अल्फ़ा प्रक्रिया: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Nuclear fusion reaction}}
{{Short description|Nuclear fusion reaction}}
[[File:Kernfusionen1_en.png|thumb|upright=1.4|अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण]]अल्फा प्रक्रिया, जिसे अल्फा सीढ़ी के रूप में भी जाना जाता है, [[परमाणु संलयन|परमाणु विलयन]] प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे [[हीलियम]] को भारी [[रासायनिक तत्व]] में परिवर्तित करते हैं। दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे [[ट्रिपल-अल्फा प्रक्रिया]] कहा जाता है, जो केवल हीलियम का उपभोग करता है, और [[कार्बन]] का उत्पादन करता है।<ref name=narlikar>{{cite book |last=Narlikar |first=Jayant V. |title=काले बादलों से लेकर ब्लैक होल तक|year=1995 |publisher=[[World Scientific]] |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}</ref> अल्फा प्रक्रिया समान्यत: बड़े सितारों में और [[सुपरनोवा]] के समय होती है।
[[File:Kernfusionen1_en.png|thumb|upright=1.4|अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण]]अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, [[परमाणु संलयन|परमाणु विलयन]] प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे [[हीलियम]] को भारी [[रासायनिक तत्व]] में परिवर्तित करते हैं। दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे [[ट्रिपल-अल्फा प्रक्रिया]] कहा जाता है, जो केवल हीलियम का उपभोग करता है, और [[कार्बन]] का उत्पादन करता है।<ref name=narlikar>{{cite book |last=Narlikar |first=Jayant V. |title=काले बादलों से लेकर ब्लैक होल तक|year=1995 |publisher=[[World Scientific]] |isbn=978-9810220334 |url=https://books.google.com/books?id=0_gmjz-L70EC&pg=PA94 |page=94}}</ref> अल्फा प्रक्रिया समान्यत: बड़े सितारों में और [[सुपरनोवा]] के समय होती है।


दोनों प्रक्रियाएं [[हाइड्रोजन संलयन|हाइड्रोजन विलयन]] से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा सीढ़ी प्रक्रियाओं दोनों को ईंधन देती है। [[ट्रिपल अल्फा प्रक्रिया]] के बाद पर्याप्त कार्बन का उत्पादन होता है, अल्फा-सीढ़ी प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। बाद के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी परतों में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।
दोनों प्रक्रियाएं [[हाइड्रोजन संलयन|हाइड्रोजन विलयन]] से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। [[ट्रिपल अल्फा प्रक्रिया]] के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।


:<math chem>\begin{array}{ll}
:<math chem>\begin{array}{ll}
Line 30: Line 30:
[[File:Binding energy curve - common isotopes.svg|thumb|371x371px|न्यूक्लाइड के चयन के लिए प्रति न्यूक्लियॉन बाइंडिंग ऊर्जा सूचीबद्ध नहीं है {{sup|62}}Ni, 8.7945 MeV पर उच्चतम बंधन ऊर्जा के साथ।]]
[[File:Binding energy curve - common isotopes.svg|thumb|371x371px|न्यूक्लाइड के चयन के लिए प्रति न्यूक्लियॉन बाइंडिंग ऊर्जा सूचीबद्ध नहीं है {{sup|62}}Ni, 8.7945 MeV पर उच्चतम बंधन ऊर्जा के साथ।]]


 
