अनहार्मोनिसिटी: Difference between revisions
(Created page with "{{Short description|Deviation of a physical system from being a harmonic oscillator}} {{About|anharmonic oscillators|the anharmonic ratio|Cross-ratio}} {{Distinguish|Enharmoni...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Deviation of a physical system from being a harmonic oscillator}} | {{Short description|Deviation of a physical system from being a harmonic oscillator}} | ||
{{About| | {{About|अनहार्मोनिक ऑसिलेटर्स|अनहार्मोनिक अनुपात|क्रॉस अनुपात}} | ||
{{Distinguish| | {{Distinguish|संवर्द्धन|असंगति}} | ||
[[File:Potential_approximation.png|thumb|[[परमाणु रिक्ति]] के फलन के रूप में | [[File:Potential_approximation.png|thumb|[[परमाणु रिक्ति]] के फलन के रूप में द्विपरमाणुक अणु की [[संभावित ऊर्जा]]। जब अणु बहुत करीब या बहुत दूर होते हैं, तब वह वापस आपकी ओर प्रत्यानयन बल का अनुभव करते हैं<sub>0</sub>. (एक संगमरमर को अवसाद में आगे और पीछे लुढ़कने की कल्पना करें।) नीला वक्र आकार में अणु की वास्तविक क्षमता के करीब है, जबकि लाल [[परवलय]] छोटे दोलनों के लिए अच्छा अनुमान है। लाल सन्निकटन अणु को हार्मोनिक ऑसिलेटर के रूप में मानता है, क्योंकि पुनर्स्थापन बल, -V'(u), [[विस्थापन (वेक्टर)|विस्थापन (सदिश)]] u के संबंध में रैखिक है।]][[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] में, अनहार्मोनिकिटी [[लयबद्ध दोलक]] होने से [[प्रणाली]] का [[विचलन (सांख्यिकी)]] है। [[थरथरानवाला]] जो सरल हार्मोनिक गति में दोलन नहीं कर रहा है, उसे अनहार्मोनिक ऑसिलेटर के रूप में जाना जाता है, जहां सिस्टम को हार्मोनिक थरथरानवाला के करीब लाया जा सकता है और [[गड़बड़ी सिद्धांत]] का उपयोग करके एनार्मोनिकिटी की गणना की जा सकती है। यदि असंगति बड़ी है, तब अन्य [[संख्यात्मक विश्लेषण]] का उपयोग करना होगा। वास्तव में सभी दोलन प्रणालियां अनहार्मोनिक हैं, यद्यपि हार्मोनिक थरथरानवाला जितना करीब होगा, दोलन का [[आयाम]] उतना ही छोटा होगा। | ||
परिणामस्वरूप, [[आवृत्तियों]] के साथ दोलन <math>2\omega</math> और <math>3\omega</math> आदि, कहाँ <math>\omega</math> थरथरानवाला की [[मौलिक आवृत्ति]] है, प्रकट होते हैं। इसके | परिणामस्वरूप, [[आवृत्तियों]] के साथ दोलन <math>2\omega</math> और <math>3\omega</math> आदि, कहाँ <math>\omega</math> थरथरानवाला की [[मौलिक आवृत्ति]] है, प्रकट होते हैं। इसके अतिरिक्त, आवृत्ति <math>\omega</math> आवृत्ति से भटक जाता है <math>\omega_0</math> हार्मोनिक दोलनों का. [[इंटरमॉड्यूलेशन]] और संयोजन टोन भी देखें। पहले सन्निकटन के रूप में, आवृत्ति बदलाव <math>\Delta \omega=\omega-\omega_0</math> दोलन आयाम के वर्ग के समानुपाती होता है <math>A</math>: | ||
:<math>\Delta \omega\propto A^2</math> | :<math>\Delta \omega\propto A^2</math> | ||
[[सामान्य मोड]] वाले ऑसिलेटर्स की | [[सामान्य मोड]] वाले ऑसिलेटर्स की प्रणाली में <math>\omega_\alpha</math>, <math>\omega_\beta</math>, ... असंबद्धता के परिणामस्वरूप आवृत्तियों के साथ अतिरिक्त दोलन होते हैं <math>\omega_\alpha\pm \omega_\beta</math>. | ||
