क्वांटम धारिता: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
क्वांटम धारिता,<ref name="Luryi">{{cite journal|author=Serge Luryi|date=1988|title=क्वांटम कैपेसिटेंस डिवाइस|url=http://www.ece.sunysb.edu/~serge/63.pdf|journal=Applied Physics Letters|volume=52|issue=6|pages=501–503|bibcode=1988ApPhL..52..501L|doi=10.1063/1.99649}}</ref> को रासायनिक धारिता<ref name=Bisquert/> और इलेक्ट्रोकेमिकल धारिता भी कहा जाता है <math>C_\bar{\mu}</math>,<ref name=":0">{{Cite journal|last1=Miranda|first1=David A.|last2=Bueno|first2=Paulo R.|date=2016-09-21|title=घनत्व कार्यात्मक सिद्धांत और इलेक्ट्रॉन घनत्व का प्रयोगात्मक रूप से डिज़ाइन किया गया ऊर्जा कार्यात्मक|journal=Phys. Chem. Chem. Phys.|language=en|volume=18|issue=37|pages=25984–25992|doi=10.1039/c6cp01659f|pmid=27722307|issn=1463-9084|bibcode=2016PCCP...1825984M}}</ref> एक मात्रा है जिसे सबसे पहले सर्ज लुरी (1988) ने प्रस्तुत किया था,।<ref name="Luryi" /> और इसे विद्युत आवेश की भिन्नता के रूप में परिभाषित किया गया है <math>q</math> [[विद्युत रासायनिक क्षमता]] की भिन्नता के संबंध में <math>\bar{\mu}</math>, अर्थात, <math>C_{\bar{\mu}} = \frac{dq}{d\bar{\mu}}</math>.<ref name=":0" /> | क्वांटम धारिता,<ref name="Luryi">{{cite journal|author=Serge Luryi|date=1988|title=क्वांटम कैपेसिटेंस डिवाइस|url=http://www.ece.sunysb.edu/~serge/63.pdf|journal=Applied Physics Letters|volume=52|issue=6|pages=501–503|bibcode=1988ApPhL..52..501L|doi=10.1063/1.99649}}</ref> को रासायनिक धारिता<ref name=Bisquert/> और इलेक्ट्रोकेमिकल धारिता भी कहा जाता है <math>C_\bar{\mu}</math>,<ref name=":0">{{Cite journal|last1=Miranda|first1=David A.|last2=Bueno|first2=Paulo R.|date=2016-09-21|title=घनत्व कार्यात्मक सिद्धांत और इलेक्ट्रॉन घनत्व का प्रयोगात्मक रूप से डिज़ाइन किया गया ऊर्जा कार्यात्मक|journal=Phys. Chem. Chem. Phys.|language=en|volume=18|issue=37|pages=25984–25992|doi=10.1039/c6cp01659f|pmid=27722307|issn=1463-9084|bibcode=2016PCCP...1825984M}}</ref> एक मात्रा है जिसे सबसे पहले सर्ज लुरी (1988) ने प्रस्तुत किया था,।<ref name="Luryi" /> और इसे विद्युत आवेश की भिन्नता के रूप में परिभाषित किया गया है <math>q</math> [[विद्युत रासायनिक क्षमता]] की भिन्नता के संबंध में <math>\bar{\mu}</math>, अर्थात, <math>C_{\bar{\mu}} = \frac{dq}{d\bar{\mu}}</math>.<ref name=":0" /> | ||