यह एक आम ग़लतफ़हमी है कि उपरोक्त अनुक्रम <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> (या <math>\, {}_{26}^{56}\mathrm{Fe} \,</math>, जो कि <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> का क्षय उत्पाद है <ref name=":0">{{cite journal |last=Fewell |first=M.P. |date=1995-07-01 |title=उच्चतम माध्य बंधन ऊर्जा वाला परमाणु न्यूक्लाइड|journal=American Journal of Physics |volume=63 |issue=7 |pages=653–658 |doi=10.1119/1.17828 |bibcode=1995AmJPh..63..653F |issn=0002-9505}}</ref>, पर समाप्त होता है क्योंकि यह सबसे शक्ति से बंधा हुआ न्यूक्लाइड है - अथार्त , प्रति न्यूक्लियॉन उच्चतम परमाणु बंधन ऊर्जा वाला न्यूक्लाइड है। - और भारी नाभिक का उत्पादन ऊर्जा को छोड़ने (एक्सोथर्मिक) के अतिरिक्त ऊर्जा का उपभोग करेगा (एंडोथर्मिक होगा)।<math>\, {}_{28}^{62}\mathrm{Ni} \,</math> (निकेल-62) वास्तव में बाध्यकारी ऊर्जा के संदर्भ में सबसे शक्ति से बंधा हुआ न्यूक्लाइड है [3] (चूँकि <math>{}^{56}\textrm{Fe}</math> में प्रति न्यूक्लियॉन कम ऊर्जा या द्रव्यमान है)। प्रतिक्रिया <math>{}^{56}\textrm{Fe}+{}^{4}\textrm{He}\rightarrow {}^{60}\textrm{Ni}</math> वास्तव में ऊष्माक्षेपी है, किंतु फिर भी अनुक्रम प्रभावी रूप से लोहे पर समाप्त होता है। अनुक्रम <math>\ {}_{28}^{56}\mathrm{Ni}\ </math>के उत्पादन से पहले रुक जाता है क्योंकि तारकीय अंदरूनी स्थितियों में लोहे के चारों ओर फोटोडिसइन्ग्रेशन को बढ़ावा देने के लिए फोटोडिसइन्ग्रेशन और अल्फा प्रक्रिया के बीच प्रतिस्पर्धा होती है।<ref name=":0" /><ref>{{cite journal |last1=Burbidge |first1=E. Margaret |author-link1=Margaret Burbidge |last2=Burbidge |first2=G.R. |author-link2=Geoffrey Burbidge |last3=Fowler |first3=William A. |author-link3=William Alfred Fowler |last4=Hoyle |first4=F. |author-link4=Fred Hoyle |date=1957-10-01 |title=तारों में तत्वों का संश्लेषण|journal=Reviews of Modern Physics |volume=29 |issue=4 |pages=547–650 |bibcode=1957RvMP...29..547B |doi=10.1103/RevModPhys.29.547 |doi-access=free}}</ref>] इससे <math>\, {}_{28}^{62}\mathrm{Ni} ~.</math> की तुलना में अधिक <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> का उत्पादन होता है।इन सभी प्रतिक्रियाओं की तारों के तापमान और घनत्व पर बहुत कम दर होती है और इसलिए ये तारे के कुल उत्पादन में महत्वपूर्ण ऊर्जा का योगदान नहीं करते हैं। बढ़ते कूलम्ब अवरोध के कारण, वे नियॉन (परमाणु क्रमांक N > 10) से भारी तत्वों के साथ और भी कम सरलता से घटित होते हैं।
यह एक आम ग़लतफ़हमी है कि उपरोक्त अनुक्रम <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> (या <math>\, {}_{26}^{56}\mathrm{Fe} \,</math>, जो कि <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> का क्षय उत्पाद है<ref name=":0">{{cite journal |last=Fewell |first=M.P. |date=1995-07-01 |title=उच्चतम माध्य बंधन ऊर्जा वाला परमाणु न्यूक्लाइड|journal=American Journal of Physics |volume=63 |issue=7 |pages=653–658 |doi=10.1119/1.17828 |bibcode=1995AmJPh..63..653F |issn=0002-9505}}</ref>, पर समाप्त होता है क्योंकि यह सबसे शक्ति से बंधा हुआ न्यूक्लाइड है - अथार्त , प्रति न्यूक्लियॉन उच्चतम परमाणु बंधन ऊर्जा वाला न्यूक्लाइड है। - और भारी नाभिक का उत्पादन ऊर्जा को छोड़ने (एक्सोथर्मिक) के अतिरिक्त ऊर्जा का उपभोग करेगा (एंडोथर्मिक होगा)।