स्टोकेस्टिक यूलेरियन लैग्रेंजियन विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 34: Line 34:
</math>
</math>


  <math>\Gamma, \Lambda</math> h> संचालक स्वतंत्रता की यूलेरियन और लैग्रेंजियन डिग्री को जोड़ते हैं। <math> X, V </math> h> संरचनाओं के लिए लैग्रेंजियन निर्देशांक के पूर्ण सेट के समग्र वैक्टर को निरूपित करें। <math> \Phi </math> h> संरचनाओं के विन्यास के लिए संभावित ऊर्जा है। <math>f_\mathrm{thm}, F_\mathrm{thm}</math> h> उष्णता सम्बन्धी उतार-चढ़ाव  को ध्यान में रखते हुए स्टोकेस्टिक ड्राइविंग क्षेत्र हैं। <math>\lambda, \xi</math> एच> [[लैग्रेंज गुणक]] स्थानीय कठोर शरीर [[विरूपण (यांत्रिकी)|विरूपण]] जैसी बाधाएं लगाते हैं। यह सुनिश्चित करने के लिए कि अपव्यय केवल के माध्यम से होता है <math>\Upsilon</math> युग्मन और ऑपरेटरों द्वारा अंतर-रूपांतरण के परिणामस्वरूप नहीं <math>\Gamma,\Lambda</math> निम्नलिखित सहायक शर्तें लगाई गई हैं
  <math>\Gamma, \Lambda</math> h> संचालक स्वतंत्रता की यूलेरियन और लैग्रेंजियन डिग्री को जोड़ते हैं। <math> X, V </math> h> संरचनाओं के लिए लैग्रेंजियन निर्देशांक के पूर्ण सेट के समग्र वैक्टर को निरूपित करें। <math> \Phi </math> h> संरचनाओं के विन्यास के लिए संभावित ऊर्जा है। <math>f_\mathrm{thm}, F_\mathrm{thm}</math> h> उष्णता सम्बन्धी उतार-चढ़ाव  को ध्यान में रखते हुए स्टोकेस्टिक ड्राइविंग क्षेत्र हैं। <math>\lambda, \xi</math> एच> [[लैग्रेंज गुणक]] स्थानीय कठोर शरीर [[विरूपण (यांत्रिकी)|विरूपण]] जैसी बाधाएं लगाते हैं। यह सुनिश्चित करने के लिए कि अपव्यय केवल के माध्यम से होता है <math>\Upsilon</math> युग्मन और ऑपरेटरों द्वारा अंतर-रूपांतरण के परिणामस्वरूप नहीं <math>\Gamma,\Lambda</math> निम्नलिखित सहायक अनुबंध लगाई गई हैं


