संगत भुजाएँ और संगत कोण: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:संगत_भुजाएँ_और_संगत_कोण) |
(No difference)
|
Revision as of 07:38, 18 August 2023
ज्यामिति में, सर्वांगसमता और समानता के परीक्षणों में बहुभुजों की संगत भुजाओं और संगत कोणों की तुलना करना सम्मिलित है। इस प्रकार इन परीक्षणों में, आसन्नता के क्रम को बनाए रखने का ध्यान रखते हुए, एक बहुभुज में प्रत्येक पक्ष और प्रत्येक कोण को दूसरे बहुभुज में एक पक्ष या कोण के साथ जोड़ा जाता है।[1]
उदाहरण के लिए, यदि एक बहुभुज में अनुक्रमिक भुजाएँ हैं a, b, c, d, और e और दूसरे की क्रमिक भुजाएँ v, w, x, y, और z हैं और यदि b और w संगत भुजाएँ हैं, तब भुजाएँ a (के बगल में b) या तब v या x (दोनों w निकटवर्ती ) किसी एक के अनुरूप होना चाहिए इस प्रकार यदि a और v एक दूसरे के अनुरूप हैं, तो c, x के अनुरूप है, d, y के अनुरूप है, इसलिए iअनुक्रम का वां तत्व abcde से मेल खाता है iअनुक्रम का वां तत्व vwxyz के लिए i = 1, 2, 3, 4, 5. दूसरी ओर, यदि इसके अतिरिक्त b तदनुसार w अपने पास c तदनुसार v, फिर iवाँ तत्व abcde का iविपरीत अनुक्रम का वां तत्व xwvzy से मेल खाता है
सर्वांगसमता परीक्षण यह देखते हैं कि संगत भुजाओं के सभी जोड़े लंबाई में समान हों, यद्यपि त्रिभुज की स्थितियों को छोड़कर यह सर्वांगसमता स्थापित करने के लिए पर्याप्त नहीं है (जैसा कि एक वर्ग और एक समचतुर्भुज द्वारा उदाहरण दिया गया है जिसकी भुजा की लंबाई समान है)। इस प्रकार समानता परीक्षण यह देखते हैं कि संगत भुजाओं के प्रत्येक जोड़े की लंबाई का अनुपात सामान्तर है या नहीं, यद्यपि फिर भी यह पर्याप्त नहीं है। किसी भी स्थिति में संगत कोणों की समानता भी आवश्यक है; संगत कोणों की समानता के साथ संगत भुजाओं की समानता (या आनुपातिकता) सर्वांगसमता (या समानता) के लिए आवश्यक और पर्याप्त है। इस प्रकार संगत कोणों के साथ-साथ संगत भुजाओं को एक ही क्रम में प्रदर्शित होने के रूप में परिभाषित किया गया है, उदाहरण के लिए यदि भुजाओं के अनुक्रम वाले बहुभुज में abcde और दूसरा संबंधित पार्श्व अनुक्रम के साथ vwxyz हमारे पास शीर्ष कोण है a पक्षों के मध्य दिखाई देना a और b तब इसका संगत शीर्ष कोण है v पक्षों के मध्य प्रकट होना चाहिए v और w के बीच दिखाई देना चाहिए।
संदर्भ
- ↑ Townsend, Richard (1865). बिंदु, रेखा और वृत्त की आधुनिक ज्यामिति पर अध्याय. Hodges, Smith, and Company. p. 143-147.