<math>\, {}_{28}^{62}\mathrm{Ni} \,</math> (निकेल-62) वास्तव में बाध्यकारी ऊर्जा के संदर्भ में सबसे शक्ति से बंधा हुआ न्यूक्लाइड है [3] (चूँकि <math>{}^{56}\textrm{Fe}</math> में प्रति न्यूक्लियॉन कम ऊर्जा या द्रव्यमान है)। प्रतिक्रिया <math>{}^{56}\textrm{Fe}+{}^{4}\textrm{He}\rightarrow {}^{60}\textrm{Ni}</math> वास्तव में ऊष्माक्षेपी है, किंतु फिर भी अनुक्रम प्रभावी रूप से लोहे पर समाप्त होता है। अनुक्रम <math>\ {}_{28}^{56}\mathrm{Ni}\ </math>के उत्पादन से पहले रुक जाता है क्योंकि तारकीय अंदरूनी स्थितियों में लोहे के चारों ओर फोटोडिसइन्ग्रेशन को बढ़ावा देने के लिए फोटोडिसइन्ग्रेशन और अल्फा प्रक्रिया के बीच प्रतिस्पर्धा होती है।<ref name=":0" /><ref>{{cite journal |last1=Burbidge |first1=E. Margaret |author-link1=Margaret Burbidge |last2=Burbidge |first2=G.R. |author-link2=Geoffrey Burbidge |last3=Fowler |first3=William A. |author-link3=William Alfred Fowler |last4=Hoyle |first4=F. |author-link4=Fred Hoyle |date=1957-10-01 |title=तारों में तत्वों का संश्लेषण|journal=Reviews of Modern Physics |volume=29 |issue=4 |pages=547–650 |bibcode=1957RvMP...29..547B |doi=10.1103/RevModPhys.29.547 |doi-access=free}}</ref>] इससे <math>\, {}_{28}^{62}\mathrm{Ni} ~.</math> की तुलना में अधिक <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> का उत्पादन होता है।
इन सभी प्रतिक्रियाओं की तारों के तापमान और घनत्व पर बहुत कम दर होती है और इसलिए ये तारे के कुल उत्पादन में महत्वपूर्ण ऊर्जा का योगदान नहीं करते हैं। बढ़ते कूलम्ब अवरोध के कारण, वे नियॉन (परमाणु क्रमांक N > 10) से भारी तत्वों के साथ और भी कम आसानी से घटित होते हैं।


== <span class="एंकर" आईडी="अल्फा" तत्व>अल्फा प्रक्रिया तत्व</span>                                                                                                              ==
== <span class="एंकर" आईडी="अल्फा" तत्व>अल्फा प्रक्रिया तत्व</span>                                                                                                              ==
Line 38: Line 36:
[[File:Nuclear energy generation.svg|right|upright=1.5|thumb|250px|ट्रिपल-{{mvar|α}} विभिन्न तापमानों पर विलयन प्रक्रियाएं ({{mvar|T}}). धराशायी रेखा संयुक्त ऊर्जा उत्पादन को दर्शाती है {{math|p-p}} और CNO एक तारे के भीतर प्रक्रियाएँ करते हैं।]]
[[File:Nuclear energy generation.svg|right|upright=1.5|thumb|250px|ट्रिपल-{{mvar|α}} विभिन्न तापमानों पर विलयन प्रक्रियाएं ({{mvar|T}}). धराशायी रेखा संयुक्त ऊर्जा उत्पादन को दर्शाती है {{math|p-p}} और CNO एक तारे के भीतर प्रक्रियाएँ करते हैं।]]
* स्थिर अल्फा तत्व हैं: कार्बन, [[ऑक्सीजन]], नियॉन, [[मैगनीशियम]], [[सिलिकॉन]] और [[ गंधक |सल्फर]] ।
* स्थिर अल्फा तत्व हैं: कार्बन, [[ऑक्सीजन]], नियॉन, [[मैगनीशियम]], [[सिलिकॉन]] और [[ गंधक |सल्फर]] ।
*[[आर्गन]] और [[कैल्शियम]] तत्व अवलोकनीय रूप से स्थिर हैं। सिलिकॉन जलने की प्रक्रिया के चरण से पहले उन्हें अल्फा कैप्चर द्वारा संश्लेषित किया जाता है, जो {{nobr|[[Type II supernova]]e.}} आगे बढ़ता है  
*[[आर्गन]] और [[कैल्शियम]] तत्व अवलोकनीय रूप से स्थिर हैं। सिलिकॉन जलने की प्रक्रिया के चरण से पहले उन्हें अल्फा कैप्चर द्वारा संश्लेषित किया जाता है, जो {{nobr|[[टाइप II सुपरनोवा]]}} आगे बढ़ता है  