अनहार्मोनिकिटी अनुनाद वक्र की [[ऊर्जा प्रोफ़ाइल]] को भी संशोधित करती है, जिससे गैर-रेखीय अनुनाद और [[ अतिहार्मोनिक ]] अनुनाद जैसी | अनहार्मोनिकिटी अनुनाद वक्र की [[ऊर्जा प्रोफ़ाइल]] को भी संशोधित करती है, जिससे गैर-रेखीय अनुनाद और [[ अतिहार्मोनिक |अतिहार्मोनिक]] अनुनाद जैसी रोचक घटनाएं सामने आती हैं। | ||
== सामान्य सिद्धांत == | == '''सामान्य सिद्धांत''' == | ||
[[File:Spring pendulum.gif|thumb|300px|2 डीओएफ लोचदार पेंडुलम एनार्मोनिक व्यवहार प्रदर्शित करता है।]] | [[File:Spring pendulum.gif|thumb|300px|2 डीओएफ लोचदार पेंडुलम एनार्मोनिक व्यवहार प्रदर्शित करता है।]] | ||
{{multiple image | {{multiple image | ||
| align = | | align = बाएं | ||
| direction = | | direction = शीर्ष का | ||
| width = 245 | | width = 245 | ||
| header = | | header = हार्मोनिक बनाम अनहार्मोनिक ऑसिलेटर्स | ||
| image1 = | | image1 = आसान हार्मोनिक ऑसिलेटर.gif | ||
| alt1 = | | alt1 = स्प्रिंग पर एक ब्लॉक क्षैतिज रूप से दोलन करता है, संपीड़ित और खिंचता है। | ||
| caption1 = | | caption1 = "ब्लॉक-ऑन-ए-स्प्रिंग" हार्मोनिक दोलन का एक उत्कृष्ट उदाहरण है। ब्लॉक के स्थान, {{गणित|''x''}} के आधार पर, यह मध्य की ओर एक पुनर्स्थापना बल का अनुभव करेगा। पुनर्स्थापना बल {{math|''x''}} के समानुपाती होता है, इसलिए सिस्टम सरल हार्मोनिक गति प्रदर्शित करता है। | ||
| image2 = | | image2 = दोलनशील पेंडुलम.gif | ||
| alt2 = | | alt2 = एक पेंडुलम आगे-पीछे घूमता है। | ||
| caption2 = | | caption2 = पेंडुलम एक सरल हार्मोनिक ऑसिलेटर है। द्रव्यमान की कोणीय स्थिति {{math|''θ''}} के आधार पर, एक पुनर्स्थापना बल निर्देशांक {{math|''θ''}} को वापस मध्य की ओर धकेलता है। यह थरथरानवाला अनहार्मोनिक है क्योंकि पुनर्स्थापना बल {{math|''θ''}} के समानुपाती नहीं है, बल्कि {{math|sin(''θ'')}} के समानुपाती है। क्योंकि रैखिक फ़ंक्शन {{math|1=''y'' = ''θ''}} अरेखीय फ़ंक्शन का अनुमान लगाता है {{math|1=''y'' = syn(''θ'')}} जब {{गणित|''θ''}} छोटा है, सिस्टम छोटे दोलनों के लिए एक हार्मोनिक ऑसिलेटर के रूप में [[वैज्ञानिक मॉडलिंग|मॉडल]] हो सकता है। | ||
}} | }} | ||
एक थरथरानवाला | एक थरथरानवाला भौतिक प्रणाली है जो आवधिक गति की विशेषता रखती है, जैसे कि पेंडुलम, ट्यूनिंग कांटा, या कंपन डायटोमिक अणु। गणितीय रूप से कहें तब, थरथरानवाला की आवश्यक विशेषता कुछ समन्वय के लिए होती है {{math|''x''}} सिस्टम का, बल जिसका परिमाण निर्भर करता है {{math|''x''}} धक्का देगा {{math|''x''}} चरम मूल्यों से दूर और कुछ केंद्रीय मूल्य की ओर वापस {{math|''x''<sub>0</sub>}}, कारण {{math|''x''}} चरम सीमाओं के मध्य दोलन करना। उदाहरण के लिए, {{math|''x''}} पेंडुलम के उसकी विश्राम स्थिति से विस्थापन का प्रतिनिधित्व कर सकता है {{math|1=''x''=0}}. के निरपेक्ष मान के रूप में {{math|''x''}} बढ़ता है, इसलिए पेंडुलम के वजन पर कार्य करने वाला पुनर्स्थापन बल भी बढ़ता है जो इसे वापस अपनी आराम की स्थिति की ओर धकेलता है। | ||
