वोल्फ्राम कोड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Encoding of 1D cellular automaton rules}}
{{Short description|Encoding of 1D cellular automaton rules}}
'''वोल्फ्राम कोड''' एक-आयामी [[सेलुलर ऑटोमेटन]] नियमों के लिए व्यापक रूप से उपयोग की जाने वाली<ref>{{cite book |last1=Ceccherini-Silberstein |first1=Tullio |last2=Coornaert |first2=Michel |title=सेलुलर ऑटोमेटा और समूह|date=2010 |publisher=Springer |isbn=978-3-642-14034-1 |page=28 |doi=10.1007/978-3-642-14034-1 |url=https://link.springer.com/book/10.1007/978-3-642-14034-1 |access-date=22 October 2022}}</ref> नंबरिंग प्रणाली है, जिसे [[स्टीफन वोल्फ्राम]] ने 1983 के पेपर में प्रस्तुत किया था<ref>{{Cite journal|last=Wolfram|first=Stephen|title=सेलुलर ऑटोमेटा के सांख्यिकीय यांत्रिकी|journal=Reviews of Modern Physics|volume=55|pages=601–644|date=July 1983|issue=3 |doi=10.1103/RevModPhys.55.601|bibcode=1983RvMP...55..601W}}</ref> और अपनी पुस्तक [[एक नए तरह का विज्ञान|ए न्यू काइंड ऑफ साइंस]] में लोकप्रिय हुआ था।<ref>{{cite book |last1=Wolfram |first1=Stephen |title=एक नए तरह का विज्ञान|date=May 14, 2002 |publisher=Wolfram Media, Inc. |isbn=1-57955-008-8 |url=http://www.wolframscience.com/nksonline}}</ref>
'''वोल्फ्राम कोड''' एक-आयामी [[सेलुलर ऑटोमेटन]] नियमों के लिए व्यापक रूप से उपयोग की जाने वाली <ref>{{cite book |last1=Ceccherini-Silberstein |first1=Tullio |last2=Coornaert |first2=Michel |title=सेलुलर ऑटोमेटा और समूह|date=2010 |publisher=Springer |isbn=978-3-642-14034-1 |page=28 |doi=10.1007/978-3-642-14034-1 |url=https://link.springer.com/book/10.1007/978-3-642-14034-1 |access-date=22 October 2022}}</ref> नंबरिंग प्रणाली है, जिसे [[स्टीफन वोल्फ्राम]] ने 1983 के पेपर में प्रस्तुत किया था<ref>{{Cite journal|last=Wolfram|first=Stephen|title=सेलुलर ऑटोमेटा के सांख्यिकीय यांत्रिकी|journal=Reviews of Modern Physics|volume=55|pages=601–644|date=July 1983|issue=3 |doi=10.1103/RevModPhys.55.601|bibcode=1983RvMP...55..601W}}</ref> और अपनी पुस्तक [[एक नए तरह का विज्ञान|ए न्यू काइंड ऑफ साइंस]] में लोकप्रिय हुआ था।<ref>{{cite book |last1=Wolfram |first1=Stephen |title=एक नए तरह का विज्ञान|date=May 14, 2002 |publisher=Wolfram Media, Inc. |isbn=1-57955-008-8 |url=http://www.wolframscience.com/nksonline}}</ref>