*सिलिकॉन और कैल्शियम पूर्णतया अल्फा प्रोसेस तत्व हैं।
*सिलिकॉन और कैल्शियम पूर्णतया अल्फा प्रोसेस तत्व हैं।
* [[प्रोटॉन कैप्चर]] प्रतिक्रियाओं द्वारा मैग्नीशियम का अलग से सेवन किया जा सकता है।
* [[प्रोटॉन कैप्चर]] प्रतिक्रियाओं द्वारा मैग्नीशियम का अलग से सेवन किया जा सकता है।
Line 44: Line 42:
ऑक्सीजन (ऑक्सीजन) की स्थिति पर विवाद है - कुछ लेखक<ref name=":1">{{Cite book |last=Mo |first=Houjun |url=https://www.worldcat.org/oclc/460059772 |title=आकाशगंगा का निर्माण और विकास|date=2010 |publisher=Cambridge University Press |others=Frank Van den Bosch, S. White |isbn=978-0-521-85793-2 |location=Cambridge |pages=460 |oclc=460059772}}</ref> इसे एक अल्फ़ा तत्व मानें, जबकि अन्य ऐसा नहीं मानते है । जो की कम-धात्विक तारकीय जनसंख्या में ऑक्सीजन निश्चित रूप से एक अल्फा तत्व है या जनसंख्या II सितारे: यह [[टाइप II सुपरनोवा]] में उत्पन्न होता है, और इसकी वृद्धि अन्य अल्फा प्रक्रिया तत्वों की वृद्धि के साथ अच्छी तरह से संबंधित है।
ऑक्सीजन (ऑक्सीजन) की स्थिति पर विवाद है - कुछ लेखक<ref name=":1">{{Cite book |last=Mo |first=Houjun |url=https://www.worldcat.org/oclc/460059772 |title=आकाशगंगा का निर्माण और विकास|date=2010 |publisher=Cambridge University Press |others=Frank Van den Bosch, S. White |isbn=978-0-521-85793-2 |location=Cambridge |pages=460 |oclc=460059772}}</ref> इसे एक अल्फ़ा तत्व मानें, जबकि अन्य ऐसा नहीं मानते है । जो की कम-धात्विक तारकीय जनसंख्या में ऑक्सीजन निश्चित रूप से एक अल्फा तत्व है या जनसंख्या II सितारे: यह [[टाइप II सुपरनोवा]] में उत्पन्न होता है, और इसकी वृद्धि अन्य अल्फा प्रक्रिया तत्वों की वृद्धि के साथ अच्छी तरह से संबंधित है।


कभी-कभी कार्बन और [[नाइट्रोजन]] को अल्फा प्रक्रिया तत्व माना जाता है, क्योंकि ऑक्सीजन की तरह, उन्हें परमाणु अल्फा-कैप्चर प्रतिक्रियाओं में संश्लेषित किया जाता है, किंतु उनकी स्थिति अस्पष्ट है: तीन तत्वों में से प्रत्येक का उत्पादन (और उपभोग) सीएनओ चक्र द्वारा किया जाता है, जो उन तापमानों की तुलना में बहुत कम तापमान पर आगे बढ़ सकता है जहां अल्फा-सीढ़ी प्रक्रियाएं महत्वपूर्ण मात्रा में अल्फा तत्वों (कार्बन, नाइट्रोजन और ऑक्सीजन सहित) का उत्पादन प्रारंभ करती हैं। तो किसी तारे में केवल कार्बन, नाइट्रोजन, या ऑक्सीजन की उपस्थिति स्पष्ट रूप से यह संकेत नहीं देती है कि अल्फा प्रक्रिया वास्तव में चल रही है - इसलिए कुछ खगोलविदों की अनिच्छा (बिना नियम) इन तीन अल्फा तत्वों को बुलाने में है।
कभी-कभी कार्बन और [[नाइट्रोजन]] को अल्फा प्रक्रिया तत्व माना जाता है, क्योंकि ऑक्सीजन की तरह, उन्हें परमाणु अल्फा-कैप्चर प्रतिक्रियाओं में संश्लेषित किया जाता है, किंतु उनकी स्थिति अस्पष्ट है: तीन तत्वों में से प्रत्येक का उत्पादन (और उपभोग) सीएनओ चक्र द्वारा किया जाता है, जो उन तापमानों की तुलना में बहुत कम तापमान पर आगे बढ़ सकता है जहां अल्फा-लैडर प्रक्रियाएं महत्वपूर्ण मात्रा में अल्फा तत्वों (कार्बन, नाइट्रोजन और ऑक्सीजन सहित) का उत्पादन प्रारंभ करती हैं। तो किसी तारे में केवल कार्बन, नाइट्रोजन, या ऑक्सीजन की उपस्थिति स्पष्ट रूप से यह संकेत नहीं देती है कि अल्फा प्रक्रिया वास्तव में चल रही है - इसलिए कुछ खगोलविदों की अनिच्छा (बिना नियम) इन तीन अल्फा तत्वों को बुलाने में है।