हार्मोनिक ऑसिलेटर्स में, पुनर्स्थापन बल परिमाण में विस्थापन के समानुपाती (और दिशा में विपरीत) होता है {{math|''x''}} अपनी प्राकृतिक स्थिति से {{math|''x''<sub>0</sub>}}. परिणामी अंतर समीकरण का तात्पर्य यह है {{math|''x''}} को समय के साथ [[साइनसोइडली]] रूप से दोलन करना चाहिए, दोलन की अवधि के साथ जो सिस्टम में अंतर्निहित है। {{math|''x''}} किसी भी आयाम के साथ दोलन कर सकता है, | हार्मोनिक ऑसिलेटर्स में, पुनर्स्थापन बल परिमाण में विस्थापन के समानुपाती (और दिशा में विपरीत) होता है {{math|''x''}} अपनी प्राकृतिक स्थिति से {{math|''x''<sub>0</sub>}}. परिणामी अंतर समीकरण का तात्पर्य यह है {{math|''x''}} को समय के साथ [[साइनसोइडली]] रूप से दोलन करना चाहिए, दोलन की अवधि के साथ जो सिस्टम में अंतर्निहित है। {{math|''x''}} किसी भी आयाम के साथ दोलन कर सकता है, यद्यपि उसकी अवधि हमेशा समान होगी। | ||
यद्यपि, अनहार्मोनिक ऑसिलेटर्स को विस्थापन x पर पुनर्स्थापना बल की गैर-रेखीय निर्भरता की विशेषता होती है। परिणाम स्वरुप , अनहार्मोनिक ऑसिलेटर के दोलन की अवधि उसके दोलन के आयाम पर निर्भर हो सकती है। | |||
एनार्मोनिक ऑसिलेटर्स की गैर-रैखिकता के परिणामस्वरूप, सिस्टम के विस्थापन के आधार पर कंपन आवृत्ति बदल सकती है। कंपन आवृत्ति में इन परिवर्तनों के परिणामस्वरूप ऊर्जा को पैरामीट्रिक युग्मन नामक प्रक्रिया के माध्यम से मौलिक कंपन आवृत्ति से अन्य आवृत्तियों के साथ जोड़ा जाता है। | एनार्मोनिक ऑसिलेटर्स की गैर-रैखिकता के परिणामस्वरूप, सिस्टम के विस्थापन के आधार पर कंपन आवृत्ति बदल सकती है। कंपन आवृत्ति में इन परिवर्तनों के परिणामस्वरूप ऊर्जा को पैरामीट्रिक युग्मन नामक प्रक्रिया के माध्यम से मौलिक कंपन आवृत्ति से अन्य आवृत्तियों के साथ जोड़ा जाता है। | ||
अरेखीय पुनर्स्थापना बल को | अरेखीय पुनर्स्थापना बल को कार्य के रूप में मानना {{math|''F''(''x'' − ''x''<sub>0</sub>)}} अपनी प्राकृतिक स्थिति से x के विस्थापन को, हम प्रतिस्थापित कर सकते हैं {{math|''F''}} इसके रैखिक सन्निकटन द्वारा {{math|1=''F''<sub>1</sub> = ''F′''(0) ⋅ (''x''−''x''<sub>0</sub>)}}शून्य विस्थापन पर. सन्निकटन फलन F<sub>1</sub>रैखिक है, इसलिए यह सरल आवर्त गति का वर्णन करेगा। इसके अतिरिक्त, यह फलन {{math|''F''<sub>1</sub>}} त्रुटिहीन है जब {{math|''x'' − ''x''<sub>0</sub>}} छोटा है। इस कारण से, जब तक दोलन छोटे हैं तब तक अनहार्मोनिक गति को हार्मोनिक गति के रूप में अनुमानित किया जा सकता है। | ||
== भौतिकी में उदाहरण == | == भौतिकी में उदाहरण == | ||
भौतिक | भौतिक विश्व भर में अनेक प्रणालियाँ हैं जिन्हें नॉनलाइनियर मास-स्प्रिंग सिस्टम के अतिरिक्त एनार्मोनिक ऑसिलेटर के रूप में मॉडल किया जा सकता है। उदाहरण के लिए, परमाणु, जिसमें धनात्मक रूप से चार्ज किया गया नाभिक होता है, जो ऋणात्मक रूप से चार्ज किए गए इलेक्ट्रॉनिक पश्चात्ल से घिरा होता है, विद्युत क्षेत्र उपस्तिथ होने पर नाभिक के द्रव्यमान के केंद्र और इलेक्ट्रॉनिक पश्चात्ल के मध्य विस्थापन का अनुभव करता है। उस विस्थापन की मात्रा, जिसे विद्युत द्विध्रुव आघूर्ण कहा जाता है, छोटे क्षेत्रों के लिए क्रियान्वित क्षेत्र से रैखिक रूप से संबंधित होती है, यद्यपि जैसे-जैसे क्षेत्र का परिमाण बढ़ता है, यांत्रिक प्रणाली की तरह, क्षेत्र-द्विध्रुव आघूर्ण संबंध अरैखिक हो जाता है। | ||