सबसे सरल उदाहरण में, यदि आप एक [[समानांतर-प्लेट संधारित्र]] बनाते हैं, जहां एक या दोनों प्लेटों का घनत्व कम होता है, तो समाई समानांतर-प्लेट संधारित्र के लिए सामान्य सूत्र द्वारा नहीं दी जाती है, <math>C_e</math>. इसके | सबसे सरल उदाहरण में, यदि आप एक [[समानांतर-प्लेट संधारित्र]] बनाते हैं, जहां एक या दोनों प्लेटों का घनत्व कम होता है, तो समाई समानांतर-प्लेट संधारित्र के लिए सामान्य सूत्र द्वारा नहीं दी जाती है, <math>C_e</math>. इसके अतिरिक्त, धारिता कम है, जैसे कि श्रृंखला में कोई अन्य संधारित्र हो, <math>C_q</math>. प्लेटों की अवस्थाओं के घनत्व से संबंधित यह दूसरी धारिता, क्वांटम धारिता है और इसे निम्न <math>C_q</math> द्वारा दर्शाया जाता है। समतुल्य धारिता को विद्युतरासायनिक धारिता कहा जाता है <math>\frac{1}{C_{\bar{\mu}}} = \frac{1}{C_e} + \frac{1}{C_q}</math>. | ||
क्वांटम धारिता विशेष रूप से निम्न-घनत्व-स्थिति प्रणालियों के लिए महत्वपूर्ण है, जैसे अर्धचालक सतह या इंटरफ़ेस या [[ग्राफीन]] में [[2DEG|2-आयामी]] इलेक्ट्रॉनिक प्रणाली, और इसका उपयोग इलेक्ट्रॉन घनत्व की एक प्रयोगात्मक ऊर्जा कार्यात्मकता के निर्माण के लिए किया जा सकता है।<ref name=":0" /> | क्वांटम धारिता विशेष रूप से निम्न-घनत्व-स्थिति प्रणालियों के लिए महत्वपूर्ण है, जैसे अर्धचालक सतह या इंटरफ़ेस या [[ग्राफीन]] में [[2DEG|2-आयामी]] इलेक्ट्रॉनिक प्रणाली, और इसका उपयोग इलेक्ट्रॉन घनत्व की एक प्रयोगात्मक ऊर्जा कार्यात्मकता के निर्माण के लिए किया जा सकता है।<ref name=":0" /> | ||
== सिंहावलोकन == | == सिंहावलोकन == | ||
जब किसी इलेक्ट्रॉनिक उपकरण को मापने के लिए वोल्टमीटर का उपयोग किया जाता है, तो यह शुद्ध विद्युत क्षमता (जिसे [[गैलवानी क्षमता]] भी कहा जाता है) को पूरी तरह से माप नहीं पाता है। इसके | जब किसी इलेक्ट्रॉनिक उपकरण को मापने के लिए वोल्टमीटर का उपयोग किया जाता है, तो यह शुद्ध विद्युत क्षमता (जिसे [[गैलवानी क्षमता]] भी कहा जाता है) को पूरी तरह से माप नहीं पाता है। इसके अतिरिक्त, यह इलेक्ट्रोकेमिकल क्षमता को मापता है, जिसे [[ फर्मी स्तर ]] अंतर भी कहा जाता है, जो प्रति इलेक्ट्रॉन कुल मुक्त ऊर्जा अंतर है, जिसमें न केवल इसकी विद्युत स्थितिज ऊर्जा, बल्कि इलेक्ट्रॉन पर अन्य सभी बल और प्रभाव (जैसे कि इसकी [[तरंग क्रिया]] में गतिज ऊर्जा) भी सम्मलित हैं। उदाहरण के लिए, संतुलन में एक [[पी-एन जंक्शन]], जंक्शन के पार एक गैलवानी क्षमता (अंतर्निहित क्षमता) होती है, लेकिन इसके पार "वोल्टेज" शून्य होता है (इस अर्थ में कि एक वोल्टमीटर शून्य वोल्टेज को मापेगा)। | ||
संधारित्र में आवेश और वोल्टेज के बीच एक संबंध <math>Q=CV</math> होता है। जैसा कि ऊपर बताया गया है, हम वोल्टेज को दो भागों में विभाजित कर सकते हैं: गैल्वनी क्षमता, और बाकी सब कुछ। | संधारित्र में आवेश और वोल्टेज के बीच एक संबंध <math>Q=CV</math> होता है। जैसा कि ऊपर बताया गया है, हम वोल्टेज को दो भागों में विभाजित कर सकते हैं: गैल्वनी क्षमता, और बाकी सब कुछ। | ||
Line 14: | Line 12: | ||
