नर्नस्ट समीकरण: Difference between revisions

From Vigyanwiki
Line 54: Line 54:
{{See also|मानक इलेक्ट्रोड विभव}}
{{See also|मानक इलेक्ट्रोड विभव}}


गतिविधियों के स्थान पर सरल सांद्रता का उपयोग करने की इच्छा होने पर, किन्तु यह कि गतिविधि गुणांक एकता से बहुत दूर हैं और इसे अब उपेक्षित नहीं किया जा सकता है और अज्ञात या निर्धारित करने में बहुत कठिन है, तथाकथित मानक औपचारिक की धारणा (<math>E^{\ominus '}_\text{red}</math>) को प्रस्तुत करना सुविधाजनक हो सकता है जो निम्नानुसार मानक कमी क्षमता से संबंधित है:<ref name="Bard_Faultner">{{Cite book| last1 = Bard| first1 = Allen J.| last2 = Faulkner| first2 = Larry R. | date = 2001| title = विद्युत रासायनिक विधियाँ: मूल तत्व और अनुप्रयोग| edition = 2| publisher = John Wiley & Sons| location = New York| chapter = Chapter 2. Potentials and Thermodynamics of Cells – See: 2.1.6 Formal Potentials| page = 52}}</रेफरी>
गतिविधियों के स्थान पर सरल सांद्रता का उपयोग करने की इच्छा होने पर, किन्तु यह कि गतिविधि गुणांक एकता से बहुत दूर हैं और इसे अब उपेक्षित नहीं किया जा सकता है और अज्ञात या निर्धारित करने में बहुत कठिन है, तथाकथित मानक औपचारिक की धारणा (<math>E^{\ominus '}_\text{red}</math>) को प्रस्तुत करना सुविधाजनक हो सकता है जो निम्नानुसार मानक कमी क्षमता से संबंधित है:<ref name="Bard_Faultner">{{Cite book| last1 = Bard| first1 = Allen J.| last2 = Faulkner| first2 = Larry R. | date = 2001| title = विद्युत रासायनिक विधियाँ: मूल तत्व और अनुप्रयोग| edition = 2| publisher = John Wiley & Sons| location = New York| chapter = Chapter 2. Potentials and Thermodynamics of Cells – See: 2.1.6 Formal Potentials| page = 52}}</ref> औपचारिक क्षमता <math>E^{\ominus '}_\text{red}</math> कमी की क्षमता है जो निर्दिष्ट नियमो के समूह के अनुसार अर्ध प्रतिक्रिया पर प्रयुक्त होती है, जैसे, [[पीएच]], आयनिक शक्ति, या [[जटिल एजेंट]] की सघनता आदि।
<math display="block">E^{\ominus '}_\text{red}=E^{\ominus}_\text{red}-\frac{RT}{zF}\ln\frac{\gamma_\text{Red}}{\gamma_\text{Ox}}</math>
ताकि अर्ध-सेल प्रतिक्रिया के लिए नर्नस्ट समीकरण को औपचारिक रूप से सांद्रता के संदर्भ में सही ढंग से लिखा जा सके:
<math display="block">E_\text{red}=E^{\ominus '}_\text{red} - \frac{RT}{zF} \ln\frac{C_\text{Red}}{C_\text{Ox}}</math>
और इसी तरह पूर्ण सेल अभिव्यक्ति के लिए।
 
वेन्ज़ेल (2020) के अनुसार,<nowiki><ref name="Wenzel_2020"></nowiki>{{Cite web |title=4. मानक राज्य विद्युत रासायनिक क्षमता की तालिका|last=Wenzel |first=Thomas |work=Chemistry LibreTexts |date=2020-06-09 |access-date=2021-11-24 |url= https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Active_Learning/In_Class_Activities/Electrochemical_Methods_of_Analysis/02_Text/4._Table_of_Standard_State_Electrochemical_Potentials}}</ref> औपचारिक क्षमता <math>E^{\ominus '}_\text{red}</math> कमी की क्षमता है जो निर्दिष्ट नियमो के समूह के अनुसार अर्ध प्रतिक्रिया पर प्रयुक्त होती है, जैसे, [[पीएच]], आयनिक शक्ति, या [[जटिल एजेंट]] की सघनता आदि।