अनहार्मोनिक ऑसिलेटर्स के अन्य उदाहरणों में बड़े-कोण पेंडुलम | अनहार्मोनिक ऑसिलेटर्स के अन्य उदाहरणों में बड़े-कोण पेंडुलम सम्मिलित हैं; कोई भी संतुलन अर्धचालक जिसमें बड़ी गर्म वाहक आपश्चात्ी नहीं होती है, जो वाहक के प्रभावी द्रव्यमान से संबंधित विभिन्न प्रकार के गैर-रेखीय व्यवहार प्रदर्शित करता है; और आयनोस्फेरिक प्लाज़्मा, जो प्लाज़्मा की धार्मिकता, अनुप्रस्थ दोलन [[स्ट्रिंग (संगीत)]] के आधार पर गैर-रेखीय व्यवहार भी प्रदर्शित करते हैं। वास्तव में, वस्तुतः सभी ऑसिलेटर्स अनहार्मोनिक हो जाते हैं जब उनके पंप का आयाम कुछ सीमा से अधिक बढ़ जाता है, और परिणामस्वरूप उनके व्यवहार का वर्णन करने के लिए गति के गैर-रेखीय समीकरणों का उपयोग करना आवश्यक होता है। | ||
अनहार्मोनिकिटी जाली और आणविक कंपन, क्वांटम दोलनों में | अनहार्मोनिकिटी जाली और आणविक कंपन, क्वांटम दोलनों में भूमिका निभाती है,<ref>{{citation|url=http://jchemed.chem.wisc.edu/Journal/issues/2005/Aug/abs1263_2.html|title=The Effect of Anharmonicity on Diatomic Vibration: A Spreadsheet Simulation |date=August 2005|volume= 82 |number= 8|page= 1263|author1=Lim, Kieran F. |author2=Coleman, William F. |journal=J. Chem. Educ.|bibcode = 2005JChEd..82.1263F |doi = 10.1021/ed082p1263.1 |doi-access=free }}</ref> और ध्वनिकी में. किसी अणु या ठोस में परमाणु अपनी संतुलन स्थिति के बारे में कंपन करते हैं। जब इन कंपनों का आयाम छोटा होता है तब उन्हें [[हार्मोनिक ऑसिलेटर]] द्वारा वर्णित किया जा सकता है। यद्यपि, जब कंपन का आयाम बड़ा होता है, उदाहरण के लिए उच्च तापमान पर, अनहार्मोनिकिटी महत्वपूर्ण हो जाती है। एनार्मोनिकिटी के प्रभावों का उदाहरण ठोस पदार्थों का थर्मल विस्तार है, जिसका अध्ययन सामान्यतः [[अर्ध-हार्मोनिक सन्निकटन]] के भीतर किया जाता है। क्वांटम यांत्रिकी का उपयोग करके कंपन करने वाले एनार्मोनिक सिस्टम का अध्ययन करना कम्प्यूटेशनल रूप से मांग वाला कार्य है क्योंकि एनार्मोनिकिटी न केवल प्रत्येक ऑसिलेटर द्वारा अनुभव की जाने वाली क्षमता को और अधिक समष्टि बनाती है, किंतु ऑसिलेटर्स के मध्य युग्मन भी प्रस्तुत करती है। दोनों अणुओं में परमाणुओं द्वारा अनुभव की गई एनार्मोनिक क्षमता को मानचित्र करने के लिए घनत्व-कार्यात्मक सिद्धांत जैसे प्रथम-सिद्धांत विधियों का उपयोग करना संभव है<ref>{{citation|title=Vibrational wave functions and spectroscopy of (H<sub>2</sub>O)<sub>''n''</sub>, ''n''=2,3,4,5: Vibrational self-consistent field with correlation corrections |year=1996|volume= 105 |issue = 23|page= 10332|author1=Jung, J. O. |author2=Benny Gerber, R. |journal=J. Chem. Phys.