हाइपरेलिप्टिक वक्र: Difference between revisions

From Vigyanwiki
No edit summary
Line 27: Line 27:
वास्तव में ज्यामितीय आशुलिपि को ग्रहण किया जाता हैI वक्र C को प्रक्षेप्य रेखा के रेमिफाइड द्वितीय आवरण के रूप में परिभाषित किया जाता हैI f की रेमीफिकेशन और अनंत बिंदु पर विषम n के लिए भी परिभाषित किया जाता हैl इस तरह n = 2g + 1 और 2g + 2 को एकीकृत किया जा सकता है क्योंकि हम प्रक्षेपी विमान का उपयोग अनंत से दूर किसी भी शाखा बिंदु को स्थानांतरित करने के लिए कर सकते हैं।
वास्तव में ज्यामितीय आशुलिपि को ग्रहण किया जाता हैI वक्र C को प्रक्षेप्य रेखा के रेमिफाइड द्वितीय आवरण के रूप में परिभाषित किया जाता हैI f की रेमीफिकेशन और अनंत बिंदु पर विषम n के लिए भी परिभाषित किया जाता हैl इस तरह n = 2g + 1 और 2g + 2 को एकीकृत किया जा सकता है क्योंकि हम प्रक्षेपी विमान का उपयोग अनंत से दूर किसी भी शाखा बिंदु को स्थानांतरित करने के लिए कर सकते हैं।


== रीमैन-हर्विट्ज फॉर्मूला का उपयोग करना ==
== रीमैन-हर्विट्ज फॉर्मूला का उपयोग ==


'''रीमान-हर्विट्ज सूत्र का उपयोग करते हुए जीनस g के साथ हाइपरेलिप्टिक वक्र को डिग्री n = 2g + 2 के साथ समीकरण द्वारा परिभाषित किया जा सकता हैI मान लीजिए f  X → P<sup>1</sup> शाखित आवरण है जिसमें रेमीफिकेशन डिग्री 2 है जहां X जीनस g और P के साथ वक्र है<sup>1I</sup>जी<sub>1</sub> = जी और जी<sub>0</sub> P की से संबंधित हो<sup>1</sup> (= 0)है तो रीमैन-हर्वित्ज़ सूत्र निम्न है'''  
'''रीमान-हर्विट्ज सूत्र का उपयोग करते हुए जीनस g के साथ हाइपरेलिप्टिक वक्र को डिग्री n = 2g + 2 के साथ समीकरण द्वारा परिभाषित किया जा सकता हैI मान लीजिए f  X → P<sup>1</sup> शाखित आवरण है जिसमें रेमीफिकेशन डिग्री 2 है जहां X जीनस g और P के साथ वक्र है<sup>1I</sup>जी<sub>1</sub> = जी और जी<sub>0</sub> P की से संबंधित हो<sup>1</sup> (= 0)है तो रीमैन-हर्वित्ज़ सूत्र निम्न है'''  

Revision as of 12:07, 10 May 2023

चित्र 1: हाइपरेलिप्टिक वक्र का ग्राफ कहाँ

बीजगणितीय ज्यामिति में हाइपरेलिप्टिक वक्र जीनस, गणित g> 1 का बीजगणितीय वक्र है जो फार्म के समीकरण द्वारा दिया जाता है।

जहां f(x) घात n = 2g + 1 > 4 या n = 2g + 2 > 4 का बहुपद है जिसका n विशिष्ट मूल है, और h(x) घात <g + 2 का बहुपद है (यदि ग्राउंड फील्ड 2 नहीं है, कोई h(x) = 0) ले सकता है।

वक्र की बीजगणितीय विविधता या वक्र पर जैकोबियन विविधता के फ़ंक्शन फ़ील्ड का एक तत्व हैI वहां ये दो अवधारणाएं समान हैं लेकिन हाइपरेलिप्टिक कार्यों के लिए भिन्न हैं।

जीनस

बहुपद की डिग्री वक्र के जीनस को निर्धारित करती हैI डिग्री 2g + 1 या 2g + 2 का बहुपद जीनस g का वक्र प्रस्तुत करता है। जब डिग्री 2g + 1 के बराबर होती है तो वक्र को काल्पनिक हाइपरेलिप्टिक वक्र कहा जाता है। इस बीच डिग्री 2g + 2 के वक्र को वास्तविक हाइपरेलिप्टिक वक्र कहा जाता है। जीनस के बारे में g = 0 या 1 के लिए सही रहता है लेकिन उनको "हाइपरेलिप्टिक" नहीं कहा जाता है। g = 1 वक्र को दीर्घवृत्तीय वक्र कहा जाता है।

निरूपण और मॉडल का चुनाव

निरूपण और मॉडल हाइपरेलिप्टिक वक्रों का वर्णन करने का सबसे सरल तरीका है इस तरह के समीकरण में प्रक्षेपी विमान गणितीय विलक्षणता पर आधारित है । यह विशेषता n> 3 के लिए विशिष्ट है। इसलिए इस तरह के समीकरणद्विभाजित ज्यामिति से संबंधित है I

समीकरण C(x), के द्विघात विस्तार को परिभाषित करता हैI यह वह कार्य क्षेत्र है जिसको सामान्यीकरण, अभिन्न समापन प्रक्रिया द्वारा हटाया जा सकता हैI

और दूसरा द्वारा दिया गया
दो चार्टों के बीच का मानचित्र
और
जहां भी उन्हें परिभाषित किया गया है।