पारंपरिक धातु-इन्सुलेटर-धातु संधारित्र में, गैलवानी क्षमता ही एकमात्र प्रासंगिक योगदान है। इसलिए, गॉस के नियम का उपयोग करके समाई की गणना सीधे तरीके से की जा सकती है। | पारंपरिक धातु-इन्सुलेटर-धातु संधारित्र में, गैलवानी क्षमता ही एकमात्र प्रासंगिक योगदान है। इसलिए, गॉस के नियम का उपयोग करके समाई की गणना सीधे तरीके से की जा सकती है। | ||
चूंकि, यदि एक या दोनों संधारित्र प्लेटें [[अर्धचालक]] हैं, तो जरूरी नहीं कि धारिता में गैलवानी क्षमता ही एकमात्र महत्वपूर्ण योगदान हो। जैसे-जैसे संधारित्र चार्ज बढ़ता है, नकारात्मक प्लेट इलेक्ट्रॉनों से भर जाती है, जो बैंड संरचना में उच्च-ऊर्जा वाली अवस्था पर कब्जा कर लेती है, जबकि सकारात्मक प्लेट इलेक्ट्रॉनों को खो देती है, जिससे बैंड संरचना में कम-ऊर्जा वाले इलेक्ट्रॉनों को पीछे छोड़ दिया जाता है। इसलिए, जैसे ही संधारित्र चार्ज या डिस्चार्ज होता है, वोल्टेज गैल्वनी संभावित अंतर की तुलना में एक अलग दर पर बदलता है। | |||
इन स्थितियों में, कोई केवल समग्र ज्यामिति को देखकर और गॉस के नियम का उपयोग करके धारिता की गणना नहीं कर सकता है। प्लेटों के घनत्व की स्थिति से संबंधित बैंड-फिलिंग/बैंड-खाली प्रभाव को भी ध्यान में रखना चाहिए। बैंड-फिलिंग/बैंड-खाली प्रभाव धारिता को बदल देता है, श्रृंखला में दूसरे धारिता का अनुकरण करता है। इस धारिता को क्वांटम धारिता कहा जाता है, क्योंकि यह एक इलेक्ट्रॉन की क्वांटम तरंग क्रिया की ऊर्जा से संबंधित है। | इन स्थितियों में, कोई केवल समग्र ज्यामिति को देखकर और गॉस के नियम का उपयोग करके धारिता की गणना नहीं कर सकता है। प्लेटों के घनत्व की स्थिति से संबंधित बैंड-फिलिंग/बैंड-खाली प्रभाव को भी ध्यान में रखना चाहिए। बैंड-फिलिंग/बैंड-खाली प्रभाव धारिता को बदल देता है, श्रृंखला में दूसरे धारिता का अनुकरण करता है। इस धारिता को क्वांटम धारिता कहा जाता है, क्योंकि यह एक इलेक्ट्रॉन की क्वांटम तरंग क्रिया की ऊर्जा से संबंधित है। | ||
Line 49: | Line 47: | ||
|background colour=#F5FFFA}} | |background colour=#F5FFFA}} | ||
परवलयिक फैलाव वाले सामान्य 2DEG के | परवलयिक फैलाव वाले सामान्य 2DEG के स्थिति में,<ref name=Luryi /> | ||
:<math>C_\text{quantum} = \frac{g_v m^* e^2}{\pi \hbar^2}</math> | :<math>C_\text{quantum} = \frac{g_v m^* e^2}{\pi \hbar^2}</math> | ||
Line 74: | Line 72: | ||
डाई-सेंसिटाइज़्ड सौर सेल के मॉडलिंग और विश्लेषण में, सिंटेड TiO2 (टाइटेनियम डाइऑक्साइड) नैनोकण इलेक्ट्रोड की क्वांटम धारिता एक महत्वपूर्ण प्रभाव है, जैसा कि जुआन बिस्क्वेर्ट के काम में वर्णित है।