|doi = 10.1063/1.472960 |bibcode = 1996JChPh.10510332J }}</ref> और ठोस.<ref>{{citation|title=Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress |year=2013|volume= 87 |issue = 14|page= 144302|author1=Monserrat, B. |author2=Drummond, N.D. |author3=Needs, R.J. |journal=Phys. Rev. B|doi = 10.1103/PhysRevB.87.144302 |arxiv = 1303.0745 |bibcode = 2013PhRvB..87n4302M |s2cid=118687212 }}</ref> [[माध्य-क्षेत्र सिद्धांत]] के भीतर परमाणुओं के लिए एनार्मोनिक कंपन समीकरणों को हल करके त्रुटिहीन एनार्मोनिक कंपन ऊर्जा प्राप्त की जा सकती है। अंत में, माध्य-क्षेत्र औपचारिकता से परे जाने के लिए मोलर-प्लेसेट गड़बड़ी सिद्धांत का उपयोग करना संभव है। | ||
== दोलन की अवधि == | == '''दोलन की अवधि''' == | ||
एक द्रव्यमान पर विचार करें <math>m</math> | == एक द्रव्यमान पर विचार करें <math>m</math> संभावित कुएं में घूमना <math>U(x)</math>. दोलन काल निकाला जा सकता है <ref>{{cite journal|doi=10.1088/0143-0807/26/4/004 |title=अनहार्मोनिक ऑसिलेटर्स की अवधि के लिए सटीक और अनुमानित अभिव्यक्तियाँ|journal=European Journal of Physics |volume=26 |issue=4 |pages=589–601 |year=2005 |last1=Amore |first1=Paolo |last2=Fernández |first2=Francisco M. |arxiv=math-ph/0409034 |bibcode=2005EJPh...26..589A |s2cid=119615357 }}</ref><math display="block">T = \sqrt{2m} \int_{x_{-}}^{x_{+}} \frac{dx}{\sqrt{E - U(x)}}</math>'''यह भी देखें''' == | ||
<math display="block">T = \sqrt{2m} \int_{x_{-}}^{x_{+}} \frac{dx}{\sqrt{E - U(x)}}</math> | |||
*असद्भाव | *असद्भाव | ||
*लयबद्ध दोलक | *लयबद्ध दोलक | ||
Line 59: | Line 55: | ||
*[[ट्रांसमोन]] | *[[ट्रांसमोन]] | ||
== संदर्भ == | == '''संदर्भ''' == | ||
* {{Citation | last1=Landau | first1=L. D. | authorlink1=Lev Landau | last2=Lifshitz | first2=E. M. | authorlink2=Evgeny Lifshitz | year=1976 | title=Mechanics | edition=3rd | publisher=Pergamon Press | isbn=978-0-08-021022-3 | url-access=registration | url=https://archive.org/details/mechanics00land }} | * {{Citation | last1=Landau | first1=L. D. | authorlink1=Lev Landau | last2=Lifshitz | first2=E. M. | authorlink2=Evgeny Lifshitz | year=1976 | title=Mechanics | edition=3rd | publisher=Pergamon Press | isbn=978-0-08-021022-3 | url-access=registration | url=https://archive.org/details/mechanics00land }} | ||
* {{Citation | last1=Filipponi | first1=A. | last2=Cavicchia | first2=D. R. | year=2011 | title=Anharmonic dynamics of a mass O-spring oscillator | * {{Citation | last1=Filipponi | first1=A. | last2=Cavicchia | first2=D. R. | year=2011 | title=Anharmonic dynamics of a mass O-spring oscillator | ||
| journal= | | journal=अमेरिकन जर्नल ऑफ फिजिक्स | volume=79 | issue=7 | pages=730–735 | doi=10.1119/1.3579129 | bibcode=2011AmJPh..79..730F }} | ||
{{reflist}} | {{reflist}} | ||
== '''बाहरी संबंध''' == | |||