यह कोड इस अवलोकन पर आधारित है कि ऑटोमेटन में प्रत्येक सेल की नई स्थिति को निर्दिष्ट करने वाली तालिका, उसके निकट में स्तरों के फ़ंक्शन के रूप में, S-एरी स्थितीय संख्या प्रणाली में ''K''-अंकीय संख्या के रूप में व्याख्या की जा सकती है, जहां S उन अवस्थाओं की संख्या है जो ऑटोमेटन में प्रत्येक सेल में हो सकती हैं, k = S<sup>2n+1</sup> निकट विन्यास की संख्या है, और n निकट की त्रिज्या है। इस प्रकार, किसी विशेष नियम के लिए वोल्फ्राम कोड 0 से S<sup>S<sup>{{nowrap|2''n'' + 1}}</sup></sup> - 1 तक की सीमा में वह संख्या है, जिसे S-एरी से [[दशमलव]] नोटेशन में परिवर्तित किया जाता है। इसकी गणना इस प्रकार की जा सकती है
यह कोड इस अवलोकन पर आधारित है कि ऑटोमेटन में प्रत्येक सेल की नई स्थिति को निर्दिष्ट करने वाली तालिका, उसके निकट में स्तरों के फ़ंक्शन के रूप में, S-एरी स्थितीय संख्या प्रणाली में ''K''-अंकीय संख्या के रूप में व्याख्या की जा सकती है, जहां S उन अवस्थाओं की संख्या है जो ऑटोमेटन में प्रत्येक सेल में हो सकती हैं, k = S<sup>2n+1</sup> निकट विन्यास की संख्या है, और n निकट की त्रिज्या है। इस प्रकार, किसी विशेष नियम के लिए वोल्फ्राम कोड 0 से S<sup>S<sup>{{nowrap|2''n'' + 1}}</sup></sup> - 1 तक की सीमा में वह संख्या है, जिसे S-एरी से [[दशमलव]] नोटेशन में परिवर्तित किया जाता है। इसकी गणना इस प्रकार की जा सकती है
Line 9: Line 9:
#इस प्रकार के स्तरों की परिणामी सूची की फिर से S-एरी संख्या के रूप में व्याख्या कि जाती है, और इस संख्या को दशमलव में परिवर्तित किये जाते है। जहाँ परिणामी दशमलव संख्या वुल्फ्राम कोड है।                                                               
#इस प्रकार के स्तरों की परिणामी सूची की फिर से S-एरी संख्या के रूप में व्याख्या कि जाती है, और इस संख्या को दशमलव में परिवर्तित किये जाते है। जहाँ परिणामी दशमलव संख्या वुल्फ्राम कोड है।                                                               


वुल्फ्राम कोड निकट के आकार (न ही आकार) को निर्दिष्ट करता है, न ही स्तरों की संख्या को निर्दिष्ट करता है इन्हें संदर्भ से ज्ञात माना जाता है। जब इस तरह के संदर्भ के बिना अपने दम पर उपयोग किया जाता है, तब कोड को अधिकांशतः [[प्राथमिक सेलुलर ऑटोमेटन]] के वर्ग को संदर्भित करने के लिए माना जाता है, (सन्निहित) तीन-सेल निकट के साथ दो-स्तिथि एक-आयामी सेलुलर ऑटोमेटा, जिसकी वोल्फ्राम ने अपनी पुस्तक में बड़े मापदंड पर जांच की है। इस वर्ग के उल्लेखनीय नियमों में [[नियम 30]], [[नियम 110]] और [[नियम 184]] सम्मिलित हैं। [[नियम 90]] इसलिए भी दिलचस्प है क्योंकि यह पास्कल के त्रिकोण मोडुलो 2 का निर्माण करता है। जहाँ इस प्रकार का कोड जिसमें R लगा होता है, वह जैसे कि नियम 37R, के दूसरे क्रम के सेलुलर को सांकेतिक करता है वैसे ही समान निकट संरचना के साथ ऑटोमेटन आर्डर किये जाते है।                                                               
वुल्फ्राम कोड निकट के आकार (न ही आकार) को निर्दिष्ट करता है, न ही स्तरों की संख्या को निर्दिष्ट करता है इन्हें संदर्भ से ज्ञात माना जाता है। जब इस तरह के संदर्भ के बिना अपने दम पर उपयोग किया जाता है, तब कोड को अधिकांशतः [[प्राथमिक सेलुलर ऑटोमेटन]] के वर्ग को संदर्भित करने के लिए माना जाता है, (सन्निहित) तीन-सेल निकट के साथ दो-स्तिथि एक-आयामी सेलुलर ऑटोमेटा, जिसकी वोल्फ्राम ने अपनी पुस्तक में बड़े मापदंड पर जांच की है। इस वर्ग के उल्लेखनीय नियमों में [[नियम 30]], [[नियम 110]] और [[नियम 184]] सम्मिलित हैं। [[नियम 90]] इसलिए भी रोचक है क्योंकि यह पास्कल के त्रिकोण मोडुलो 2 का निर्माण करता है। जहाँ इस प्रकार का कोड जिसमें R लगा होता है, वह जैसे कि नियम 37R, के दूसरे क्रम के सेलुलर को सांकेतिक करता है वैसे ही समान निकट संरचना के साथ ऑटोमेटन आर्डर किये जाते है।                                                               