औपचारिक कमी क्षमता <math>E^{\ominus '}_\text{red}</math> अधिकांशतः अधिक सुविधाजनक, किन्तु सशर्त, मानक कमी क्षमता का रूप होता है, जो प्रतिक्रिया के माध्यम की गतिविधि गुणांक और विशिष्ट स्थितियों की विशेषताओं को ध्यान में रखता है। इसलिए, इसका मूल्य सशर्त मूल्य है, अर्थात यह प्रायोगिक स्थितियों पर निर्भर करता है और क्योंकि आयनिक शक्ति गतिविधि गुणांक को प्रभावित करती है, <math>E^{\ominus '}_\text{red}</math> मध्यम से मध्यम भिन्न होती है।<ref name="Bard_Faultner" />औपचारिक कमी क्षमता की कई परिभाषाएँ साहित्य में पाई जा सकती हैं, जो अध्ययन किए गए उद्देश्य और अध्ययन प्रणाली द्वारा लगाए गए प्रयोगात्मक बाधाओं पर निर्भर करती हैं। <math>E^{\ominus '}_\text{red}</math> की सामान्य परिभाषा इसके मूल्य को संदर्भित करता है जब <math>\frac{C_\text{red}} {C_\text{ox}} = 1</math> निर्धा रित किया जाता है . और विशेष स्थिति है जब <math>E^{\ominus '}_\text{red}</math> पीएच 7 पर भी निर्धारित किया जाता है, उदाहरण जैव रसायन या जैविक प्रणालियों में महत्वपूर्ण रेडॉक्स प्रतिक्रियाओं के लिए किया जाता है।
औपचारिक कमी क्षमता <math>E^{\ominus '}_\text{red}</math> अधिकांशतः अधिक सुविधाजनक, किन्तु सशर्त, मानक कमी क्षमता का रूप होता है, जो प्रतिक्रिया के माध्यम की गतिविधि गुणांक और विशिष्ट स्थितियों की विशेषताओं को ध्यान में रखता है। इसलिए, इसका मूल्य सशर्त मूल्य है, अर्थात यह प्रायोगिक स्थितियों पर निर्भर करता है और क्योंकि आयनिक शक्ति गतिविधि गुणांक को प्रभावित करती है, <math>E^{\ominus '}_\text{red}</math> मध्यम से मध्यम भिन्न होती है।<ref name="Bard_Faultner" />औपचारिक कमी क्षमता की कई परिभाषाएँ साहित्य में पाई जा सकती हैं, जो अध्ययन किए गए उद्देश्य और अध्ययन प्रणाली द्वारा लगाए गए प्रयोगात्मक बाधाओं पर निर्भर करती हैं। <math>E^{\ominus '}_\text{red}</math> की सामान्य परिभाषा इसके मूल्य को संदर्भित करता है जब <math>\frac{C_\text{red}} {C_\text{ox}} = 1</math> निर्धा रित किया जाता है . और विशेष स्थिति है जब <math>E^{\ominus '}_\text{red}</math> पीएच 7 पर भी निर्धारित किया जाता है, उदाहरण जैव रसायन या जैविक प्रणालियों में महत्वपूर्ण रेडॉक्स प्रतिक्रियाओं के लिए किया जाता है।

