स्टोकेस्टिक यूलेरियन लैग्रेंजियन विधि: Difference between revisions

From Vigyanwiki
(Created page with "कम्प्यूटेशनल द्रव गतिकी में, स्टोचैस्टिक यूलेरियन लैग्रेंजियन व...")
 
No edit summary
Line 13: Line 13:
   | bibcode = 2011JCoPh.230.2821A
   | bibcode = 2011JCoPh.230.2821A
   | s2cid =6067032
   | s2cid =6067032
  }}</ref> थर्मल उतार-चढ़ाव के अधीन द्रव-संरचना इंटरैक्शन की आवश्यक विशेषताओं को पकड़ने के लिए एक दृष्टिकोण है, जबकि अनुमानों को पेश किया जाता है जो विश्लेषण और ट्रैक्टेबल संख्यात्मक तरीकों के विकास की सुविधा प्रदान करते हैं। SELM एक हाइब्रिड दृष्टिकोण है जो कॉन्टिनम हाइड्रोडायनामिक क्षेत्रों के लिए कॉन्टिनम मैकेनिक्स#यूलेरियन विवरण और लोचदार संरचनाओं के लिए कॉन्टिनम मैकेनिक्स#लैग्रेंजियन विवरण का उपयोग करता है। थर्मल उतार-चढ़ाव को स्टोकेस्टिक ड्राइविंग फ़ील्ड के माध्यम से पेश किया जाता है। सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए संख्यात्मक विवेकीकरण कलाकृतियों को ध्यान में रखते हुए संख्यात्मक तरीकों को प्राप्त करने के लिए एसपीडीई के स्टोकेस्टिक क्षेत्रों के लिए दृष्टिकोण भी पेश किए जाते हैं।<ref name="Atzberger"/>  
  }}</ref> थर्मल उतार-चढ़ाव के अधीन द्रव-संरचना इंटरैक्शन की आवश्यक विशेषताओं को पकड़ने के लिए एक दृष्टिकोण है, जबकि अनुमानों को पेश किया जाता है जो विश्लेषण और ट्रैक्टेबल संख्यात्मक तरीकों के विकास की सुविधा प्रदान करते हैं। SELM एक हाइब्रिड दृष्टिकोण है जो कॉन्टिनम हाइड्रोडायनामिक क्षेत्रों के लिए यूलेरियन विवरण और लोचदार संरचनाओं के लिए लैग्रेंजियन विवरण का उपयोग करता है। थर्मल उतार-चढ़ाव को स्टोकेस्टिक ड्राइविंग फ़ील्ड के माध्यम से पेश किया जाता है। सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए संख्यात्मक विवेकीकरण कलाकृतियों को ध्यान में रखते हुए संख्यात्मक तरीकों को प्राप्त करने के लिए एसपीडीई के स्टोकेस्टिक क्षेत्रों के लिए दृष्टिकोण भी पेश किए जाते हैं।<ref name="Atzberger"/>
 
SELM द्रव-संरचना समीकरण आमतौर पर उपयोग किए जाते हैं
SELM द्रव-संरचना समीकरण आमतौर पर उपयोग किए जाते हैं



Revision as of 09:57, 12 August 2023

कम्प्यूटेशनल द्रव गतिकी में, स्टोचैस्टिक यूलेरियन लैग्रेंजियन विधि (एसईएलएम)[1] थर्मल उतार-चढ़ाव के अधीन द्रव-संरचना इंटरैक्शन की आवश्यक विशेषताओं को पकड़ने के लिए एक दृष्टिकोण है, जबकि अनुमानों को पेश किया जाता है जो विश्लेषण और ट्रैक्टेबल संख्यात्मक तरीकों के विकास की सुविधा प्रदान करते हैं। SELM एक हाइब्रिड दृष्टिकोण है जो कॉन्टिनम हाइड्रोडायनामिक क्षेत्रों के लिए यूलेरियन विवरण और लोचदार संरचनाओं के लिए लैग्रेंजियन विवरण का उपयोग करता है। थर्मल उतार-चढ़ाव को स्टोकेस्टिक ड्राइविंग फ़ील्ड के माध्यम से पेश किया जाता है। सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए संख्यात्मक विवेकीकरण कलाकृतियों को ध्यान में रखते हुए संख्यात्मक तरीकों को प्राप्त करने के लिए एसपीडीई के स्टोकेस्टिक क्षेत्रों के लिए दृष्टिकोण भी पेश किए जाते हैं।[1]

