अनुवर्ती सीमा: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|The limit of some subsequence}} {{refimprove|date=April 2023}} गणित में, किसी अनुक्रम की अनुवर्त...")
 
No edit summary
Line 1: Line 1:
{{Short description|The limit of some subsequence}}
{{Short description|The limit of some subsequence}}
{{refimprove|date=April 2023}}
{{refimprove|date=April 2023}}
गणित में, किसी [[अनुक्रम]] की अनुवर्ती सीमा कुछ अनुवर्ती [[अनुक्रम की सीमा]] होती है।<ref name="ross">{{cite book |last1=Ross |first1=Kenneth A. |title=Elementary Analysis: The Theory of Calculus |date=3 March 1980 |publisher=Springer |isbn=9780387904597 |url=https://books.google.com/books?id=5JxHZNpMq3AC |access-date=5 April 2023}}</ref> प्रत्येक अनुवर्ती सीमा एक [[क्लस्टर बिंदु]] है, लेकिन इसके विपरीत नहीं। [[प्रथम-गणनीय स्थान]]|प्रथम-गणनीय स्थान में, दोनों अवधारणाएँ मेल खाती हैं।
गणित में, किसी [[अनुक्रम]] की अनुवर्ती सीमा कुछ अनुवर्ती की [[अनुक्रम की सीमा]] होती है।<ref name="ross">{{cite book |last1=Ross |first1=Kenneth A. |title=Elementary Analysis: The Theory of Calculus |date=3 March 1980 |publisher=Springer |isbn=9780387904597 |url=https://books.google.com/books?id=5JxHZNpMq3AC |access-date=5 April 2023}}</ref> प्रत्येक अनुवर्ती सीमा एक क्लस्टर बिंदु है, लेकिन इसके विपरीत नहीं है। प्रथम-गणनीय रिक्त स्थान में, दोनों अवधारणाएँ मेल खाती हैं।


टोपोलॉजिकल स्पेस में, यदि प्रत्येक अनुवर्ती की एक ही बिंदु पर अनुवर्ती सीमा होती है, तो मूल अनुक्रम भी उस सीमा तक परिवर्तित हो जाता है। इसे अभिसरण की अधिक सामान्यीकृत धारणाओं में रखने की आवश्यकता नहीं है, जैसे बिंदुवार अभिसरण का स्थान#लगभग हर जगह अभिसरण।
 
एक टोपोलॉजिकल स्पेस में, यदि प्रत्येक अनुवर्ती की एक ही बिंदु पर एक अनुवर्ती सीमा होती है, तो मूल अनुक्रम भी उस सीमा तक परिवर्तित हो जाता है। इसे अभिसरण की अधिक सामान्यीकृत धारणाओं में शामिल करने की आवश्यकता नहीं है, जैसे कि लगभग हर जगह अभिसरण की जगह है।


किसी अनुक्रम की सभी अनुवर्ती सीमाओं के समुच्चय के सर्वोच्च को सीमा श्रेष्ठ या लिमसुप कहा जाता है। इसी प्रकार, ऐसे समुच्चय के अनंत को सीमा अवर, या सीमित कहा जाता है। सीमा श्रेष्ठ और सीमा निम्न देखें।<ref name="ross" />
किसी अनुक्रम की सभी अनुवर्ती सीमाओं के समुच्चय के सर्वोच्च को सीमा श्रेष्ठ या लिमसुप कहा जाता है। इसी प्रकार, ऐसे समुच्चय के अनंत को सीमा अवर, या सीमित कहा जाता है। सीमा श्रेष्ठ और सीमा निम्न देखें।<ref name="ross" />

Revision as of 16:02, 6 August 2023

गणित में, किसी अनुक्रम की अनुवर्ती सीमा कुछ अनुवर्ती की अनुक्रम की सीमा होती है।[1] प्रत्येक अनुवर्ती सीमा एक क्लस्टर बिंदु है, लेकिन इसके विपरीत नहीं है। प्रथम-गणनीय रिक्त स्थान में, दोनों अवधारणाएँ मेल खाती हैं।


एक टोपोलॉजिकल स्पेस में, यदि प्रत्येक अनुवर्ती की एक ही बिंदु पर एक अनुवर्ती सीमा होती है, तो मूल अनुक्रम भी उस सीमा तक परिवर्तित हो जाता है। इसे अभिसरण की अधिक सामान्यीकृत धारणाओं में शामिल करने की आवश्यकता नहीं है, जैसे कि लगभग हर जगह अभिसरण की जगह है।

किसी अनुक्रम की सभी अनुवर्ती सीमाओं के समुच्चय के सर्वोच्च को सीमा श्रेष्ठ या लिमसुप कहा जाता है। इसी प्रकार, ऐसे समुच्चय के अनंत को सीमा अवर, या सीमित कहा जाता है। सीमा श्रेष्ठ और सीमा निम्न देखें।[1]

अगर एक मीट्रिक स्थान है और एक कॉची अनुक्रम है जैसे कि कुछ के लिए एक अनुवर्ती अभिसरण होता है फिर अनुक्रम भी परिवर्तित हो जाता है


यह भी देखें

संदर्भ

  1. 1.0 1.1 Ross, Kenneth A. (3 March 1980). Elementary Analysis: The Theory of Calculus. Springer. ISBN 9780387904597. Retrieved 5 April 2023.