जबकि सख्त अर्थ में वैध सीमा में प्रत्येक वोल्फ्राम कोड भिन्न नियम को परिभाषित करता है, इनमें से कुछ नियम आइसोमोर्फिक हैं और सामान्यतः समकक्ष माने जाते हैं। उदाहरण के लिए, उपरोक्त नियम 110 नियम 124, 137 और 193 के साथ [[समरूपी]] है। जिसे मूल से बाएँ-दाएँ प्रतिबिंब द्वारा और स्तरों को पुनः क्रमांकित करके प्राप्त किया जा सकता है। इस परंपरा के अनुसार, ऐसे प्रत्येक समरूपता वर्ग को सबसे कम कोड संख्या वाले नियम द्वारा दर्शाया जाता है। वुल्फ्राम नोटेशन और विशेष रूप से दशमलव नोटेशन के उपयोग की हानि यह है कि यह कुछ वैकल्पिक नोटेशन की तुलना में ऐसे समरूपता को देखना कठिन बना देता है। इसके अतिरिक्त, यह एक-आयामी सेलुलर ऑटोमेटा को संदर्भित करने का [[वास्तविक मानक]] विधि बन गई है।                                                         
जबकि सख्त अर्थ में वैध सीमा में प्रत्येक वोल्फ्राम कोड भिन्न नियम को परिभाषित करता है, इनमें से कुछ नियम आइसोमोर्फिक हैं और सामान्यतः समकक्ष माने जाते हैं। उदाहरण के लिए, उपरोक्त नियम 110 नियम 124, 137 और 193 के साथ [[समरूपी]] है। जिसे मूल से बाएँ-दाएँ प्रतिबिंब द्वारा और स्तरों को पुनः क्रमांकित करके प्राप्त किया जा सकता है। इस परंपरा के अनुसार, ऐसे प्रत्येक समरूपता वर्ग को सबसे कम कोड संख्या वाले नियम द्वारा दर्शाया जाता है। वुल्फ्राम नोटेशन और विशेष रूप से दशमलव नोटेशन के उपयोग की हानि यह है कि यह कुछ वैकल्पिक नोटेशन की तुलना में ऐसे समरूपता को देखना कठिन बना देता है। इसके अतिरिक्त, यह एक-आयामी सेलुलर ऑटोमेटा को संदर्भित करने का [[वास्तविक मानक]] विधि बन गई है।                                                         

Revision as of 12:52, 11 August 2023

वोल्फ्राम कोड एक-आयामी सेलुलर ऑटोमेटन नियमों के लिए व्यापक रूप से उपयोग की जाने वाली [1] नंबरिंग प्रणाली है, जिसे स्टीफन वोल्फ्राम ने 1983 के पेपर में प्रस्तुत किया था[2] और अपनी पुस्तक ए न्यू काइंड ऑफ साइंस में लोकप्रिय हुआ था।[3]

यह कोड इस अवलोकन पर आधारित है कि ऑटोमेटन में प्रत्येक सेल की नई स्थिति को निर्दिष्ट करने वाली तालिका, उसके निकट में स्तरों के फ़ंक्शन के रूप में, S-एरी स्थितीय संख्या प्रणाली में K-अंकीय संख्या के रूप में व्याख्या की जा सकती है, जहां S उन अवस्थाओं की संख्या है जो ऑटोमेटन में प्रत्येक सेल में हो सकती हैं, k = S2n+1 निकट विन्यास की संख्या है, और n निकट की त्रिज्या है। इस प्रकार, किसी विशेष नियम के लिए वोल्फ्राम कोड 0 से SS2n + 1 - 1 तक की सीमा में वह संख्या है, जिसे S-एरी से दशमलव नोटेशन में परिवर्तित किया जाता है। इसकी गणना इस प्रकार की जा सकती है

  1. किसी दिए गए सेल के निकट के सभी S2n+1 संभावित स्थिति कॉन्फ़िगरेशन की सूची बनाएं ।
  2. जैसा कि ऊपर वर्णित है, जिसके अनुसार प्रत्येक कॉन्फ़िगरेशन को संख्या के रूप में व्याख्या करते हुए, उन्हें घटते संख्यात्मक क्रम में क्रमबद्ध करें।
  3. प्रत्येक कॉन्फ़िगरेशन के लिए, इस नियम के अनुसार, अगले पुनरावृत्ति पर उस स्थिति को सूचीबद्ध करें जो दिए गए सेल में होती है।
  4. इस प्रकार के स्तरों की परिणामी सूची की फिर से S-एरी संख्या के रूप में व्याख्या कि जाती है, और इस संख्या को दशमलव में परिवर्तित किये जाते है। जहाँ परिणामी दशमलव संख्या वुल्फ्राम कोड है।