== बाहरी संबंध == | |||
* {{Citation|last=Elmer |first=Franz-Josef |url=http://monet.physik.unibas.ch/~elmer/pendulum/nonres.htm |title=Nonlinear Resonance |publisher=[[University of Basel]] |date=July 20, 1998 |accessdate=October 28, 2010 |url-status=dead |archiveurl=https://web.archive.org/web/20110613171204/http://monet.physik.unibas.ch/~elmer/pendulum/nonres.htm |archivedate=June 13, 2011 }} | * {{Citation|last=Elmer |first=Franz-Josef |url=http://monet.physik.unibas.ch/~elmer/pendulum/nonres.htm |title=Nonlinear Resonance |publisher=[[University of Basel]] |date=July 20, 1998 |accessdate=October 28, 2010 |url-status=dead |archiveurl=https://web.archive.org/web/20110613171204/http://monet.physik.unibas.ch/~elmer/pendulum/nonres.htm |archivedate=June 13, 2011 }} | ||
[[Category: शास्त्रीय यांत्रिकी]] | [[Category: शास्त्रीय यांत्रिकी]] |
Revision as of 16:57, 4 August 2023
![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Potential_approximation.png/300px-Potential_approximation.png)
मौलिक यांत्रिकी में, अनहार्मोनिकिटी लयबद्ध दोलक होने से प्रणाली का विचलन (सांख्यिकी) है। थरथरानवाला जो सरल हार्मोनिक गति में दोलन नहीं कर रहा है, उसे अनहार्मोनिक ऑसिलेटर के रूप में जाना जाता है, जहां सिस्टम को हार्मोनिक थरथरानवाला के करीब लाया जा सकता है और गड़बड़ी सिद्धांत का उपयोग करके एनार्मोनिकिटी की गणना की जा सकती है। यदि असंगति बड़ी है, तब अन्य संख्यात्मक विश्लेषण का उपयोग करना होगा। वास्तव में सभी दोलन प्रणालियां अनहार्मोनिक हैं, यद्यपि हार्मोनिक थरथरानवाला जितना करीब होगा, दोलन का आयाम उतना ही छोटा होगा।
परिणामस्वरूप, आवृत्तियों के साथ दोलन और आदि, कहाँ थरथरानवाला की मौलिक आवृत्ति है, प्रकट होते हैं। इसके अतिरिक्त, आवृत्ति आवृत्ति से भटक जाता है हार्मोनिक दोलनों का. इंटरमॉड्यूलेशन और संयोजन टोन भी देखें। पहले सन्निकटन के रूप में, आवृत्ति बदलाव दोलन आयाम के वर्ग के समानुपाती होता है :
सामान्य मोड वाले ऑसिलेटर्स की प्रणाली में , , ... असंबद्धता के परिणामस्वरूप आवृत्तियों के साथ अतिरिक्त दोलन होते हैं .
अनहार्मोनिकिटी अनुनाद वक्र की ऊर्जा प्रोफ़ाइल को भी संशोधित करती है, जिससे गैर-रेखीय अनुनाद और अतिहार्मोनिक अनुनाद जैसी रोचक घटनाएं सामने आती हैं।
सामान्य सिद्धांत
एक थरथरानवाला भौतिक प्रणाली है जो आवधिक गति की विशेषता रखती है, जैसे कि पेंडुलम, ट्यूनिंग कांटा, या कंपन डायटोमिक अणु। गणितीय रूप से कहें तब, थरथरानवाला की आवश्यक विशेषता कुछ समन्वय के लिए होती है x सिस्टम का, बल जिसका परिमाण निर्भर करता है x धक्का देगा x चरम मूल्यों से दूर और कुछ केंद्रीय मूल्य की ओर वापस x0, कारण x चरम सीमाओं के मध्य दोलन करना। उदाहरण के लिए, x पेंडुलम के उसकी विश्राम स्थिति से विस्थापन का प्रतिनिधित्व कर सकता है x=0. के निरपेक्ष मान के रूप में x बढ़ता है, इसलिए पेंडुलम के वजन पर कार्य करने वाला पुनर्स्थापन बल भी बढ़ता है जो इसे वापस अपनी आराम की स्थिति की ओर धकेलता है।
