तनुकरण की ऊष्मा: Difference between revisions
(Created page with "{{Short description|Enthalpy change from diluting a substance in solution}} ऊष्मारसायन में, तनुकरण की ऊष्मा, या...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Enthalpy change from diluting a substance in solution}} | {{Short description|Enthalpy change from diluting a substance in solution}} | ||
[[ऊष्मारसायन]] में, तनुकरण की ऊष्मा, या तनुकरण की [[ तापीय धारिता ]], आइसोबैरिक प्रक्रिया में | [[ऊष्मारसायन]] में, तनुकरण की ऊष्मा, या तनुकरण की [[ तापीय धारिता | तापीय धारिता]], आइसोबैरिक प्रक्रिया में एकविलयन [[समाधान (रसायन विज्ञान)|(रसायन विज्ञान)]] में एक घटक की तनुकरण प्रक्रिया से जुड़े एन्थैल्पी परिवर्तन को संदर्भित करती है। यदि घटक की प्रारंभिक अवस्था शुद्ध [[तरल]] है (यह मानते हुए कि घोल तरल है), तनुकरण प्रक्रिया उसके [[विघटन (रसायन विज्ञान)]] प्रक्रिया के बराबर है और तनुकरण की गर्मी घोल के एन्थैल्पी परिवर्तन के समान है। सामान्य तौर पर, तनुकरण की ऊष्मा को घोल के [[पदार्थ की मात्रा]] द्वारा [[सामान्यीकरण (सांख्यिकी)]] किया जाता है और इसकी [[आयामी इकाइयाँ]] पदार्थ की प्रति इकाई द्रव्यमान या मात्रा में ऊर्जा होती हैं, जिसे सामान्य पर जूल/[[मोल (इकाई)]] (या जे/मोल) की इकाई में व्यक्त किया जाता है। ). | ||
==परिभाषा== | ==परिभाषा== | ||
Line 7: | Line 7: | ||
तनुकरण की ऊष्मा को दो दृष्टिकोणों से परिभाषित किया जा सकता है: अंतर ऊष्मा और अभिन्न ऊष्मा। | तनुकरण की ऊष्मा को दो दृष्टिकोणों से परिभाषित किया जा सकता है: अंतर ऊष्मा और अभिन्न ऊष्मा। | ||
तनुकरण की विभेदक ऊष्मा को सूक्ष्म पैमाने पर देखा जाता है, जो उस प्रक्रिया से जुड़ी होती है जिसमें बड़ी मात्रा में घोल में थोड़ी मात्रा में विलायक मिलाया जाता है। इस प्रकार तनुकरण की | तनुकरण की विभेदक ऊष्मा को सूक्ष्म पैमाने पर देखा जाता है, जो उस प्रक्रिया से जुड़ी होती है जिसमें बड़ी मात्रा में घोल में थोड़ी मात्रा में विलायक मिलाया जाता है। इस प्रकार तनुकरण की मोलर विभेदक ऊष्मा को बहुत बड़ी मात्रा में घोल में स्थिर तापमान और दबाव पर एक मोल विलायक जोड़ने के कारण होने वाले एन्थैल्पी परिवर्तन के रूप में परिभाषित किया गया है। मिश्रण की कम मात्रा के कारण, तनु घोल की सांद्रता व्यावहारिक रूप से अपरिवर्तित रहती है। गणितीय रूप से, तनुकरण की मोलर विभेदक ऊष्मा को इस प्रकार दर्शाया जाता है:<ref>H. DeVoe, "Reactions of other chemical processes," in ''Thermodynamics and Chemistry'', 2nd ed. London, UK: Pearson Education, 2001, pp. 303-366.</ref> | ||