SELM द्रव-संरचना समीकरण आमतौर पर उपयोग किए जाते हैं

दबाव पी द्रव के लिए असंपीड्यता की स्थिति से निर्धारित होता है

 h> संचालक स्वतंत्रता की यूलेरियन और लैग्रेंजियन डिग्री को जोड़ते हैं।  h> संरचनाओं के लिए लैग्रेंजियन निर्देशांक के पूर्ण सेट के समग्र वैक्टर को निरूपित करें।  h> संरचनाओं के विन्यास के लिए संभावित ऊर्जा है।  h> थर्मल उतार-चढ़ाव के लिए लेखांकन स्टोकेस्टिक ड्राइविंग फ़ील्ड हैं।  एच> लैग्रेंज गुणक स्थानीय कठोर शरीर विरूपण (यांत्रिकी) जैसी बाधाएं लगाते हैं। यह सुनिश्चित करने के लिए कि अपव्यय केवल के माध्यम से होता है  युग्मन और ऑपरेटरों द्वारा अंतर-रूपांतरण के परिणामस्वरूप नहीं  निम्नलिखित सहायक शर्तें लगाई गई हैं

थर्मल उतार-चढ़ाव को गॉसियन यादृच्छिक क्षेत्रों के माध्यम से माध्य शून्य और सहप्रसरण संरचना के साथ पेश किया जाता है

सरलीकृत विवरण और कुशल संख्यात्मक तरीकों को प्राप्त करने के लिए, छोटे समय-पैमानों या स्वतंत्रता की जड़त्वीय डिग्री पर गतिशीलता को हटाने के लिए विभिन्न सीमित भौतिक शासनों में सन्निकटन पर विचार किया गया है। विभिन्न सीमित व्यवस्थाओं में, एसईएलएम ढांचा विसर्जित सीमा विधि, त्वरित स्टोक्सियन गतिशीलता और मनमाने ढंग से लैग्रेंजियन यूलेरियन विधि से संबंधित हो सकता है। एसईएलएम दृष्टिकोण को स्टोकेस्टिक द्रव-संरचना गतिशीलता उत्पन्न करने के लिए दिखाया गया है जो सांख्यिकीय यांत्रिकी के अनुरूप है। विशेष रूप से, SELM गतिशीलता को गिब्स-बोल्ट्ज़मैन समूह के लिए विस्तृत-संतुलन को संतुष्ट करने के लिए दिखाया गया है। सामान्यीकृत निर्देशांक और स्वतंत्रता की अतिरिक्त अनुवादात्मक या घूर्णी डिग्री से जुड़ी संरचनाओं के विवरण की अनुमति देते हुए विभिन्न प्रकार के युग्मन ऑपरेटरों को भी पेश किया गया है। एसईएलएम एसपीडीई को संख्यात्मक रूप से अलग करने के लिए, एसपीडीई के लिए संख्यात्मक स्टोकेस्टिक फ़ील्ड प्राप्त करने के लिए सामान्य तरीकों को भी पेश किया गया था जो सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए विवेकाधीन कलाकृतियों को ध्यान में रखते हैं।[1]


यह भी देखें

  • निमज्जित सीमा विधि
  • स्टोकेशियन गतिकी
  • द्रव की मात्रा विधि
  • स्तर-निर्धारित विधि
  • मार्कर-और-सेल विधि

संदर्भ

  1. 1.0 1.1 1.2 Atzberger, Paul (2011). "Stochastic Eulerian Lagrangian Methods for Fluid Structure Interactions with Thermal Fluctuations". Journal of Computational Physics. 230 (8): 2821–2837. arXiv:1009.5648. Bibcode:2011JCoPh.230.2821A. doi:10.1016/j.jcp.2010.12.028. S2CID 6067032.
  1. Atzberger, P.J.; Kramer, P.R.; Peskin, C.S. (2007). "A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales". Journal of Computational Physics. 224 (2): 1255–92. arXiv:0910.5748. Bibcode:2007JCoPh.224.1255A. doi:10.1016/j.jcp.2006.11.015. S2CID 17977915.
  2. Peskin, C.S. (2002). "The immersed boundary method". Acta Numerica. 11: 479–517. doi:10.1017/S0962492902000077. S2CID 53517954.


सॉफ्टवेयर: संख्यात्मक कोड

श्रेणी:द्रव यांत्रिकी श्रेणी:कम्प्यूटेशनल द्रव गतिकी श्रेणी:संख्यात्मक अंतर समीकरण