== सितारों में उत्पादन                                                                          ==
== सितारों में उत्पादन                                                                          ==
अल्फा प्रक्रिया समान्यत: बड़ी मात्रा में तभी होती है जब तारा पर्याप्त रूप से विशाल हो, <math>\gtrsim 10M_{\odot}</math>(<math>M_{\odot}                                                                                                                                                                                                                   
अल्फा प्रक्रिया समान्यत: बड़ी मात्रा में तभी होती है जब तारा पर्याप्त रूप से विशाल हो, <math>\gtrsim 10M_{\odot}</math>(<math>M_{\odot}                                                                                                                                                                                                                   
                                                                                                                                                                                                                             </math> सूर्य का द्रव्यमान होना);<ref name=":2" /> ये तारे उम्र बढ़ने के साथ सिकुड़ते हैं, जिससे अल्फा प्रक्रिया को सक्षम करने के लिए कोर तापमान और घनत्व पर्याप्त उच्च स्तर तक बढ़ जाता है। परमाणु द्रव्यमान के साथ आवश्यकताएँ बढ़ती हैं, विशेष रूप से बाद के चरणों में - कभी-कभी इसे [[सिलिकॉन-जलने की प्रक्रिया]] के रूप में जाना जाता है - और इस प्रकार यह समान्यत: [[सुपरनोवा न्यूक्लियोसिंथेसिस]] में होता है।<ref>{{Cite journal |last=Truran |first=J. W. |last2=Cowan |first2=J. J. |last3=Cameron |first3=A. G. W. |date=1978-06-01 |title=सुपरनोवा में हीलियम-चालित आर-प्रक्रिया।|url=https://ui.adsabs.harvard.edu/abs/1978ApJ...222L..63T |journal=The Astrophysical Journal |volume=222 |pages=L63–L67 |doi=10.1086/182693 |issn=0004-637X}}</ref> [[Ia सुपरनोवा टाइप करें]] मुख्य रूप से ऑक्सीजन और अल्फा-तत्वों (नियॉन, मैग्नीशियम, सिलिकॉन, सल्फर, आर्गन, कैल्शियम और [[टाइटेनियम]]) को संश्लेषित करते हैं जबकि टाइप Ia सुपरनोवा मुख्य रूप से [[लोहे की चोटी|आयरन पीक]] (टाइटेनियम, [[वैनेडियम]], [[क्रोमियम]], [[मैंगनीज]], आयरन, [[कोबाल्ट|कोबाल्ट और]] [[निकल]]) के तत्वों का उत्पादन करते हैं।<ref name=":2">{{Citation |last=Truran |first=J.W. |title=Origin of the Elements |date=2003 |url=https://linkinghub.elsevier.com/retrieve/pii/B0080437516010598 |work=Treatise on Geochemistry |pages=1–15 |publisher=Elsevier |language=en |doi=10.1016/b0-08-043751-6/01059-8 |isbn=978-0-08-043751-4 |access-date=2023-02-17 |last2=Heger |first2=A.}}</ref> पर्याप्त रूप से बड़े तारे केवल हाइड्रोजन और हीलियम से [[लोहे की चोटी|आयरन पीक]] तक के तत्वों को संश्लेषित कर सकते हैं जिनमें मूल रूप से तारा सम्मिलित होता है।<ref name=":1" />