<math display="block">\Delta_\text{dil}^{d} H = \left(\frac{\partial \Delta_\text{dil} H}{\partial \Delta n_i}\right)_{T,p,n_B} | <math display="block">\Delta_\text{dil}^{d} H = \left(\frac{\partial \Delta_\text{dil} H}{\partial \Delta n_i}\right)_{T,p,n_B} | ||
Line 13: | Line 13: | ||
जहां ∂∆n<sub>''i''</sub> तनुकरण की मोल संख्या का अतिसूक्ष्म परिवर्तन या अंतर है। | जहां ∂∆n<sub>''i''</sub> तनुकरण की मोल संख्या का अतिसूक्ष्म परिवर्तन या अंतर है। | ||
हालाँकि, तनुकरण की अभिन्न ऊष्मा को वृहद पैमाने पर देखा जाता है। अभिन्न ऊष्मा के संबंध में, एक ऐसी प्रक्रिया पर विचार करें जिसमें एक निश्चित मात्रा में घोल को प्रारंभिक सांद्रता से अंतिम सांद्रता तक पतला किया जाता है। इस प्रक्रिया में एन्थैल्पी परिवर्तन, जिसे विलेय की मोल संख्या द्वारा सामान्यीकृत किया जाता है, का मूल्यांकन तनुकरण की मोलर अभिन्न ऊष्मा के रूप में किया जाता है। गणितीय रूप से, तनुकरण की | हालाँकि, तनुकरण की अभिन्न ऊष्मा को वृहद पैमाने पर देखा जाता है। अभिन्न ऊष्मा के संबंध में, एक ऐसी प्रक्रिया पर विचार करें जिसमें एक निश्चित मात्रा में घोल को प्रारंभिक सांद्रता से अंतिम सांद्रता तक पतला किया जाता है। इस प्रक्रिया में एन्थैल्पी परिवर्तन, जिसे विलेय की मोल संख्या द्वारा सामान्यीकृत किया जाता है, का मूल्यांकन तनुकरण की मोलर अभिन्न ऊष्मा के रूप में किया जाता है। गणितीय रूप से, तनुकरण की मोलर अभिन्न ऊष्मा को इस प्रकार दर्शाया जाता है: | ||
<math display="block">\Delta_\text{dil}^{i} H = \frac{\Delta_\text{dil} H}{n_B}</math> | <math display="block">\Delta_\text{dil}^{i} H = \frac{\Delta_\text{dil} H}{n_B}</math> | ||
Line 22: | Line 22: | ||
== तनुकरण और विघटन== | == तनुकरण और विघटन== | ||
विघटन की प्रक्रिया (रसायन विज्ञान) और तनुकरण की प्रक्रिया एक दूसरे से निकटता से संबंधित हैं। दोनों प्रक्रियाओं में, | विघटन की प्रक्रिया (रसायन विज्ञान) और तनुकरण की प्रक्रिया एक दूसरे से निकटता से संबंधित हैं। दोनों प्रक्रियाओं में, विलयन की समान अंतिम स्थिति तक पहुंचा जाता है। हालाँकि, प्रारंभिक स्थितियाँ भिन्न हो सकती हैं। विघटन प्रक्रिया में, एक विलेय को शुद्ध अवस्था - ठोस, तरल या गैस - सेविलयन अवस्था में बदल दिया जाता है। यदि विलेय का शुद्ध अवस्था ठोस या गैस है (यह मानते हुए कि विलायक स्वयं तरल है), तो प्रक्रिया को दो अवस्थाों में देखा जा सकता है: अवस्था का तरल में परिवर्तन, और तरल पदार्थों का मिश्रण। विघटन प्रक्रिया को सामान्य तौर पर इस प्रकार व्यक्त किया जाता है: | ||
<math display="block">\textrm{solute(s,l,g)} + \textrm{solvent(l)} \rightarrow \textrm{solute(l)} + \textrm{solvent(l)} \rightarrow \textrm{solute(sln)} + \textrm{solvent(sln)}</math> | <math display="block">\textrm{solute(s,l,g)} + \textrm{solvent(l)} \rightarrow \textrm{solute(l)} + \textrm{solvent(l)} \rightarrow \textrm{solute(sln)} + \textrm{solvent(sln)}</math> | ||