:<math>
:<math>
Line 50: Line 50:
\langle f_\mathrm{thm}(s)F^T_\mathrm{thm}(t) \rangle = -2k_B{T}\Lambda\Upsilon\delta(t - s).
\langle f_\mathrm{thm}(s)F^T_\mathrm{thm}(t) \rangle = -2k_B{T}\Lambda\Upsilon\delta(t - s).
</math>
</math>
सरलीकृत विवरण और कुशल संख्यात्मक प्रकारो को प्राप्त करने के लिए, छोटे समय-पैमानों या स्वतंत्रता की जड़त्वीय डिग्री पर गतिशीलता को हटाने के लिए विभिन्न सीमित भौतिक शासनों में सन्निकटन पर विचार किया गया है। विभिन्न सीमित व्यवस्थाओं में, एसईएलएम ढांचा विसर्जित सीमा विधि, [[त्वरित स्टोक्सियन गतिशीलता]] और मनमाने ढंग से लैग्रेंजियन यूलेरियन विधि से संबंधित हो सकता है। एसईएलएम दृष्टिकोण को स्टोकेस्टिक द्रव-संरचना गतिशीलता उत्पन्न करने के लिए दिखाया गया है जो सांख्यिकीय यांत्रिकी के अनुरूप है। विशेष रूप से, एसईएलएम गतिशीलता को गिब्स-बोल्ट्ज़मैन समूह के लिए [[विस्तृत-संतुलन]] को संतुष्ट करने के लिए दिखाया गया है। सामान्यीकृत निर्देशांक और स्वतंत्रता की अतिरिक्त अनुवादात्मक या घूर्णी डिग्री से जुड़ी संरचनाओं के विवरण की अनुमति देते हुए विभिन्न प्रकार के युग्मन ऑपरेटरों को भी प्रस्तुत किया गया है। एसईएलएम एसपीडीई को संख्यात्मक रूप से अलग करने के लिए, एसपीडीई के लिए संख्यात्मक स्टोकेस्टिक क्षेत्र प्राप्त करने के लिए सामान्य प्रकारो को भी प्रस्तुत किया गया था जो सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए विवेकाधीन कलाकृतियों को ध्यान में रखते हैं।<ref name="Atzberger"/>
सरलीकृत विवरण और कुशल संख्यात्मक प्रकारो को प्राप्त करने के लिए, छोटे समय-मापक या स्वतंत्रता की जड़त्वीय डिग्री पर गतिशीलता को हटाने के लिए विभिन्न सीमित भौतिक शासनों में सन्निकटन पर विचार किया गया है। विभिन्न सीमित व्यवस्थाओं में, एसईएलएम ढांचा विसर्जित सीमा विधि, [[त्वरित स्टोक्सियन गतिशीलता]] और मनमाने ढंग से लैग्रेंजियन यूलेरियन विधि से संबंधित हो सकता है। एसईएलएम दृष्टिकोण को स्टोकेस्टिक द्रव-संरचना गतिशीलता उत्पन्न करने के लिए दिखाया गया है जो सांख्यिकीय यांत्रिकी के अनुरूप है। विशेष रूप से, एसईएलएम गतिशीलता को गिब्स-बोल्ट्ज़मैन समूह के लिए [[विस्तृत-संतुलन]] को संतुष्ट करने के लिए दिखाया गया है। सामान्यीकृत निर्देशांक और स्वतंत्रता की अतिरिक्त अनुवादात्मक या घूर्णी डिग्री से जुड़ी संरचनाओं के विवरण की अनुमति देते हुए विभिन्न प्रकार के युग्मन ऑपरेटरों को भी प्रस्तुत किया गया है। एसईएलएम एसपीडीई को संख्यात्मक रूप से अलग करने के लिए, एसपीडीई के लिए संख्यात्मक स्टोकेस्टिक क्षेत्र प्राप्त करने के लिए सामान्य प्रकारो को भी प्रस्तुत किया गया था जो सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए विवेकाधीन कलाकृतियों को ध्यान में रखते हैं।<ref name="Atzberger"/>
 
 
== यह भी देखें ==
== यह भी देखें ==
* निमज्जित सीमा विधि
* निमग्न सीमा विधि
*स्टोकेशियन गतिकी
*स्टोकेशियन गतिकी
*द्रव की मात्रा विधि
*द्रव की मात्रा विधि

Revision as of 23:26, 13 August 2023

कम्प्यूटेशनल द्रव गतिकी में, स्टोचैस्टिक यूलेरियन लैग्रेंजियन विधि (एसईएलएम)[1] उष्णता सम्बन्धी उतार-चढ़ाव के अधीन द्रव-संरचना परस्पर क्रिया की आवश्यक विशेषताओं को पकड़ने के लिए एक दृष्टिकोण है, जबकि अनुमानों को प्रस्तुत किया जाता है जो विश्लेषण और शिक्षणीय संख्यात्मक प्रकारो के विकास की सुविधा प्रदान करते हैं। एसईएलएम एक संकर दृष्टिकोण है जो सातत्य हाइड्रोडायनामिक क्षेत्रों के लिए यूलेरियन विवरण और लोचदार संरचनाओं के लिए लैग्रेंजियन विवरण का उपयोग करता है। उष्णता सम्बन्धी उतार-चढ़ाव को स्टोकेस्टिक ड्राइविंग क्षेत्र के माध्यम से प्रस्तुत किया जाता है। सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए संख्यात्मक विवेकीकरण कलाकृतियों को ध्यान में रखते हुए संख्यात्मक प्रकारो को प्राप्त करने के लिए एसपीडीई के स्टोकेस्टिक क्षेत्रों के लिए दृष्टिकोण भी प्रस्तुत किए जाते हैं।[1]

