बीजगणितीय सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


गणितीय तर्क में अनौपचारिक रूप से, बीजगणितीय सिद्धांत ऐसा सिद्धांत है जो मुक्त वेरिएबल वाले पदों के बीच समीकरणों के संदर्भ में पूरी तरह से बताए गए सिद्धांतों का उपयोग करता है। असमानताएँ और परिमाणक विशेष रूप से अस्वीकृत हैं। वाक्यात्मक तर्क प्रथम-क्रम तर्क का सबसेट है जिसमें केवल बीजगणितीय वाक्य सम्मिलित होते हैं।
गणितीय तर्क में अनौपचारिक रूप से, बीजगणितीय सिद्धांत एक ऐसा सिद्धांत है जो मुक्त वेरिएबल वाले पदों के बीच समीकरणों के संदर्भ में पूरी तरह से बताए गए सिद्धांतों का उपयोग करता है। असमानताएँ और परिमाणक विशेष रूप से अस्वीकृत हैं। वाक्यात्मक तर्क प्रथम-क्रम तर्क का सबसेट है जिसमें केवल बीजगणितीय वाक्य सम्मिलित होते हैं।


यह धारणा [[बीजगणितीय संरचना]] की धारणा के बहुत समीप है, जो, यकीनन, केवल पर्यायवाची हो सकती है।
यह धारणा [[बीजगणितीय संरचना]] की धारणा के बहुत समीप है, जो, यकीनन, केवल पर्यायवाची हो सकती है।
Line 10: Line 10:
एक बीजगणितीय सिद्धांत में अतिरिक्त नियमों (स्वयंसिद्ध) के साथ n-एरी कार्यात्मक शब्दों का संग्रह होता है।
एक बीजगणितीय सिद्धांत में अतिरिक्त नियमों (स्वयंसिद्ध) के साथ n-एरी कार्यात्मक शब्दों का संग्रह होता है।


उदाहरण के लिए, [[समूह (गणित)]] का सिद्धांत बीजगणितीय सिद्धांत है क्योंकि इसमें तीन कार्यात्मक शब्द हैं: [[बाइनरी ऑपरेशन]] a × b, शून्य ऑपरेशन 1 ([[तटस्थ तत्व|तटस्थ अवयव]] ), और यूनरी ऑपरेशन x ↦ x<sup>−1</sup>क्रमशः साहचर्य, तटस्थता और व्युत्क्रम अवयव के नियमों के साथ अन्य उदाहरणों में सम्मिलित हैं:
उदाहरण के लिए, [[समूह (गणित)]] का सिद्धांत एक बीजगणितीय सिद्धांत है क्योंकि इसमें तीन कार्यात्मक शब्द हैं: एक [[बाइनरी ऑपरेशन]] a × b, एक शून्य ऑपरेशन 1 ([[तटस्थ तत्व|तटस्थ अवयव]] ), और एक यूनरी ऑपरेशन x ↦ x<sup>−1</sup>क्रमशः साहचर्य, तटस्थता और व्युत्क्रम अवयव के नियमों के साथ अन्य उदाहरणों में सम्मिलित हैं:
*[[अर्धसमूह]] का सिद्धांत
*[[अर्धसमूह]] का सिद्धांत
* जालक का सिद्धांत (क्रम)
* जालक का सिद्धांत (क्रम)
Line 20: Line 20:
{{See also|लॉवर सिद्धांत|समीकरणात्मक तर्क}}
{{See also|लॉवर सिद्धांत|समीकरणात्मक तर्क}}


एक बीजगणितीय सिद्धांत '''T''' [[श्रेणी (गणित)]] है जिसका उद्देश्य (श्रेणी सिद्धांत) [[प्राकृतिक संख्या]]एं 0, 1, 2,... हैं, और जो, प्रत्येक ''n'' के लिए, ''n''-रूपवाद का टुपल है:
एक बीजगणितीय सिद्धांत '''T''' एक [[श्रेणी (गणित)]] है जिसका उद्देश्य (श्रेणी सिद्धांत) [[प्राकृतिक संख्या]]एं 0, 1, 2,... हैं, और जो, प्रत्येक ''n'' के लिए, ''n''-रूपवाद का टुपल है:


:''proj<sub>i</sub>: n → 1, i = 1, ..., n''
:''proj<sub>i</sub>: n → 1, i = 1, ..., n''
Line 26: Line 26:
यह n को 1 की n प्रतियों के कार्टेशियन उत्पाद के रूप में व्याख्या करने की अनुमति देता है।
यह n को 1 की n प्रतियों के कार्टेशियन उत्पाद के रूप में व्याख्या करने की अनुमति देता है।


उदाहरण: आइए बीजगणितीय सिद्धांत T को परिभाषित करें, जिसमें hom(n, m) को पूर्णांक के साथ <chem>n                                                                                                                                                                                                                     
उदाहरण: आइए एक बीजगणितीय सिद्धांत T को परिभाषित करें, जिसमें hom(n, m) को पूर्णांक के साथ <chem>n                                                                                                                                                                                                                     
                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                                              
                                                                                                                                                                                                                                                                                 </chem> मुक्त वेरिएबल ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'' के बहुपदों के m-टुपल्स के रूप में लिया जाए गुणांक और संरचना के रूप में प्रतिस्थापन के साथ इस स्थिति में ''proj<sub>i</sub>'' ''X<sub>i</sub>'' के समान है। इस सिद्धांत T को क्रमविनिमेय वलय का सिद्धांत कहा जाता है।
                                                                                                                                                                                                                                                                                 </chem> मुक्त चर ''X''<sub>1</sub>, ..., ''X<sub>n</sub>'' के बहुपदों के m-टुपल्स के रूप में लिया जाए गुणांक और संरचना के रूप में प्रतिस्थापन के साथ इस स्थिति में ''proj<sub>i</sub>'' ''X<sub>i</sub>'' के समान है। इस सिद्धांत T को क्रमविनिमेय वलय का सिद्धांत कहा जाता है।


बीजगणितीय सिद्धांत में, किसी भी रूपवाद n → m को हस्ताक्षर n → 1 के m आकारवाद के रूप में वर्णित किया जा सकता है। इन बाद के आकारवाद को सिद्धांत के n-ary संचालन कहा जाता है।
बीजगणितीय सिद्धांत में, किसी भी रूपवाद n → m को हस्ताक्षर n → 1 के m आकारवाद के रूप में वर्णित किया जा सकता है। इन बाद के आकारवाद को सिद्धांत के n-ary संचालन कहा जाता है।


यदि ई परिमित [[उत्पाद (श्रेणी सिद्धांत)]] के साथ श्रेणी है, तो फ़ंक्टर श्रेणी ['''T''', ''E''] की [[पूर्ण उपश्रेणी]] एल्ग('''T''', ''E'') जिसमें उन कारक सम्मिलित हैं जो परिमित उत्पादों को संरक्षित करते हैं, उन्हें ''''T'''<nowiki/>'-मॉडल या ''''T'''<nowiki/>'-बीजगणित की श्रेणी कहा जाता है।
यदि ई परिमित [[उत्पाद (श्रेणी सिद्धांत)]] के साथ एक श्रेणी है, तो फ़ंक्टर श्रेणी ['''T''', ''E''] की [[पूर्ण उपश्रेणी]] एल्ग('''T''', ''E'') जिसमें उन कारक सम्मिलित हैं जो परिमित उत्पादों को संरक्षित करते हैं, उन्हें '<nowiki/>'''T'''<nowiki/>'-मॉडल या ''''T'''<nowiki/>'-बीजगणित की श्रेणी कहा जाता है।


ध्यान दें कि ऑपरेशन 2 → 1 के स्थिति के लिए, उपयुक्त बीजगणित ''A'' रूपवाद को परिभाषित किया जाता है
ध्यान दें कि ऑपरेशन 2 → 1 के स्थिति के लिए, उपयुक्त बीजगणित ''A'' एक रूपवाद को परिभाषित किया जाता है


:: ''A''(2) ≈ ''A''(1) × ''A''(1) → ''A''(1)
:: ''A''(2) ≈ ''A''(1) × ''A''(1) → ''A''(1)