नोटेशन | नोटेशन sln का मतलब विलयन है, जो विलयन का हिस्सा होने वाले विलायक या विलेय की स्थिति का प्रतिनिधित्व करता है। | ||
दूसरी ओर, तनुकरण प्रक्रिया में, घोल को एक सांद्रता से दूसरी सांद्रता में बदला जाता है, जिसे इस प्रकार दर्शाया गया है: | दूसरी ओर, तनुकरण प्रक्रिया में, घोल को एक सांद्रता से दूसरी सांद्रता में बदला जाता है, जिसे इस प्रकार दर्शाया गया है: | ||
Line 33: | Line 33: | ||
<math display="block">\textrm{solute(l)} + \textrm{solvent(l)} \rightarrow \textrm{solute(sln)} + \textrm{solvent(sln)}</math> | <math display="block">\textrm{solute(l)} + \textrm{solvent(l)} \rightarrow \textrm{solute(sln)} + \textrm{solvent(sln)}</math> | ||
ध्यान देने योग्य बात यह है कि यह अभिव्यक्ति विघटन प्रक्रिया का मात्र दूसरा | ध्यान देने योग्य बात यह है कि यह अभिव्यक्ति विघटन प्रक्रिया का मात्र दूसरा अवस्था है। दूसरे शब्दों में, यदि विघटित किया जाने वाला विलेय और तनु किया जाने वाला प्रारंभिक घोल दोनों तरल हैं, तो विघटन और तनुकरण प्रक्रियाएँ समान हैं। | ||
== तनुकरण के | == तनुकरण के अवस्था== | ||
सूक्ष्म दृष्टिकोण से देखने पर, विघटन और तनुकरण प्रक्रियाओं में आणविक संपर्क के तीन | सूक्ष्म दृष्टिकोण से देखने पर, विघटन और तनुकरण प्रक्रियाओं में आणविक संपर्क के तीन अवस्था शामिल होते हैं: विलेय अणुओं ([[जाली ऊर्जा]]) के बीच आकर्षण का टूटना, विलायक अणुओं के बीच आकर्षण का टूटना, और विलेय और विलायक अणु के बीच आकर्षण का बनना। यदि विलयन आदर्श है, जिसका अर्थ है कि परस्पर क्रिया में विलेय और विलायक समान हैं, तो ऊपर उल्लिखित सभी प्रकार के आकर्षण का मूल्य समान है। परिणामस्वरूप, आकर्षण के टूटने और बनने से होने वाला एन्थैल्पी परिवर्तन रद्द हो जाता है, और एक आदर्शविलयन के तनुकरण से कोई एन्थैल्पी परिवर्तन नहीं होता है।<ref>P. Atkins and J. D. Paula, "Simple mixtures," in ''Physical Chemistry,'' 8th ed. New York: W.H. Freeman and Company, 2006, pp. 137-173.</ref> हालाँकि, यदि आणविक आकर्षण के संदर्भ में विचार करने पर विलेय और विलायक को समान रूप से व्यवहार नहीं किया जा सकता है, जो विलयन को गैर-आदर्श बनाता है, तो एन्थैल्पी का शुद्ध परिवर्तन गैर-शून्य है। दूसरे शब्दों में, तनुकरण की ऊष्मा घोल की गैर-आदर्शता के कारण उत्पन्न होती है। | ||
हालाँकि, यदि आणविक आकर्षण के संदर्भ में विचार करने पर विलेय और विलायक को समान रूप से व्यवहार नहीं किया जा सकता है, जो | |||
==अम्ल के उदाहरण== | ==अम्ल के उदाहरण== | ||