एसईएलएम द्रव-संरचना समीकरण सामान्यतः उपयोग किए जाते हैं

दबाव पी द्रव के लिए असंपीड्यता की स्थिति से निर्धारित होता है

 h> संचालक स्वतंत्रता की यूलेरियन और लैग्रेंजियन डिग्री को जोड़ते हैं।  h> संरचनाओं के लिए लैग्रेंजियन निर्देशांक के पूर्ण सेट के समग्र वैक्टर को निरूपित करें।  h> संरचनाओं के विन्यास के लिए संभावित ऊर्जा है।  h> उष्णता सम्बन्धी उतार-चढ़ाव  को ध्यान में रखते हुए स्टोकेस्टिक ड्राइविंग क्षेत्र हैं।  एच> लैग्रेंज गुणक स्थानीय कठोर शरीर विरूपण जैसी बाधाएं लगाते हैं। यह सुनिश्चित करने के लिए कि अपव्यय केवल के माध्यम से होता है  युग्मन और ऑपरेटरों द्वारा अंतर-रूपांतरण के परिणामस्वरूप नहीं  निम्नलिखित सहायक अनुबंध लगाई गई हैं

उष्णता सम्बन्धी उतार-चढ़ाव को गॉसियन यादृच्छिक क्षेत्रों के माध्यम से माध्य शून्य और सहप्रसरण संरचना के साथ प्रस्तुत किया जाता है

सरलीकृत विवरण और कुशल संख्यात्मक प्रकारो को प्राप्त करने के लिए, छोटे समय-मापक या स्वतंत्रता की जड़त्वीय डिग्री पर गतिशीलता को हटाने के लिए विभिन्न सीमित भौतिक शासनों में सन्निकटन पर विचार किया गया है। विभिन्न सीमित व्यवस्थाओं में, एसईएलएम ढांचा विसर्जित सीमा विधि, त्वरित स्टोक्सियन गतिशीलता और मनमाने ढंग से लैग्रेंजियन यूलेरियन विधि से संबंधित हो सकता है। एसईएलएम दृष्टिकोण को स्टोकेस्टिक द्रव-संरचना गतिशीलता उत्पन्न करने के लिए दिखाया गया है जो सांख्यिकीय यांत्रिकी के अनुरूप है। विशेष रूप से, एसईएलएम गतिशीलता को गिब्स-बोल्ट्ज़मैन समूह के लिए विस्तृत-संतुलन को संतुष्ट करने के लिए दिखाया गया है। सामान्यीकृत निर्देशांक और स्वतंत्रता की अतिरिक्त अनुवादात्मक या घूर्णी डिग्री से जुड़ी संरचनाओं के विवरण की अनुमति देते हुए विभिन्न प्रकार के युग्मन ऑपरेटरों को भी प्रस्तुत किया गया है। एसईएलएम एसपीडीई को संख्यात्मक रूप से अलग करने के लिए, एसपीडीई के लिए संख्यात्मक स्टोकेस्टिक क्षेत्र प्राप्त करने के लिए सामान्य प्रकारो को भी प्रस्तुत किया गया था जो सांख्यिकीय सिद्धांतों, जैसे उतार-चढ़ाव-अपव्यय संतुलन और सांख्यिकीय यांत्रिकी में अन्य गुणों को बनाए रखने के लिए विवेकाधीन कलाकृतियों को ध्यान में रखते हैं।[1]

यह भी देखें

  • निमग्न सीमा विधि
  • स्टोकेशियन गतिकी
  • द्रव की मात्रा विधि
  • स्तर-निर्धारित विधि
  • मार्कर-और-सेल विधि

संदर्भ

  1. 1.0 1.1 1.2 Atzberger, Paul (2011). "Stochastic Eulerian Lagrangian Methods for Fluid Structure Interactions with Thermal Fluctuations". Journal of Computational Physics. 230 (8): 2821–2837. arXiv:1009.5648. Bibcode:2011JCoPh.230.2821A. doi:10.1016/j.jcp.2010.12.028. S2CID 6067032.
  1. Atzberger, P.J.; Kramer, P.R.; Peskin, C.S. (2007). "A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales". Journal of Computational Physics. 224 (2): 1255–92. arXiv:0910.5748. Bibcode:2007JCoPh.224.1255A. doi:10.1016/j.jcp.2006.11.015. S2CID 17977915.
  2. Peskin, C.S. (2002). "The immersed boundary method". Acta Numerica. 11: 479–517. doi:10.1017/S0962492902000077. S2CID 53517954.


सॉफ्टवेयर: संख्यात्मक कोड

श्रेणी:द्रव यांत्रिकी श्रेणी:कम्प्यूटेशनल द्रव गतिकी श्रेणी:संख्यात्मक अंतर समीकरण