त प्रमाण से आसानी से लगाया जा सकता है। {Ai} से तत्व A लें और फिर से एक eigenspace VA पर विचार करें। तब VA {Ai} में सभी आव्यूहों के अंतर्गत अपरिवर्तनीय है। इसलिए, {Ai} में सभी मैट्रिक्स को VA में एक सामान्य eigenvector साझा करना होगा। प्रेरण तब अनुरोध सिद्ध करता है। परिणाम के रूप में, हमारे पास यह है कि सामान्य मैट्रिक्स के प्रत्येक आने वाले वर्ग को एक साथ विकर्ण किया जा सकता है।

अनंत आयामी सेटिंग में, बैनाच समिष्ट पर प्रत्येक बाउंडेड ऑपरेटर के पास एक अपरिवर्तनीय उप-स्थान नहीं होता है। चूँकि, एक अनेैतिक रूप से वर्ग मैट्रिक्स का ऊपरी-त्रिकोणीकरण कॉम्पैक्ट ऑपरेटरों के लिए सामान्यीकरण करता है। जटिल बानाच समिष्ट पर प्रत्येक कॉम्पैक्ट ऑपरेटर के पास विवृत अपरिवर्तनीय उप-स्थानों का एक नेस्ट होता है।

गणना

किसी दिए गए मैट्रिक्स के शूर अपघटन की गणना क्यूआर एल्गोरिदम या इसके वेरिएंट द्वारा संख्यात्मक रूप से की जाती है। दूसरे शब्दों में, मैट्रिक्स के अनुरूप विशेषता बहुपद की रूट की शूर अपघटन प्राप्त करने के लिए आवश्यक रूप से गणना नहीं की जाती है। इसके विपरीत, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए विशेषता बहुपद की रूट की गणना करने के लिए उसके साथी मैट्रिक्स के शूर अपघटन का पता लगाकर किया जा सकता है। इसी तरह, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए मैट्रिक्स के आइगेनवैल्यू की गणना करने के लिए किया जाता है, जो शूर अपघटन के ऊपरी त्रिकोणीय मैट्रिक्स की विकर्ण प्रविष्टियां हैं। यद्यपि क्यूआर एल्गोरिथ्म औपचारिक रूप से संचालन का अनंत अनुक्रम है, मशीन परिशुद्धता के लिए अभिसरण व्यावहारिक रूप से परिचालन बिग ओ नोटेशन में प्राप्त किया जाता है।[6] लैपैक उपयोगकर्ता गाइड में नॉनसिमेट्रिक ईजेनप्रॉब्लम्स अनुभाग देखें।[7]

अनुप्रयोग

लाई सिद्धांत अनुप्रयोगों में सम्मिलित हैं:

सामान्यीकृत शूर अपघटन

वर्ग आव्यूह A और B को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को और के रूप में गुणनखंडित करता है, जहां Q और Z एकात्मक मैट्रिक्स हैं, और S और T ऊपरी त्रिकोणीय हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।[2]: 375 

सामान्यीकृत आइगेनवैल्यूज़ जो सामान्यीकृत आइगेनवैल्यूज़ समस्या (जहाँ x अज्ञात अशून्य सदिश है) को हल करता है गणना S के विकर्ण तत्वों और T के विकर्ण तत्वों के अनुपात के रूप में की जा सकती है। अर्थात्, मैट्रिक्स तत्वों को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ith सामान्यीकृत आइगेनवैल्यूज़ को संतुष्ट करता है।

संदर्भ

  1. Horn, R.A. & Johnson, C.R. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. ISBN 0-521-38632-2. (Section 2.3 and further at p. 79)
  2. 2.0 2.1 Golub, G.H. & Van Loan, C.F. (1996). मैट्रिक्स संगणना (3rd ed.). Johns Hopkins University Press. ISBN 0-8018-5414-8.(Section 7.7 at p. 313)
  3. Schott, James R. (2016). सांख्यिकी के लिए मैट्रिक्स विश्लेषण (3rd ed.). New York: John Wiley & Sons. pp. 175–178. ISBN 978-1-119-09247-6.
  4. Wagner, David. "Proof of Schur's Theorem" (PDF). Notes on Linear Algebra.
  5. Higham, Nick. "What Is a Schur Decomposition?".
  6. Trefethen, Lloyd N.; Bau, David (1997). संख्यात्मक रैखिक बीजगणित. Philadelphia: Society for Industrial and Applied Mathematics. pp. 193–194. ISBN 0-89871-361-7. OCLC 36084666.{{cite book}}: CS1 maint: date and year (link)
  7. Anderson, E; Bai, Z; Bischof, C; Blackford, S; Demmel, J; Dongarra, J; Du Croz, J; Greenbaum, A; Hammarling, S; McKenny, A; Sorensen, D (1995). लैपैक उपयोगकर्ता मार्गदर्शिका. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-447-8.