वास्तव में ज्यामितीय आशुलिपि को ग्रहण किया जाता हैI वक्र C को प्रक्षेप्य रेखा के रेमिफाइड द्वितीय आवरण के रूप में परिभाषित किया जाता हैI f की रेमीफिकेशन और अनंत बिंदु पर विषम n के लिए भी परिभाषित किया जाता हैl इस तरह n = 2g + 1 और 2g + 2 को एकीकृत किया जा सकता है क्योंकि हम प्रक्षेपी विमान का उपयोग अनंत से दूर किसी भी शाखा बिंदु को स्थानांतरित करने के लिए कर सकते हैं।

रीमैन-हर्विट्ज फॉर्मूला का उपयोग

रीमान-हर्विट्ज सूत्र का उपयोग करते हुए जीनस g के साथ हाइपरेलिप्टिक वक्र को डिग्री n = 2g + 2 के साथ समीकरण द्वारा परिभाषित किया जा सकता हैI मान लीजिए f X → P1 शाखित आवरण है जिसमें रेमीफिकेशन डिग्री 2 है जहां X जीनस g और P के साथ वक्र है1Iजी1 = जी और जी0 P की से संबंधित हो1 (= 0)है तो रीमैन-हर्वित्ज़ सूत्र निम्न है

जहां s, X के सभी शाखा बिंदुओं से अधिक है। शाखा बिंदुओं की संख्या n है, इसलिए n = 2g + 2। है I

घटना और अनुप्रयोग

जीनस 2 के सभी वक्र हाइपरेलिप्टिक हैं लेकिन जीनस ≥ 3 के लिए सामान्य वक्र हाइपरेलिप्टिक नहीं है। इसे मॉड्यूलि स्पेस डायमेंशन चेक द्वारा ह्यूरिस्टिक रूप से देखा जाता है। n = 2g + 2 के साथ स्थिरांक की गणना, प्रक्षेपी रेखा के ऑटोमोर्फिज्म की क्रिया के अधीन n बिंदुओं का संग्रह (2g + 2) -3 की डिग्री है जो कि 3g - 3 से कम हैI कर्व्स या एबेलियन के मॉड्यूलि स्पेस में हाइपरेलिप्टिक लोकस के बारे में बहुत कुछ जाना जाता हैI हालांकि सरल मॉडलों के साथ सामान्य गैर-हाइपरलिप्टिक वक्रों को प्रदर्शित करना कठिन है।[1] हाइपरेलिप्टिक वक्रों का ज्यामितीय लक्षण वर्णन वेइरस्ट्रास बिंदुओं के माध्यम से होता है। गैर-हाइपरलिप्टिक वक्रों की अधिक विस्तृत ज्यामिति विहित वक्र के सिद्धांत से संबंधित हैI # विहित मानचित्र हाइपरेलिप्टिक वक्रों पर 2-से-1 होते हैंI त्रिकोणीय वक्र वे होते हैं जो बहुपद के वर्गमूल के बजाय घनमूल लेने के लिए प्रभावित होते हैं I

परिमेय फलन क्षेत्र के द्विघात विस्तार द्वारा परिभाषा विशेषता को छोड़कर सामान्य रूप से क्षेत्रों के लिए कार्य करती है I सभी स्थितियों में अगर विस्तार को वियोज्य माना जाता है तो यह परिभाषा प्रोजेक्टिव रेमिफाइड के रूप में उपलब्ध हैI

असतत लघुगणक समस्या के आधार पर क्रिप्टोसिस्टम के लिए हाइपरेलिप्टिक वक्र क्रिप्टोग्राफी में हाइपरेलिप्टिक वक्र का उपयोग किया जा सकता है।

हाइपरेलिप्टिक वक्र भी एबेलियन डिफरेंशियल के मॉडुलि स्पेस के कुछ स्तर के घटकों को बनाते हुए दिखाई देते हैं।[2]जीनस = 1 में मिखाइल लियोनिदोविच ग्रोमोव के फिलिंग एरिया अनुमान को प्रस्तुत करने के लिए जीनस -2 कर्व्स की हाइपरेलिप्टिसिटी का प्रयोग किया गया था।

वर्गीकरण

दिए गए जीनस जी के हाइपरेलिप्टिक वक्र में मॉड्यूलि स्पेस होता है जो डिग्री 2g + 2 के बाइनरी फॉर्म के इनवेरिएंट से संबंधित होता है।

इतिहास

स्वतंत्र रूप से वॉल्यूम 11, 1851 में जोहान जी. रोसेनहैन ने उस पर काम किया और पहली तरह के अल्ट्राएलिप्टिक इंटीग्रल के व्युत्क्रम प्रकाशित किए I

यह भी देखें

संदर्भ

  • "Hyper-elliptic curve", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • A user's guide to the local arithmetic of hyperelliptic curves

टिप्पणियाँ

  1. Poor, Cris (1996). "Schottky's form and the hyperelliptic locus". Proceedings of the American Mathematical Society. 124 (7): 1987–1991. doi:10.1090/S0002-9939-96-03312-6. MR 1327038.
  2. Kontsevich, Maxim; Zorich, Anton (2003). "निर्धारित विलक्षणताओं के साथ एबेलियन डिफरेंशियल के मोडुली स्पेस के जुड़े हुए घटक". Inventiones Mathematicae. 153 (3): 631–678. arXiv:math.GT/0201292. Bibcode:2003InMat.153..631K. doi:10.1007/s00222-003-0303-x. S2CID 14716447.