हार्मोनिक ऑसिलेटर्स में, पुनर्स्थापन बल परिमाण में विस्थापन के समानुपाती (और दिशा में विपरीत) होता है x अपनी प्राकृतिक स्थिति से x0. परिणामी अंतर समीकरण का तात्पर्य यह है x को समय के साथ साइनसोइडली रूप से दोलन करना चाहिए, दोलन की अवधि के साथ जो सिस्टम में अंतर्निहित है। x किसी भी आयाम के साथ दोलन कर सकता है, यद्यपि उसकी अवधि हमेशा समान होगी।
यद्यपि, अनहार्मोनिक ऑसिलेटर्स को विस्थापन x पर पुनर्स्थापना बल की गैर-रेखीय निर्भरता की विशेषता होती है। परिणाम स्वरुप , अनहार्मोनिक ऑसिलेटर के दोलन की अवधि उसके दोलन के आयाम पर निर्भर हो सकती है।
एनार्मोनिक ऑसिलेटर्स की गैर-रैखिकता के परिणामस्वरूप, सिस्टम के विस्थापन के आधार पर कंपन आवृत्ति बदल सकती है। कंपन आवृत्ति में इन परिवर्तनों के परिणामस्वरूप ऊर्जा को पैरामीट्रिक युग्मन नामक प्रक्रिया के माध्यम से मौलिक कंपन आवृत्ति से अन्य आवृत्तियों के साथ जोड़ा जाता है।
अरेखीय पुनर्स्थापना बल को कार्य के रूप में मानना F(x − x0) अपनी प्राकृतिक स्थिति से x के विस्थापन को, हम प्रतिस्थापित कर सकते हैं F इसके रैखिक सन्निकटन द्वारा F1 = F′(0) ⋅ (x−x0)शून्य विस्थापन पर. सन्निकटन फलन F1रैखिक है, इसलिए यह सरल आवर्त गति का वर्णन करेगा। इसके अतिरिक्त, यह फलन F1 त्रुटिहीन है जब x − x0 छोटा है। इस कारण से, जब तक दोलन छोटे हैं तब तक अनहार्मोनिक गति को हार्मोनिक गति के रूप में अनुमानित किया जा सकता है।
भौतिकी में उदाहरण
भौतिक विश्व भर में अनेक प्रणालियाँ हैं जिन्हें नॉनलाइनियर मास-स्प्रिंग सिस्टम के अतिरिक्त एनार्मोनिक ऑसिलेटर के रूप में मॉडल किया जा सकता है। उदाहरण के लिए, परमाणु, जिसमें धनात्मक रूप से चार्ज किया गया नाभिक होता है, जो ऋणात्मक रूप से चार्ज किए गए इलेक्ट्रॉनिक पश्चात्ल से घिरा होता है, विद्युत क्षेत्र उपस्तिथ होने पर नाभिक के द्रव्यमान के केंद्र और इलेक्ट्रॉनिक पश्चात्ल के मध्य विस्थापन का अनुभव करता है। उस विस्थापन की मात्रा, जिसे विद्युत द्विध्रुव आघूर्ण कहा जाता है, छोटे क्षेत्रों के लिए क्रियान्वित क्षेत्र से रैखिक रूप से संबंधित होती है, यद्यपि जैसे-जैसे क्षेत्र का परिमाण बढ़ता है, यांत्रिक प्रणाली की तरह, क्षेत्र-द्विध्रुव आघूर्ण संबंध अरैखिक हो जाता है।
अनहार्मोनिक ऑसिलेटर्स के अन्य उदाहरणों में बड़े-कोण पेंडुलम सम्मिलित हैं; कोई भी संतुलन अर्धचालक जिसमें बड़ी गर्म वाहक आपश्चात्ी नहीं होती है, जो वाहक के प्रभावी द्रव्यमान से संबंधित विभिन्न प्रकार के गैर-रेखीय व्यवहार प्रदर्शित करता है; और आयनोस्फेरिक प्लाज़्मा, जो प्लाज़्मा की धार्मिकता, अनुप्रस्थ दोलन स्ट्रिंग (संगीत) के आधार पर गैर-रेखीय व्यवहार भी प्रदर्शित करते हैं। वास्तव में, वस्तुतः सभी ऑसिलेटर्स अनहार्मोनिक हो जाते हैं जब उनके पंप का आयाम कुछ सीमा से अधिक बढ़ जाता है, और परिणामस्वरूप उनके व्यवहार का वर्णन करने के लिए गति के गैर-रेखीय समीकरणों का उपयोग करना आवश्यक होता है।