<ref name="Bisquert" /><ref>{{Cite journal| doi=10.1039/B310907K | journal = Phys. Chem. Chem. Phys. | title = Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells | author = Juan Bisquert | date=2003 | volume=5 | issue = 24 | page = 5360|bibcode = 2003PCCP....5.5360B }}</ref><ref>{{cite book |title=Nanostructured Energy Devices: Equilibrium Concepts and Kinetics |author=Juan Bisquert |date=2014 |url=https://www.crcpress.com/Nanostructured-Energy-Devices-Equilibrium-Concepts-and-Kinetics/Bisquert/p/book/9781439836026 |isbn=9781439836026}}</ref> | डाई-सेंसिटाइज़्ड सौर सेल के मॉडलिंग और विश्लेषण में, सिंटेड TiO2 (टाइटेनियम डाइऑक्साइड) नैनोकण इलेक्ट्रोड की क्वांटम धारिता एक महत्वपूर्ण प्रभाव है, जैसा कि जुआन बिस्क्वेर्ट के काम में वर्णित है।<ref name="Bisquert" /><ref>{{Cite journal| doi=10.1039/B310907K | journal = Phys. Chem. Chem. Phys. | title = Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells | author = Juan Bisquert | date=2003 | volume=5 | issue = 24 | page = 5360|bibcode = 2003PCCP....5.5360B }}</ref><ref>{{cite book |title=Nanostructured Energy Devices: Equilibrium Concepts and Kinetics |author=Juan Bisquert |date=2014 |url=https://www.crcpress.com/Nanostructured-Energy-Devices-Equilibrium-Concepts-and-Kinetics/Bisquert/p/book/9781439836026 |isbn=9781439836026}}</ref> | ||
लुरी ने 2डीईजी का उपयोग करते हुए विभिन्न प्रकार के उपकरणों का प्रस्ताव रखा, जो केवल 2डीईजी घनत्व की स्थिति और इसके संबंधित क्वांटम धारिता प्रभाव के कारण काम करते हैं।<ref name="Luryi" /> उदाहरण के लिए, तीन-प्लेट कॉन्फ़िगरेशन मेटल-इंसुलेटर-2डीईजी-इंसुलेटर-मेटल में, क्वांटम धारिता प्रभाव का | लुरी ने 2डीईजी का उपयोग करते हुए विभिन्न प्रकार के उपकरणों का प्रस्ताव रखा, जो केवल 2डीईजी घनत्व की स्थिति और इसके संबंधित क्वांटम धारिता प्रभाव के कारण काम करते हैं।<ref name="Luryi" /> उदाहरण के लिए, तीन-प्लेट कॉन्फ़िगरेशन मेटल-इंसुलेटर-2डीईजी-इंसुलेटर-मेटल में, क्वांटम धारिता प्रभाव का तात्पर्य है कि दो कैपेसिटर एक दूसरे के साथ बातचीत करते हैं। | ||
क्वांटम धारिता धारिता-वोल्टेज प्रोफाइलिंग में प्रासंगिक हो सकता है। | क्वांटम धारिता धारिता-वोल्टेज प्रोफाइलिंग में प्रासंगिक हो सकता है। |
Revision as of 18:35, 8 August 2023
क्वांटम धारिता,[1] को रासायनिक धारिता[2] और इलेक्ट्रोकेमिकल धारिता भी कहा जाता है ,[3] एक मात्रा है जिसे सबसे पहले सर्ज लुरी (1988) ने प्रस्तुत किया था,।[1] और इसे विद्युत आवेश की भिन्नता के रूप में परिभाषित किया गया है विद्युत रासायनिक क्षमता की भिन्नता के संबंध में , अर्थात, .[3]
सबसे सरल उदाहरण में, यदि आप एक समानांतर-प्लेट संधारित्र बनाते हैं, जहां एक या दोनों प्लेटों का घनत्व कम होता है, तो समाई समानांतर-प्लेट संधारित्र के लिए सामान्य सूत्र द्वारा नहीं दी जाती है, . इसके अतिरिक्त, धारिता कम है, जैसे कि श्रृंखला में कोई अन्य संधारित्र हो, . प्लेटों की अवस्थाओं के घनत्व से संबंधित यह दूसरी धारिता, क्वांटम धारिता है और इसे निम्न द्वारा दर्शाया जाता है। समतुल्य धारिता को विद्युतरासायनिक धारिता कहा जाता है .