Revision as of 15:27, 2 August 2023

इलेक्ट्रोकैमिस्ट्री में, नर्नस्ट समीकरण थर्मोडायनामिक्स रासायनिक थर्मोडायनामिक्स संबंध है जो मानक इलेक्ट्रोड क्षमता, थर्मोडायनामिक तापमान, रिडॉक्स में सम्मिलित इलेक्ट्रॉनों की संख्या से प्रतिक्रिया (अर्ध सेल या विद्युत रासायनिक सेल प्रतिक्रिया) की कमी क्षमता की गणना की अनुमति देता है। इस प्रकार क्रमशः कमी और ऑक्सीकरण से निकलने वाली रासायनिक वर्णों की थर्मोडायनामिक गतिविधि (अधिकांशतः सांद्रता द्वारा अनुमानित) इसका नाम जर्मन भौतिक रसायनज्ञ वाल्थर नर्नस्ट के नाम पर रखा गया था, जिन्होंने समीकरण तैयार किया था।[1][2]

एक्सप्रेशन

रासायनिक क्रियाओं के साथ सामान्य रूप

जब आक्सीकारक (Ox) इलेक्ट्रॉनों की संख्या z स्वीकार करता (e) है इसके (Red), कम रूप में परिवर्तित करने के लिए अर्ध प्रतिक्रिया के रूप में व्यक्त किया गया है:

Ox + z eRed

प्रतिक्रिया भागफल (Qr), जिसे अधिकांशतः आयन गतिविधि उत्पाद (आईएपी) भी कहा जाता है, रासायनिक गतिविधि (A) के कम रूप के बीच का अनुपात है। aRed और ऑक्सीकृत रूप (ऑक्सीडेंट, aOx). विघटित वर्ण की रासायनिक गतिविधि उच्च सांद्रता पर समाधान में उपस्थित सभी आयनों के बीच विद्युतीय संबंधों को ध्यान में रखते हुए इसकी वास्तविक थर्मोडायनामिक सघनता से मेल खाती है। किसी दी गई विघटित वर्ण के लिए, इसकी रासायनिक गतिविधि (A) इसकी मोलर सघनता (mol/L सॉल्यूशन), या मोलिटी (mol/kg पानी), सघनता (C) द्वारा इसकी गतिविधि गुणांक (γ) का उत्पाद है: a = γ c है। इसलिए, यदि नर्नस्ट की सभी विघटित वर्णों की सघनता (c, यहां नीचे वर्ग कोष्ठक [ ] के साथ भी दर्शाया गया है) पर्याप्त रूप से कम है और उनकी गतिविधि गुणांक एकता के निकट हैं, तो उनकी रासायनिक गतिविधियों को उनकी सांद्रता द्वारा अनुमानित किया जा सकता है सामान्यतः किया जाता है जब सरलीकृत, या आदर्शीकरण, उपचारात्मक उद्देश्यों के लिए प्रतिक्रिया है:

रासायनिक संतुलन पर, अनुपात Qr प्रतिक्रिया उत्पाद की गतिविधि (ARed) अभिकर्मक गतिविधि द्वारा (AOx) संतुलन स्थिरांक K अर्ध प्रतिक्रिया के सामान्य है:

मानक ऊष्मप्रवैगिकी यह भी कहती है कि वास्तविक गिब्स मुक्त ऊर्जा है ΔG मानक स्थिति के अनुसार मुक्त ऊर्जा परिवर्तन ΔGo
से संबंधित है

जहाँ Qr प्रतिक्रिया भागफल है। सेल क्षमता E इलेक्ट्रोकेमिकल रिएक्शन से जुड़े गिब्स फ्री एनर्जी प्रति कूलॉम ऑफ चार्ज ट्रांसफर में कमी के रूप में परिभाषित किया गया है, जो सम्बन्ध की ओर जाता है
अटल F (फैराडे स्थिरांक) इकाई रूपांतरण कारक F = NAq है , जहाँ NA अवोगाद्रो स्थिरांक है और q मौलिक इलेक्ट्रॉन आवेश है। यह तुरंत नर्नस्ट समीकरण की ओर जाता है, जो विद्युत रासायनिक अर्ध-सेल के लिए है
पूर्ण विद्युत रासायनिक प्रतिक्रिया (पूर्ण सेल) के लिए, समीकरण को इस प्रकार लिखा जा सकता है
जहाँ:

  • Ered नर्नस्ट के तापमान पर अर्ध सेल कमी की क्षमता है,
  • Eo
    red
    मानक इलेक्ट्रोड क्षमता है | मानक अर्ध सेल कमी क्षमता है,
  • Ecell नर्नस्ट के तापमान पर सेल की क्षमता (वैद्युतवाहक बल) है,
  • Eo
    cell
    मानक सेल क्षमता है,
  • R सार्वभौमिक गैस स्थिरांक है: R = 8.31446261815324 J K−1 mol−1,
  • T केल्विन में तापमान है,
  • z सेल प्रतिक्रिया या अर्ध-प्रतिक्रिया में स्थानांतरित इलेक्ट्रॉनों की संख्या है,
  • F फैराडे स्थिरांक है, इलेक्ट्रॉनों के प्रति मोल (इकाई) आवेश का परिमाण (कूलम्ब में): F = 96485.3321233100184 C mol−1,
  • Qr सेल प्रतिक्रिया की प्रतिक्रिया भागफल है, और
  • a प्रासंगिक वर्णों के लिए रासायनिक गतिविधि (रसायन विज्ञान) है, जहां aRed कम रूप की गतिविधि है और aOx ऑक्सीकृत रूप की गतिविधि है।

थर्मल वोल्टेज

कमरे के तापमान (25 डिग्री सेल्सियस) पर, थर्मल वोल्टेज लगभग 25.693 mV है। नेर्नस्ट समीकरण को प्राय: प्राकृतिक लघुगणक के अतिरिक्त अर्धर-10 लघुगणक (अर्थात्, सामान्य लघुगणक) के संदर्भ में व्यक्त किया जाता है, जिस स्थिति में यह लिखा जाता है:

जहां λ = ln(10) ≈ 2.3026 और λVT≈ 0.05916 वोल्ट है।

गतिविधि गुणांक और सांद्रता के साथ प्रपत्र

संतुलन स्थिरांक के समान, गतिविधियों को सदैव मानक अवस्था के संबंध में मापा जाता है (विलेय के लिए 1 mol/L, गैसों के लिए 1 atm, और T = 298.15 K, अर्थात 25 °C या 77 °F)। वर्ण की रासायनिक गतिविधि i, ai, मापा सघनता से संबंधित है Ci सम्बन्ध के माध्यम से ai = γi Ci, जहाँ γi वर्णों का गतिविधि गुणांक i है . क्योंकि गतिविधि गुणांक कम सांद्रता पर एकता की ओर प्रवृत्त होते हैं, या मध्यम और उच्च सांद्रता पर अज्ञात या निर्धारित करने में कठिन होते हैं, नर्नस्ट समीकरण में गतिविधियों को अधिकांशतः सरल सांद्रता से बदल दिया जाता है और फिर, औपचारिक मानक कमी क्षमता उपयोग किया गया था।

गतिविधि गुणांक को ध्यान में रखते हुए () नर्नस्ट समीकरण बन जाता है:

जहां गतिविधि गुणांक सहित पहला पद () अंकित है इस प्रकार और औपचारिक मानक कमी क्षमता कहा जाता है, जिससे के फलन के रूप में सीधे व्यक्त किया जा सकता है और नर्नस्ट समीकरण के सरलतम रूप में सांद्रता है:

औपचारिक मानक कमी क्षमता

गतिविधियों के स्थान पर सरल सांद्रता का उपयोग करने की इच्छा होने पर, किन्तु यह कि गतिविधि गुणांक एकता से बहुत दूर हैं और इसे अब उपेक्षित नहीं किया जा सकता है और अज्ञात या निर्धारित करने में बहुत कठिन है, तथाकथित मानक औपचारिक की धारणा () को प्रस्तुत करना सुविधाजनक हो सकता है जो निम्नानुसार मानक कमी क्षमता से संबंधित है:[3] औपचारिक क्षमता कमी की क्षमता है जो निर्दिष्ट नियमो के समूह के अनुसार अर्ध प्रतिक्रिया पर प्रयुक्त होती है, जैसे, पीएच, आयनिक शक्ति, या जटिल एजेंट की सघनता आदि।