अनहार्मोनिकिटी जाली और आणविक कंपन, क्वांटम दोलनों में भूमिका निभाती है,[1] और ध्वनिकी में. किसी अणु या ठोस में परमाणु अपनी संतुलन स्थिति के बारे में कंपन करते हैं। जब इन कंपनों का आयाम छोटा होता है तब उन्हें हार्मोनिक ऑसिलेटर द्वारा वर्णित किया जा सकता है। यद्यपि, जब कंपन का आयाम बड़ा होता है, उदाहरण के लिए उच्च तापमान पर, अनहार्मोनिकिटी महत्वपूर्ण हो जाती है। एनार्मोनिकिटी के प्रभावों का उदाहरण ठोस पदार्थों का थर्मल विस्तार है, जिसका अध्ययन सामान्यतः अर्ध-हार्मोनिक सन्निकटन के भीतर किया जाता है। क्वांटम यांत्रिकी का उपयोग करके कंपन करने वाले एनार्मोनिक सिस्टम का अध्ययन करना कम्प्यूटेशनल रूप से मांग वाला कार्य है क्योंकि एनार्मोनिकिटी न केवल प्रत्येक ऑसिलेटर द्वारा अनुभव की जाने वाली क्षमता को और अधिक समष्टि बनाती है, किंतु ऑसिलेटर्स के मध्य युग्मन भी प्रस्तुत करती है। दोनों अणुओं में परमाणुओं द्वारा अनुभव की गई एनार्मोनिक क्षमता को मानचित्र करने के लिए घनत्व-कार्यात्मक सिद्धांत जैसे प्रथम-सिद्धांत विधियों का उपयोग करना संभव है[2] और ठोस.[3] माध्य-क्षेत्र सिद्धांत के भीतर परमाणुओं के लिए एनार्मोनिक कंपन समीकरणों को हल करके त्रुटिहीन एनार्मोनिक कंपन ऊर्जा प्राप्त की जा सकती है। अंत में, माध्य-क्षेत्र औपचारिकता से परे जाने के लिए मोलर-प्लेसेट गड़बड़ी सिद्धांत का उपयोग करना संभव है।
दोलन की अवधि
एक द्रव्यमान पर विचार करें संभावित कुएं में घूमना . दोलन काल निकाला जा सकता है [4]यह भी देखें
- असद्भाव
- लयबद्ध दोलक
- संगीत ध्वनिकी
- अरेखीय अनुनाद
- ट्रांसमोन
संदर्भ
- Landau, L. D.; Lifshitz, E. M. (1976), Mechanics (3rd ed.), Pergamon Press, ISBN 978-0-08-021022-3
- Filipponi, A.; Cavicchia, D. R. (2011), "Anharmonic dynamics of a mass O-spring oscillator", अमेरिकन जर्नल ऑफ फिजिक्स, 79 (7): 730–735, Bibcode:2011AmJPh..79..730F, doi:10.1119/1.3579129
- ↑ Lim, Kieran F.; Coleman, William F. (August 2005), "The Effect of Anharmonicity on Diatomic Vibration: A Spreadsheet Simulation", J. Chem. Educ., 82 (8): 1263, Bibcode:2005JChEd..82.1263F, doi:10.1021/ed082p1263.1
- ↑ Jung, J. O.; Benny Gerber, R. (1996), "Vibrational wave functions and spectroscopy of (H2O)n, n=2,3,4,5: Vibrational self-consistent field with correlation corrections", J. Chem. Phys., 105 (23): 10332, Bibcode:1996JChPh.10510332J, doi:10.1063/1.472960
- ↑ Monserrat, B.; Drummond, N.D.; Needs, R.J. (2013), "Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress", Phys. Rev. B, 87 (14): 144302, arXiv:1303.0745, Bibcode:2013PhRvB..87n4302M, doi:10.1103/PhysRevB.87.144302, S2CID 118687212
- ↑ Amore, Paolo; Fernández, Francisco M. (2005). "अनहार्मोनिक ऑसिलेटर्स की अवधि के लिए सटीक और अनुमानित अभिव्यक्तियाँ". European Journal of Physics. 26 (4): 589–601. arXiv:math-ph/0409034. Bibcode:2005EJPh...26..589A. doi:10.1088/0143-0807/26/4/004. S2CID 119615357.
बाहरी संबंध
- Elmer, Franz-Josef (July 20, 1998), Nonlinear Resonance, University of Basel, archived from the original on June 13, 2011, retrieved October 28, 2010