वुल्फ्राम कोड निकट के आकार (न ही आकार) को निर्दिष्ट करता है, न ही स्तरों की संख्या को निर्दिष्ट करता है इन्हें संदर्भ से ज्ञात माना जाता है। जब इस तरह के संदर्भ के बिना अपने दम पर उपयोग किया जाता है, तब कोड को अधिकांशतः प्राथमिक सेलुलर ऑटोमेटन के वर्ग को संदर्भित करने के लिए माना जाता है, (सन्निहित) तीन-सेल निकट के साथ दो-स्तिथि एक-आयामी सेलुलर ऑटोमेटा, जिसकी वोल्फ्राम ने अपनी पुस्तक में बड़े मापदंड पर जांच की है। इस वर्ग के उल्लेखनीय नियमों में नियम 30, नियम 110 और नियम 184 सम्मिलित हैं। नियम 90 इसलिए भी रोचक है क्योंकि यह पास्कल के त्रिकोण मोडुलो 2 का निर्माण करता है। जहाँ इस प्रकार का कोड जिसमें R लगा होता है, वह जैसे कि नियम 37R, के दूसरे क्रम के सेलुलर को सांकेतिक करता है वैसे ही समान निकट संरचना के साथ ऑटोमेटन आर्डर किये जाते है।

जबकि सख्त अर्थ में वैध सीमा में प्रत्येक वोल्फ्राम कोड भिन्न नियम को परिभाषित करता है, इनमें से कुछ नियम आइसोमोर्फिक हैं और सामान्यतः समकक्ष माने जाते हैं। उदाहरण के लिए, उपरोक्त नियम 110 नियम 124, 137 और 193 के साथ समरूपी है। जिसे मूल से बाएँ-दाएँ प्रतिबिंब द्वारा और स्तरों को पुनः क्रमांकित करके प्राप्त किया जा सकता है। इस परंपरा के अनुसार, ऐसे प्रत्येक समरूपता वर्ग को सबसे कम कोड संख्या वाले नियम द्वारा दर्शाया जाता है। वुल्फ्राम नोटेशन और विशेष रूप से दशमलव नोटेशन के उपयोग की हानि यह है कि यह कुछ वैकल्पिक नोटेशन की तुलना में ऐसे समरूपता को देखना कठिन बना देता है। इसके अतिरिक्त, यह एक-आयामी सेलुलर ऑटोमेटा को संदर्भित करने का वास्तविक मानक विधि बन गई है।

सामान्यीकृत सेलुलर ऑटोमेटा

सामान्यीकृत सेलुलर ऑटोमेटन के लिए संभावित नियमों की संख्या, R, जिसमें प्रत्येक सेल D-आयामी स्थान में n के निकट वाले आकार द्वारा निर्धारित S स्तरों में से को मान सकती है: R=SS(2n+1)D द्वारा दी गई है

सबसे सामान्य उदाहरण में S = 2, n = 1 और D = 1 है, जिससे R = 256 मिलता है। तब संभावित नियमों की संख्या प्रणाली की आयामीता पर अत्यधिक निर्भरता रखती है। उदाहरण के लिए, आयामों (D) की संख्या 1 से बढ़ाकर 2 करने से संभावित नियमों की संख्या 256 से बढ़कर 2512 हो जाती है (जो ~1.341×10154 होती है).

संदर्भ

  1. Ceccherini-Silberstein, Tullio; Coornaert, Michel (2010). सेलुलर ऑटोमेटा और समूह. Springer. p. 28. doi:10.1007/978-3-642-14034-1. ISBN 978-3-642-14034-1. Retrieved 22 October 2022.
  2. Wolfram, Stephen (July 1983). "सेलुलर ऑटोमेटा के सांख्यिकीय यांत्रिकी". Reviews of Modern Physics. 55 (3): 601–644. Bibcode:1983RvMP...55..601W. doi:10.1103/RevModPhys.55.601.
  3. Wolfram, Stephen (May 14, 2002). एक नए तरह का विज्ञान. Wolfram Media, Inc. ISBN 1-57955-008-8.