औपचारिक कमी क्षमता अधिकांशतः अधिक सुविधाजनक, किन्तु सशर्त, मानक कमी क्षमता का रूप होता है, जो प्रतिक्रिया के माध्यम की गतिविधि गुणांक और विशिष्ट स्थितियों की विशेषताओं को ध्यान में रखता है। इसलिए, इसका मूल्य सशर्त मूल्य है, अर्थात यह प्रायोगिक स्थितियों पर निर्भर करता है और क्योंकि आयनिक शक्ति गतिविधि गुणांक को प्रभावित करती है, मध्यम से मध्यम भिन्न होती है।[3]औपचारिक कमी क्षमता की कई परिभाषाएँ साहित्य में पाई जा सकती हैं, जो अध्ययन किए गए उद्देश्य और अध्ययन प्रणाली द्वारा लगाए गए प्रयोगात्मक बाधाओं पर निर्भर करती हैं। की सामान्य परिभाषा इसके मूल्य को संदर्भित करता है जब निर्धा रित किया जाता है . और विशेष स्थिति है जब पीएच 7 पर भी निर्धारित किया जाता है, उदाहरण जैव रसायन या जैविक प्रणालियों में महत्वपूर्ण रेडॉक्स प्रतिक्रियाओं के लिए किया जाता है।

औपचारिक मानक कमी क्षमता का निर्धारण जब Cred/Cox = 1

औपचारिक मानक कमी क्षमता मापा कमी क्षमता के रूप में परिभाषित किया जा सकता है ऑक्सीकृत और कम वर्णों के एकता सघनता अनुपात में अर्ध प्रतिक्रिया (अर्थात, जब Cred/Cox = 1) दी गई नियमो के अनुसार [4] यदि क्षमता में कोई भी छोटा वृद्धिशील परिवर्तन प्रतिक्रिया की दिशा में परिवर्तन का कारण बनता है, अर्थात कमी से ऑक्सीकरण या इसके विपरीत, प्रणाली संतुलन के निकट है, प्रतिवर्ती है और अपनी औपचारिक क्षमता पर है। जब औपचारिक क्षमता को मानक स्थितियों के अनुसार मापा जाता है (अर्थात प्रत्येक विघटित वर्ण की गतिविधि 1 mol/L, T = 298.15 K = 25 °C = 77 °F, Pgas = 1 बार) तो यह वास्तव में मानक विभव बन जाता है।[5]
ब्राउन और स्विफ्ट (1949) के अनुसार:

एक औपचारिक क्षमता को अर्ध सेल की क्षमता के रूप में परिभाषित किया जाता है, जिसे मानक हाइड्रोजन इलेक्ट्रोड के विपरीत मापा जाता है, जब प्रत्येक ऑक्सीकरण स्तर की कुल सघनता औपचारिक सघनता होती है।[6]

इस स्थिति में, मानक कमी क्षमता के लिए, वर्णों की सांद्रता मोलर सांद्रता (M) या मोलिटी (m) के सामान्य रहती है, और इसलिए इसे औपचारिक सांद्रता (F) कहा जाता है। जिससे सघनता व्यक्त C कर रहे हैं

औपचारिक सघनता (एफ) शब्द को अब वर्तमान साहित्य में अधिक सीमा तक नजरअंदाज कर दिया गया है और थर्मोडायनामिक गणनाओं के स्थिति में मोलर सघनता (एम), या मोलिटी (एम) को सामान्यतः आत्मसात किया जा सकता है।[7] हम एक-इलेक्ट्रॉन प्रक्रिया के लिए नर्नस्ट समीकरण Ox + e ⇌ Red प्राप्त करते हैं :