जलीय घोल में कुछ | जलीय घोल में कुछ अम्ल के अनंत तनुकरण तक तनुकरण की अभिन्न ऊष्मा को निम्नलिखित तालिका में दिखाया गया है।<ref name=":0">V. B. Parker, "Heats of dilution," in ''Thermal Properties of Aqueous Uni-Univalent Electrolytes'', Washington DC: U.S. Government Printing Office, 1965, pp. 10-19.</ref> | ||
{|class="wikitable" | {|class="wikitable" |
Revision as of 09:09, 11 August 2023
ऊष्मारसायन में, तनुकरण की ऊष्मा, या तनुकरण की तापीय धारिता, आइसोबैरिक प्रक्रिया में एकविलयन (रसायन विज्ञान) में एक घटक की तनुकरण प्रक्रिया से जुड़े एन्थैल्पी परिवर्तन को संदर्भित करती है। यदि घटक की प्रारंभिक अवस्था शुद्ध तरल है (यह मानते हुए कि घोल तरल है), तनुकरण प्रक्रिया उसके विघटन (रसायन विज्ञान) प्रक्रिया के बराबर है और तनुकरण की गर्मी घोल के एन्थैल्पी परिवर्तन के समान है। सामान्य तौर पर, तनुकरण की ऊष्मा को घोल के पदार्थ की मात्रा द्वारा सामान्यीकरण (सांख्यिकी) किया जाता है और इसकी आयामी इकाइयाँ पदार्थ की प्रति इकाई द्रव्यमान या मात्रा में ऊर्जा होती हैं, जिसे सामान्य पर जूल/मोल (इकाई) (या जे/मोल) की इकाई में व्यक्त किया जाता है। ).
परिभाषा
तनुकरण की ऊष्मा को दो दृष्टिकोणों से परिभाषित किया जा सकता है: अंतर ऊष्मा और अभिन्न ऊष्मा।
तनुकरण की विभेदक ऊष्मा को सूक्ष्म पैमाने पर देखा जाता है, जो उस प्रक्रिया से जुड़ी होती है जिसमें बड़ी मात्रा में घोल में थोड़ी मात्रा में विलायक मिलाया जाता है। इस प्रकार तनुकरण की मोलर विभेदक ऊष्मा को बहुत बड़ी मात्रा में घोल में स्थिर तापमान और दबाव पर एक मोल विलायक जोड़ने के कारण होने वाले एन्थैल्पी परिवर्तन के रूप में परिभाषित किया गया है। मिश्रण की कम मात्रा के कारण, तनु घोल की सांद्रता व्यावहारिक रूप से अपरिवर्तित रहती है। गणितीय रूप से, तनुकरण की मोलर विभेदक ऊष्मा को इस प्रकार दर्शाया जाता है:[1]
हालाँकि, तनुकरण की अभिन्न ऊष्मा को वृहद पैमाने पर देखा जाता है। अभिन्न ऊष्मा के संबंध में, एक ऐसी प्रक्रिया पर विचार करें जिसमें एक निश्चित मात्रा में घोल को प्रारंभिक सांद्रता से अंतिम सांद्रता तक पतला किया जाता है। इस प्रक्रिया में एन्थैल्पी परिवर्तन, जिसे विलेय की मोल संख्या द्वारा सामान्यीकृत किया जाता है, का मूल्यांकन तनुकरण की मोलर अभिन्न ऊष्मा के रूप में किया जाता है। गणितीय रूप से, तनुकरण की मोलर अभिन्न ऊष्मा को इस प्रकार दर्शाया जाता है:
विलेय की दो सांद्रताओं के बीच तनुकरण विलेय के मोल द्वारा तनुकरण की मध्यवर्ती ऊष्मा से जुड़ा होता है।
तनुकरण और विघटन
विघटन की प्रक्रिया (रसायन विज्ञान) और तनुकरण की प्रक्रिया एक दूसरे से निकटता से संबंधित हैं। दोनों प्रक्रियाओं में, विलयन की समान अंतिम स्थिति तक पहुंचा जाता है। हालाँकि, प्रारंभिक स्थितियाँ भिन्न हो सकती हैं। विघटन प्रक्रिया में, एक विलेय को शुद्ध अवस्था - ठोस, तरल या गैस - सेविलयन अवस्था में बदल दिया जाता है। यदि विलेय का शुद्ध अवस्था ठोस या गैस है (यह मानते हुए कि विलायक स्वयं तरल है), तो प्रक्रिया को दो अवस्थाों में देखा जा सकता है: अवस्था का तरल में परिवर्तन, और तरल पदार्थों का मिश्रण। विघटन प्रक्रिया को सामान्य तौर पर इस प्रकार व्यक्त किया जाता है:
दूसरी ओर, तनुकरण प्रक्रिया में, घोल को एक सांद्रता से दूसरी सांद्रता में बदला जाता है, जिसे इस प्रकार दर्शाया गया है:
तनुकरण के अवस्था
सूक्ष्म दृष्टिकोण से देखने पर, विघटन और तनुकरण प्रक्रियाओं में आणविक संपर्क के तीन अवस्था शामिल होते हैं: विलेय अणुओं (जाली ऊर्जा) के बीच आकर्षण का टूटना, विलायक अणुओं के बीच आकर्षण का टूटना, और विलेय और विलायक अणु के बीच आकर्षण का बनना। यदि विलयन आदर्श है, जिसका अर्थ है कि परस्पर क्रिया में विलेय और विलायक समान हैं, तो ऊपर उल्लिखित सभी प्रकार के आकर्षण का मूल्य समान है। परिणामस्वरूप, आकर्षण के टूटने और बनने से होने वाला एन्थैल्पी परिवर्तन रद्द हो जाता है, और एक आदर्शविलयन के तनुकरण से कोई एन्थैल्पी परिवर्तन नहीं होता है।[3] हालाँकि, यदि आणविक आकर्षण के संदर्भ में विचार करने पर विलेय और विलायक को समान रूप से व्यवहार नहीं किया जा सकता है, जो विलयन को गैर-आदर्श बनाता है, तो एन्थैल्पी का शुद्ध परिवर्तन गैर-शून्य है। दूसरे शब्दों में, तनुकरण की ऊष्मा घोल की गैर-आदर्शता के कारण उत्पन्न होती है।
अम्ल के उदाहरण
जलीय घोल में कुछ अम्ल के अनंत तनुकरण तक तनुकरण की अभिन्न ऊष्मा को निम्नलिखित तालिका में दिखाया गया है।[2]
in kJ/mol at 25 °C | |||||||||
m | Dil. ratio | HF | HCl | HClO4 | HBr | HI | HNO3 | CH2O2 | C2H4O4 |
55.506 | 1.0 | 45.61 | 48.83 | 19.73 | 0.046 | 2.167 | |||
5.5506 | 10 | 13.66 | 5.841 | -0.490 | 4.590 | 3.577 | 1.540 | 0.285 | 1.477 |
0.5551 | 100 | 13.22 | 1.234 | 0.050 | 0.983 | 0.736 | 0.502 | 0.184 | 0.423 |
0.0555 | 1000 | 12.42 | 0.427 | 0.259 | 0.385 | 0.351 | 0.318 | 0.121 | 0.272 |
0.00555 | 10000 | 8.912 | 0.142 | 0.126 | 0.130 | 0.121 | 0.130 | 0.105 | 0.243 |
0.000555 | 100000 | 3.766 | 0.042 | 0.042 | 0.038 | 0.038 | 0.046 | 0.054 | 0.209 |
0 | ∞ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
संदर्भ
- ↑ H. DeVoe, "Reactions of other chemical processes," in Thermodynamics and Chemistry, 2nd ed. London, UK: Pearson Education, 2001, pp. 303-366.
- ↑ 2.0 2.1 V. B. Parker, "Heats of dilution," in Thermal Properties of Aqueous Uni-Univalent Electrolytes, Washington DC: U.S. Government Printing Office, 1965, pp. 10-19.
- ↑ P. Atkins and J. D. Paula, "Simple mixtures," in Physical Chemistry, 8th ed. New York: W.H. Freeman and Company, 2006, pp. 137-173.