                                                                                                                                                                                                                             </math> सूर्य का द्रव्यमान होना);<ref name=":2" /> ये तारे उम्र बढ़ने के साथ संकुचित होते हैं, जिससे अल्फा प्रक्रिया को सक्षम करने के लिए कोर तापमान और घनत्व पर्याप्त उच्च स्तर तक बढ़ जाता है। परमाणु द्रव्यमान के साथ आवश्यकताएँ बढ़ती हैं, विशेष रूप से पश्चात् के चरणों में - कभी-कभी इसे [[सिलिकॉन-जलने की प्रक्रिया]] के रूप में जाना जाता है - और इस प्रकार यह समान्यत: [[सुपरनोवा न्यूक्लियोसिंथेसिस]] में होता है।<ref>{{Cite journal |last=Truran |first=J. W. |last2=Cowan |first2=J. J. |last3=Cameron |first3=A. G. W. |date=1978-06-01 |title=सुपरनोवा में हीलियम-चालित आर-प्रक्रिया।|url=https://ui.adsabs.harvard.edu/abs/1978ApJ...222L..63T |journal=The Astrophysical Journal |volume=222 |pages=L63–L67 |doi=10.1086/182693 |issn=0004-637X}}</ref> [[Ia सुपरनोवा टाइप करें|ला सुपरनोवा टाइप करें]] मुख्य रूप से ऑक्सीजन और अल्फा-तत्वों (नियॉन, मैग्नीशियम, सिलिकॉन, सल्फर, आर्गन, कैल्शियम और [[टाइटेनियम]]) को संश्लेषित करते हैं जबकि टाइप ला सुपरनोवा मुख्य रूप से [[लोहे की चोटी|आयरन पीक]] (टाइटेनियम, [[वैनेडियम]], [[क्रोमियम]], [[मैंगनीज]], आयरन, [[कोबाल्ट|कोबाल्ट और]] [[निकल]]) के तत्वों का उत्पादन करते हैं।<ref name=":2">{{Citation |last=Truran |first=J.W. |title=Origin of the Elements |date=2003 |url=https://linkinghub.elsevier.com/retrieve/pii/B0080437516010598 |work=Treatise on Geochemistry |pages=1–15 |publisher=Elsevier |language=en |doi=10.1016/b0-08-043751-6/01059-8 |isbn=978-0-08-043751-4 |access-date=2023-02-17 |last2=Heger |first2=A.}}</ref> पर्याप्त रूप से बड़े तारे केवल हाइड्रोजन और हीलियम से [[लोहे की चोटी|आयरन पीक]] तक के तत्वों को संश्लेषित कर सकते हैं जिनमें मूल रूप से तारा सम्मिलित होता है।<ref name=":1" />


समान्यत: अल्फा प्रक्रिया (या अल्फा-कैप्चर) का पहला चरण तारे के हीलियम-जलने के चरण से होता है, जब हीलियम समाप्त हो जाता है; इस बिंदु पर, <math>{}_6^{12}\textrm{C}</math> का उत्पादन करने के लिए मुफ्त <math>{}_6^{12}\textrm{C}</math> हीलियम कैप्चर करें।<ref name=":3">{{Cite book |last=Clayton |first=Donald D. |url=https://www.worldcat.org/oclc/9646641 |title=Principles of stellar evolution and nucleosynthesis : with a new preface |date=1983 |publisher=University of Chicago Press |isbn=0-226-10953-4 |edition= |location=Chicago |pages=430-435 |oclc=9646641}}</ref> कोर के हीलियम जलने के चरण को समाप्त करने के बाद भी यह प्रक्रिया जारी रहती है क्योंकि कोर के चारों ओर का आवरण हीलियम को जलाता रहेगा और कोर में संवहित होता रहेगा।<ref name=":2" /> दूसरा चरण (नियॉन बर्निंग) तब प्रारंभ होता है जब एक <math>{}_{10}^{20}\textrm{Ne}</math> परमाणु के फोटोडिसइंटीग्रेशन द्वारा हीलियम मुक्त हो जाता है, जिससे दूसरे को अल्फा सीढ़ी पर आगे बढ़ने की अनुमति मिलती है। सिलिकॉन का जलना बाद में इसी तरह से <math>{}_{14}^{28}\textrm{Si}</math> के फोटोडिसइंटीग्रेशन के माध्यम से प्रारंभ किया जाता है; इस बिंदु के बाद, पहले विचार की गई <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> चोटी पर पहुँच जाता है। तारकीय पतन से उत्पन्न सुपरनोवा शॉक तरंग इन प्रक्रियाओं को संक्षेप में घटित होने के लिए आदर्श स्थिति प्रदान करती है।