Revision as of 14:55, 4 August 2023

गणितीय तर्क में अनौपचारिक रूप से, बीजगणितीय सिद्धांत एक ऐसा सिद्धांत है जो मुक्त वेरिएबल वाले पदों के बीच समीकरणों के संदर्भ में पूरी तरह से बताए गए सिद्धांतों का उपयोग करता है। असमानताएँ और परिमाणक विशेष रूप से अस्वीकृत हैं। वाक्यात्मक तर्क प्रथम-क्रम तर्क का सबसेट है जिसमें केवल बीजगणितीय वाक्य सम्मिलित होते हैं।

यह धारणा बीजगणितीय संरचना की धारणा के बहुत समीप है, जो, यकीनन, केवल पर्यायवाची हो सकती है।

यह कहना कि कोई सिद्धांत बीजगणितीय है, यह कहने से अधिक शसक्त स्थिति है कि यह प्राथमिक सिद्धांत है।

अनौपचारिक विवेचना

एक बीजगणितीय सिद्धांत में अतिरिक्त नियमों (स्वयंसिद्ध) के साथ n-एरी कार्यात्मक शब्दों का संग्रह होता है।

उदाहरण के लिए, समूह (गणित) का सिद्धांत एक बीजगणितीय सिद्धांत है क्योंकि इसमें तीन कार्यात्मक शब्द हैं: एक बाइनरी ऑपरेशन a × b, एक शून्य ऑपरेशन 1 (तटस्थ अवयव ), और एक यूनरी ऑपरेशन x ↦ x−1क्रमशः साहचर्य, तटस्थता और व्युत्क्रम अवयव के नियमों के साथ अन्य उदाहरणों में सम्मिलित हैं:

  • अर्धसमूह का सिद्धांत
  • जालक का सिद्धांत (क्रम)
  • वलय का सिद्धांत (गणित)

यह ज्यामितीय सिद्धांत का विरोध है जिसमें आंशिक कार्य (या बाइनरी संबंध) या अस्तित्वगत क्वांटर सम्मिलित हैं - उदाहरण देखें यूक्लिडियन ज्यामिति जहां बिंदुओं या रेखाओं का अस्तित्व माना जाता है।

श्रेणी-आधारित मॉडल-सैद्धांतिक व्याख्या

एक बीजगणितीय सिद्धांत T एक श्रेणी (गणित) है जिसका उद्देश्य (श्रेणी सिद्धांत) प्राकृतिक संख्याएं 0, 1, 2,... हैं, और जो, प्रत्येक n के लिए, n-रूपवाद का टुपल है:

proji: n → 1, i = 1, ..., n

यह n को 1 की n प्रतियों के कार्टेशियन उत्पाद के रूप में व्याख्या करने की अनुमति देता है।

उदाहरण: आइए एक बीजगणितीय सिद्धांत T को परिभाषित करें, जिसमें hom(n, m) को पूर्णांक के साथ मुक्त चर X1, ..., Xn के बहुपदों के m-टुपल्स के रूप में लिया जाए गुणांक और संरचना के रूप में प्रतिस्थापन के साथ इस स्थिति में proji Xi के समान है। इस सिद्धांत T को क्रमविनिमेय वलय का सिद्धांत कहा जाता है।

बीजगणितीय सिद्धांत में, किसी भी रूपवाद n → m को हस्ताक्षर n → 1 के m आकारवाद के रूप में वर्णित किया जा सकता है। इन बाद के आकारवाद को सिद्धांत के n-ary संचालन कहा जाता है।

यदि ई परिमित उत्पाद (श्रेणी सिद्धांत) के साथ एक श्रेणी है, तो फ़ंक्टर श्रेणी [T, E] की पूर्ण उपश्रेणी एल्ग(T, E) जिसमें उन कारक सम्मिलित हैं जो परिमित उत्पादों को संरक्षित करते हैं, उन्हें 'T'-मॉडल या 'T'-बीजगणित की श्रेणी कहा जाता है।

ध्यान दें कि ऑपरेशन 2 → 1 के स्थिति के लिए, उपयुक्त बीजगणित A एक रूपवाद को परिभाषित किया जाता है

A(2) ≈ A(1) × A(1) → A(1)

यह भी देखें

संदर्भ