ऊष्मप्रवैगिकी (रासायनिक क्षमता) का उपयोग

यहाँ मात्राएँ प्रति अणु दी गई हैं, प्रति मोल (इकाई) नहीं, और इसलिए बोल्ट्जमैन स्थिरांक k और प्राथमिक शुल्क e गैस स्थिरांक R के अतिरिक्त उपयोग किया जाता है और फैराडे स्थिरांक F. अधिकांश रसायन विज्ञान की पाठ्यपुस्तकों में दी गई मोलर मात्रा में परिवर्तित करने के लिए, अवोगाद्रो स्थिरांक से गुणा करना आवश्यक है: R = kNA और F = eNA. अणु की एन्ट्रापी को इस रूप में परिभाषित किया गया है

जहाँ Ω अणु के लिए उपलब्ध स्तरों की संख्या है। मात्रा के साथ स्तरों की संख्या रैखिक रूप से भिन्न होनी चाहिए V प्रणाली की (यहाँ बेहतर समझ के लिए आदर्श प्रणाली पर विचार किया जाता है, जिससे गतिविधियों को वास्तविक सांद्रता के बहुत निकट रखा जा सके। उल्लिखित रैखिकता का मौलिक सांख्यिकीय प्रमाण इस खंड के सीमा से परे है, किन्तु यह सच है यह देखने के लिए यह आसान है आदर्श गैस के लिए सामान्य इज़ोटेर्माल प्रक्रिया पर विचार करने के लिए जहाँ एन्ट्रापी का परिवर्तन होता है ΔS = nR ln(V2/V1) स्थान लेता है। यह एन्ट्रापी की परिभाषा और स्थिर तापमान और गैस की मात्रा की स्थिति से अनुसरण करता है n कि स्तरों की संख्या में परिवर्तन मात्रा में सापेक्ष परिवर्तन V2/V1 के समानुपाती होना चाहिए . इस अर्थ में आदर्श गैस परमाणुओं के सांख्यिकीय गुणों में कोई अंतर नहीं है, जो समान गतिविधि गुणांक वाले समाधान की विघटित वर्णों की तुलना में है: कण स्वतंत्र रूप से प्रदान की गई मात्रा को भरते हुए लटकते हैं), जो मोलर की सघनता c के व्युत्क्रमानुपाती होता है। , इसलिए हम एंट्रॉपी को इस रूप में भी लिख सकते हैं
इसलिए किसी स्तर 1 से दूसरे स्तर 2 में एन्ट्रापी में परिवर्तन होता है
जिससे स्तर 2 की एन्ट्रापी हो
यदि स्तर 1 मानक स्थितियों में है, जिसमें c1 एकता है (उदाहरण के लिए, 1 एटीएम या 1 एम), यह केवल c2 की इकाइयों को निरस्त कर देगा . इसलिए, हम स्वेच्छ अणु A की एन्ट्रापी को इस प्रकार लिख सकते हैं
जहाँ मानक तापमान और दबाव पर एंट्रॉपी है और [ए] की सघनता को दर्शाता है। प्रतिक्रिया के लिए एंट्रॉपी में परिवर्तन किया जाता है