समान्यत: अल्फा प्रक्रिया (या अल्फा-कैप्चर) का पहला चरण तारे के हीलियम-जलने के चरण से होता है, जब हीलियम समाप्त हो जाता है; इस बिंदु पर, <math>{}_6^{12}\textrm{C}</math> का उत्पादन करने के लिए मुफ्त <math>{}_6^{12}\textrm{C}</math> हीलियम कैप्चर करें।<ref name=":3">{{Cite book |last=Clayton |first=Donald D. |url=https://www.worldcat.org/oclc/9646641 |title=Principles of stellar evolution and nucleosynthesis : with a new preface |date=1983 |publisher=University of Chicago Press |isbn=0-226-10953-4 |edition= |location=Chicago |pages=430-435 |oclc=9646641}}</ref> कोर के हीलियम जलने के चरण को समाप्त करने के पश्चात् भी यह प्रक्रिया जारी रहती है क्योंकि कोर के चारों ओर का आवरण हीलियम को जलाता रहेगा और कोर में संवहित होता रहेगा।<ref name=":2" /> दूसरा चरण (नियॉन बर्निंग) तब प्रारंभ होता है जब एक <math>{}_{10}^{20}\textrm{Ne}</math> परमाणु के फोटोडिसइंटीग्रेशन द्वारा हीलियम मुक्त हो जाता है, जिससे दूसरे को अल्फा लैडर पर आगे बढ़ने की अनुमति मिलती है। सिलिकॉन का जलना पश्चात् में इसी तरह से <math>{}_{14}^{28}\textrm{Si}</math> के फोटोडिसइंटीग्रेशन के माध्यम से प्रारंभ किया जाता है; इस बिंदु के पश्चात्, पहले विचार की गई <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> चोटी पर पहुँच जाता है। तारकीय पतन से उत्पन्न सुपरनोवा शॉक तरंग इन प्रक्रियाओं को संक्षेप में घटित होने के लिए आदर्श स्थिति प्रदान करती है।


फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके बाद में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके पश्चात् में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। <math>{}_{22}^{44}\textrm{Ti}</math> और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। <math>\, {}_{28}^{56}\mathrm{Ni} \,</math> बनता है और <math>{}_{26}^{56}\textrm{Fe}</math> में क्षय हो जाता है।<ref name=":3" />
==सापेक्ष बहुतायत के लिए विशेष संकेतन                                                                                                      ==
==सापेक्ष बहुतायत के लिए विशेष संकेतन                                                                                                      ==
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:

Revision as of 13:47, 7 August 2023

अल्फा प्रक्रिया द्वारा कार्बन से परे तत्वों का निर्माण

अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, परमाणु विलयन प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे हीलियम को भारी रासायनिक तत्व में परिवर्तित करते हैं। दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे ट्रिपल-अल्फा प्रक्रिया कहा जाता है, जो केवल हीलियम का उपभोग करता है, और कार्बन का उत्पादन करता है।[1] अल्फा प्रक्रिया समान्यत: बड़े सितारों में और सुपरनोवा के समय होती है।

दोनों प्रक्रियाएं हाइड्रोजन विलयन से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। ट्रिपल अल्फा प्रक्रिया के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।