क्वांटम धारिता विशेष रूप से निम्न-घनत्व-स्थिति प्रणालियों के लिए महत्वपूर्ण है, जैसे अर्धचालक सतह या इंटरफ़ेस या ग्राफीन में 2-आयामी इलेक्ट्रॉनिक प्रणाली, और इसका उपयोग इलेक्ट्रॉन घनत्व की एक प्रयोगात्मक ऊर्जा कार्यात्मकता के निर्माण के लिए किया जा सकता है।[3]
सिंहावलोकन
जब किसी इलेक्ट्रॉनिक उपकरण को मापने के लिए वोल्टमीटर का उपयोग किया जाता है, तो यह शुद्ध विद्युत क्षमता (जिसे गैलवानी क्षमता भी कहा जाता है) को पूरी तरह से माप नहीं पाता है। इसके अतिरिक्त, यह इलेक्ट्रोकेमिकल क्षमता को मापता है, जिसे फर्मी स्तर अंतर भी कहा जाता है, जो प्रति इलेक्ट्रॉन कुल मुक्त ऊर्जा अंतर है, जिसमें न केवल इसकी विद्युत स्थितिज ऊर्जा, बल्कि इलेक्ट्रॉन पर अन्य सभी बल और प्रभाव (जैसे कि इसकी तरंग क्रिया में गतिज ऊर्जा) भी सम्मलित हैं। उदाहरण के लिए, संतुलन में एक पी-एन जंक्शन, जंक्शन के पार एक गैलवानी क्षमता (अंतर्निहित क्षमता) होती है, लेकिन इसके पार "वोल्टेज" शून्य होता है (इस अर्थ में कि एक वोल्टमीटर शून्य वोल्टेज को मापेगा)।
संधारित्र में आवेश और वोल्टेज के बीच एक संबंध होता है। जैसा कि ऊपर बताया गया है, हम वोल्टेज को दो भागों में विभाजित कर सकते हैं: गैल्वनी क्षमता, और बाकी सब कुछ।
पारंपरिक धातु-इन्सुलेटर-धातु संधारित्र में, गैलवानी क्षमता ही एकमात्र प्रासंगिक योगदान है। इसलिए, गॉस के नियम का उपयोग करके समाई की गणना सीधे तरीके से की जा सकती है।
चूंकि, यदि एक या दोनों संधारित्र प्लेटें अर्धचालक हैं, तो जरूरी नहीं कि धारिता में गैलवानी क्षमता ही एकमात्र महत्वपूर्ण योगदान हो। जैसे-जैसे संधारित्र चार्ज बढ़ता है, नकारात्मक प्लेट इलेक्ट्रॉनों से भर जाती है, जो बैंड संरचना में उच्च-ऊर्जा वाली अवस्था पर कब्जा कर लेती है, जबकि सकारात्मक प्लेट इलेक्ट्रॉनों को खो देती है, जिससे बैंड संरचना में कम-ऊर्जा वाले इलेक्ट्रॉनों को पीछे छोड़ दिया जाता है। इसलिए, जैसे ही संधारित्र चार्ज या डिस्चार्ज होता है, वोल्टेज गैल्वनी संभावित अंतर की तुलना में एक अलग दर पर बदलता है।
इन स्थितियों में, कोई केवल समग्र ज्यामिति को देखकर और गॉस के नियम का उपयोग करके धारिता की गणना नहीं कर सकता है। प्लेटों के घनत्व की स्थिति से संबंधित बैंड-फिलिंग/बैंड-खाली प्रभाव को भी ध्यान में रखना चाहिए। बैंड-फिलिंग/बैंड-खाली प्रभाव धारिता को बदल देता है, श्रृंखला में दूसरे धारिता का अनुकरण करता है। इस धारिता को क्वांटम धारिता कहा जाता है, क्योंकि यह एक इलेक्ट्रॉन की क्वांटम तरंग क्रिया की ऊर्जा से संबंधित है।
कुछ वैज्ञानिक इसी अवधारणा को रासायनिक धारिता कहते हैं, क्योंकि यह इलेक्ट्रॉनों की रासायनिक क्षमता से संबंधित है।[2]
क्वांटम धारिता के पीछे के विचार थॉमस-फर्मी स्क्रीनिंग और बैंड बेंडिंग से निकटता से जुड़े हुए हैं।
सिद्धांत
एक संधारित्र लें जहां एक तरफ अनिवार्य रूप से अनंत घनत्व वाली धातु हो। दूसरा पक्ष कम घनत्व वाली सामग्री है, उदाहरण के लिए 2डीईजी, अवस्था के घनत्व के साथ . ज्यामितीय धारिता (अर्थात, यदि 2डीईजी को किसी धातु से प्रतिस्थापित कर दिया जाए, केवल गैल्वेनी क्षमता के कारण, धारिता) है।
अब मान लीजिए कि N इलेक्ट्रॉन (का आवेश) को धातु से निम्न-घनत्व वाली धातु में ले जाया जाता है। गैलवानी क्षमता में परिवर्तन होता है . इसके अतिरिक्त, 2डीईजी में इलेक्ट्रॉनों की आंतरिक रासायनिक क्षमता बदल जाती है , जो वोल्टेज परिवर्तन के बराबर है .