aA + bB → yY + zZ

इसके बाद बदल दिया जाता है

हम अंतिम अवधि में अनुपात को प्रतिक्रिया भागफल के रूप में परिभाषित करते हैं:
जहां अंश प्रतिक्रिया उत्पाद थर्मोडायनामिक गतिविधि aj का उत्पाद है, , प्रत्येक को स्टोइकीओमेट्रिक गुणांक νj की शक्ति तक बढ़ाया जाता है, , और भाजक प्रतिक्रियाशील गतिविधियों का समान उत्पाद है। सभी गतिविधियाँ समय t को संदर्भित करती हैं . कुछ परिस्थितियों में (रासायनिक संतुलन देखें) प्रत्येक गतिविधि शब्द जैसे aνj
j
सघनता शब्द द्वारा प्रतिस्थापित किया जा सकता है, [ए]। इलेक्ट्रोकेमिकल सेल में, सेल की क्षमता E रेडॉक्स प्रतिक्रियाओं से उपलब्ध रासायनिक क्षमता (E = μc/e) है . E गिब्स मुक्त ΔG केवल स्थिरांक ΔG = −zFE द्वारा ऊर्जा परिवर्तन से संबंधित है : जहाँ n हस्तांतरित इलेक्ट्रॉनों की संख्या है और F फैराडे स्थिरांक है। नकारात्मक संकेत है क्योंकि सहज प्रतिक्रिया में नकारात्मक गिब्स मुक्त ऊर्जा होती है ΔG और सकारात्मक क्षमता E. गिब्स मुक्त ऊर्जा किसके द्वारा एंट्रॉपी G = HTS से संबंधित है? , जहाँ H तापीय धारिता और है T सिस्टम का तापमान है। इन संबंधों का उपयोग करके अब हम गिब्स मुक्त ऊर्जा में परिवर्तन लिख सकते हैं,

और सेल क्षमता,
यह नर्नस्ट समीकरण का अधिक सामान्य रूप है।

रेडॉक्स प्रतिक्रिया Ox + z e → Red के लिए ,

और हमारे पास है:
मानक तापमान और दबाव (एसटीपी) पर सेल की क्षमता अधिकांशतः औपचारिक क्षमता द्वारा प्रतिस्थापित किया जाता है , जिसमें दिए गए प्रयोगात्मक स्थितियों (T, p, आयनिक शक्ति, पीएच, और जटिल एजेंट) के अनुसार विघटित वर्णों के गतिविधि गुणांक सम्मिलित हैं और यह वह क्षमता है जो वास्तव में इलेक्ट्रोकेमिकल सेल में मापा जाता है।

रासायनिक संतुलन से संबंध

मानक गिब्स मुक्त ऊर्जा संतुलन स्थिरांक K से संबंधित है निम्नलिखित नुसार:[8] सर्जियो ट्रसत्ती, आदि।

क्षमता की समय निर्भरता

समय निर्भरता की एक्सप्रेशन कारोग्लानॉफ द्वारा स्थापित की गई है।[9][10][11][12]

अन्य वैज्ञानिक क्षेत्रों में महत्व

ठंडे संलयन के बारे में वैज्ञानिक विवाद में नर्नस्ट समीकरण सम्मिलित रहा है। फ्लेक्समैन और पोंस ने प्रमाणित किया कि ठंड संलयन उपस्थित हो सकता है, गणना की कि भारी पानी इलेक्ट्रोलिसिस सेल में डूबा हुआ दुर्ग कैथोड 1027 तक प्राप्त कर सकता है। कैथोड की धातु के क्रिस्टल लैटिस के अन्दर दाब का वातावरण, सहज नाभिकीय संलयन उत्पन्न करने के लिए पर्याप्त दाब वास्तव में, केवल 10,000-20,000 वातावरण ही प्राप्त हुए थे। अमेरिकी भौतिकशास्त्री जॉन आर. हुइजेंगा ने प्रमाणित किया कि उनकी मूल गणना नर्नस्ट समीकरण की गलत व्याख्या से प्रभावित थी।[13] उन्होंने पीडी-जेडआर मिश्र धातुओं के बारे में पेपर का संकेत दिया था।[14]

नर्नस्ट समीकरण दो रेडॉक्स प्रणालियों के बीच प्रतिक्रिया की सीमा की गणना की अनुमति देता है और इसका उपयोग किया जा सकता है, उदाहरण के लिए, यह आकलन करने के लिए कि कोई विशेष प्रतिक्रिया पूरी होती या नहीं होती है। रासायनिक संतुलन में, दो अर्ध कोशिकाओं के इलेक्ट्रोमोटिव बल (ईएमएफ) सामान्य होते हैं। यह संतुलन को स्थिर रखने की अनुमति देता है इस प्रकार K गणना की जाने वाली प्रतिक्रिया और इसलिए प्रतिक्रिया की सीमा कम हो गयी थी ।