कुल वोल्टेज परिवर्तन इन दो योगदानों का योग है। इसलिए, कुल प्रभाव ऐसा है मानो श्रृंखला में दो धारिताएँ हैं: पारंपरिक ज्यामिति-संबंधित धारिता (गॉस के नियम द्वारा गणना के अनुसार), और अवस्था के घनत्व से संबंधित "क्वांटम धारिता"। उत्तरार्द्ध है:
परवलयिक फैलाव वाले सामान्य 2DEG के स्थिति में,[1]
जहां घाटी अध:पतन कारक है, और m* प्रभावी द्रव्यमान (ठोस-अवस्था भौतिकी) है।
अनुप्रयोग
ग्राफीन की क्वांटम धारिता गेटेड ग्राफीन को समझने और मॉडलिंग करने के लिए प्रासंगिक है।[4] यह कार्बन नैनोट्यूब के लिए भी प्रासंगिक है।[5]
डाई-सेंसिटाइज़्ड सौर सेल के मॉडलिंग और विश्लेषण में, सिंटेड TiO2 (टाइटेनियम डाइऑक्साइड) नैनोकण इलेक्ट्रोड की क्वांटम धारिता एक महत्वपूर्ण प्रभाव है, जैसा कि जुआन बिस्क्वेर्ट के काम में वर्णित है।[2][6][7]
लुरी ने 2डीईजी का उपयोग करते हुए विभिन्न प्रकार के उपकरणों का प्रस्ताव रखा, जो केवल 2डीईजी घनत्व की स्थिति और इसके संबंधित क्वांटम धारिता प्रभाव के कारण काम करते हैं।[1] उदाहरण के लिए, तीन-प्लेट कॉन्फ़िगरेशन मेटल-इंसुलेटर-2डीईजी-इंसुलेटर-मेटल में, क्वांटम धारिता प्रभाव का तात्पर्य है कि दो कैपेसिटर एक दूसरे के साथ बातचीत करते हैं।
क्वांटम धारिता धारिता-वोल्टेज प्रोफाइलिंग में प्रासंगिक हो सकता है।
जब सुपरकैपेसिटर का विस्तार से विश्लेषण किया जाता है, तो क्वांटम धारिता एक महत्वपूर्ण भूमिका निभाता है।[8]
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Serge Luryi (1988). "क्वांटम कैपेसिटेंस डिवाइस" (PDF). Applied Physics Letters. 52 (6): 501–503. Bibcode:1988ApPhL..52..501L. doi:10.1063/1.99649.
- ↑ 2.0 2.1 2.2 Bisquert, Juan; Vyacheslav S. Vikhrenko (2004). "Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells". The Journal of Physical Chemistry B. 108 (7): 2313–2322. doi:10.1021/jp035395y.
- ↑ 3.0 3.1 3.2 Miranda, David A.; Bueno, Paulo R. (2016-09-21). "घनत्व कार्यात्मक सिद्धांत और इलेक्ट्रॉन घनत्व का प्रयोगात्मक रूप से डिज़ाइन किया गया ऊर्जा कार्यात्मक". Phys. Chem. Chem. Phys. (in English). 18 (37): 25984–25992. Bibcode:2016PCCP...1825984M. doi:10.1039/c6cp01659f. ISSN 1463-9084. PMID 27722307.
- ↑ Mišković, Z. L.; Nitin Upadhyaya (2010). "Modeling Electrolytically Top-Gated Graphene". Nanoscale Research Letters. 5 (3): 505–511. arXiv:0910.3666. Bibcode:2010NRL.....5..505M. doi:10.1007/s11671-009-9515-3. PMC 2894001. PMID 20672092.
- ↑ Ilani, S.; L. a. K. Donev; M. Kindermann; P. L. McEuen (2006). "Measurement of the quantum capacitance of interacting electrons in carbon nanotubes" (PDF). Nature Physics. 2 (10): 687–691. Bibcode:2006NatPh...2..687I. doi:10.1038/nphys412.
- ↑ Juan Bisquert (2003). "Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells". Phys. Chem. Chem. Phys. 5 (24): 5360. Bibcode:2003PCCP....5.5360B. doi:10.1039/B310907K.
- ↑ Juan Bisquert (2014). Nanostructured Energy Devices: Equilibrium Concepts and Kinetics. ISBN 9781439836026.
- ↑ Bueno, Paulo R. (2019-02-28). "सुपर-कैपेसिटेंस घटना की नैनोस्केल उत्पत्ति". Journal of Power Sources. 414: 420–434. Bibcode:2019JPS...414..420B. doi:10.1016/j.jpowsour.2019.01.010. ISSN 0378-7753. S2CID 104416995.