यह भी देखें

==संदर्भ

  1. Orna, Mary Virginia; Stock, John (1989). Electrochemistry, past and present. Columbus, OH: American Chemical Society. ISBN 978-0-8412-1572-6. OCLC 19124885.
  2. Wahl (2005). "A Short History of Electrochemistry". Galvanotechtnik. 96 (8): 1820–1828.
  3. 3.0 3.1 Bard, Allen J.; Faulkner, Larry R. (2001). "Chapter 2. Potentials and Thermodynamics of Cells – See: 2.1.6 Formal Potentials". विद्युत रासायनिक विधियाँ: मूल तत्व और अनुप्रयोग (2 ed.). New York: John Wiley & Sons. p. 52.
  4. Kano, Kenji (2002). "जलीय घोलों में प्रोटीन और बायोइलेक्ट्रॉनिक रुचि के अन्य यौगिकों की रेडॉक्स क्षमता।". Review of Polarography. 48 (1): 29–46. doi:10.5189/revpolarography.48.29. eISSN 1884-7692. ISSN 0034-6691. Retrieved 2021-12-02.
  5. PalmSens (2021). "Origins of electrochemical potentials — PalmSens". PalmSens. Retrieved 2021-12-06.
  6. Brown, Raymond A.; Swift, Ernest H. (1949). "हाइड्रोक्लोरिक एसिड समाधान में एंटीमोनस-एंटीमोनिक आधा सेल की औपचारिक क्षमता". Journal of the American Chemical Society. 71 (8): 2719–2723. ISSN 0002-7863. उद्धरण: एक औपचारिक क्षमता को एक आधे सेल की क्षमता के रूप में परिभाषित किया जाता है, जिसे मानक हाइड्रोजन इलेक्ट्रोड के खिलाफ मापा जाता है, जब प्रत्येक ऑक्सीकरण अवस्था की कुल सांद्रता एक औपचारिक होती है।
  7. Harvey, David (2020-06-15). "2.2: एकाग्रता". Chemistry LibreTexts. Retrieved 2021-12-15.
  8. "चित्र 20.5: गिब्स ऊर्जा और रेडॉक्स अभिक्रियाएँ". Chemistry LibreTexts. 2014-11-18. Retrieved 2021-12-06.
  9. Karaoglanoff, Z. (January 1906), "Über Oxydations- und Reduktionsvorgänge bei der Elektrolyse von Eisensaltzlösungen" [On Oxidation and Reduction Processes in the Electrolysis of Iron Salt Solutions], Zeitschrift für Elektrochemie (in Deutsch), 12 (1): 5–16, doi:10.1002/bbpc.19060120105
  10. Bard, Allen J.; Inzelt, György; Scholz, Fritz, eds. (2012-10-02), "Karaoglanoff equation", Electrochemical Dictionary, Springer, pp. 527–528, ISBN 9783642295515
  11. Zutshi, Kamala (2008), Introduction to Polarography and Allied Techniques, pp. 127–128, ISBN 9788122417913
  12. The Journal of Physical Chemistry, Volume 10, p 316. https://books.google.com/books?id=zCMSAAAAIAAJ&pg=PA316&lpg=PA316&hl=en&f=false
  13. Huizenga, John R. (1993). Cold Fusion: The Scientific Fiasco of the Century (2 ed.). Oxford and New York: Oxford University Press. pp. 33, 47. ISBN 978-0-19-855817-0.
  14. Huot, J. Y. (1989). "Electrolytic Hydrogenation and Amorphization of Pd-Zr Alloys". Journal of the Electrochemical Society. 136 (3): 630–635. doi:10.1149/1.2096700. ISSN 0013-4651.

बाहरी संबंध