स्टोकेस्टिक सेलुलर ऑटोमेटन: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
| year = 1978}}</ref><ref>{{cite book|title=Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis|author1=R. L. Dobrushin |author2=V. I. Kri︠u︡kov |author3=A. L. Toom |year=1978|url=https://books.google.com/books?id=0Wa7AAAAIAAJ&q=locally+interacting+markov+chains+toom+Dobrushin&pg=PA181|isbn=9780719022067}}</ref> [[सेलुलर ऑटोमेटन]] का महत्वपूर्ण विस्तार हैं। सेलुलर ऑटोमेटा परस्पर क्रिया करने वाली संस्थाओं की पृथक-समय की [[गतिशील प्रणाली|डायनामिक सिस्टम]] है, जिसकी स्थिति पृथक है। | | year = 1978}}</ref><ref>{{cite book|title=Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis|author1=R. L. Dobrushin |author2=V. I. Kri︠u︡kov |author3=A. L. Toom |year=1978|url=https://books.google.com/books?id=0Wa7AAAAIAAJ&q=locally+interacting+markov+chains+toom+Dobrushin&pg=PA181|isbn=9780719022067}}</ref> [[सेलुलर ऑटोमेटन]] का महत्वपूर्ण विस्तार हैं। सेलुलर ऑटोमेटा परस्पर क्रिया करने वाली संस्थाओं की पृथक-समय की [[गतिशील प्रणाली|डायनामिक सिस्टम]] है, जिसकी स्थिति पृथक है। | ||
कुछ सरल सजातीय नियम के अनुसार इकाइयों के संग्रह की स्थिति प्रत्येक भिन्न-भिन्न समय पर अद्यतन की जाती है। सभी संस्थाओं की स्थितियाँ समानांतर या समकालिक रूप से अद्यतन की जाती हैं। [[स्टोकेस्टिक]] सेल्युलर ऑटोमेटा सीए हैं जिनका अद्यतन नियम स्टोकेस्टिक है, जिसका अर्थ है कि नई संस्थाओं की स्थिति को कुछ संभाव्यता वितरण के अनुसार चुना जाता है। यह असतत-समय [[यादृच्छिक गतिशील प्रणाली|यादृच्छिक डायनामिक सिस्टम]] है। संस्थाओं के मध्य स्थानिक अंतःक्रिया से, अद्यतन नियमों की सरलता के अतिरिक्त, स्व-संगठन जैसी | कुछ सरल सजातीय नियम के अनुसार इकाइयों के संग्रह की स्थिति प्रत्येक भिन्न-भिन्न समय पर अद्यतन की जाती है। सभी संस्थाओं की स्थितियाँ समानांतर या समकालिक रूप से अद्यतन की जाती हैं। [[स्टोकेस्टिक]] सेल्युलर ऑटोमेटा सीए हैं जिनका अद्यतन नियम स्टोकेस्टिक है, जिसका अर्थ है कि नई संस्थाओं की स्थिति को कुछ संभाव्यता वितरण के अनुसार चुना जाता है। यह असतत-समय [[यादृच्छिक गतिशील प्रणाली|यादृच्छिक डायनामिक सिस्टम]] है। संस्थाओं के मध्य स्थानिक अंतःक्रिया से, अद्यतन नियमों की सरलता के अतिरिक्त, स्व-संगठन जैसी काम्प्लेक्स सिस्टम प्रदर्शित हो सकती है। गणितीय वस्तु के रूप में, इसे स्टोकेस्टिक प्रक्रियाओं के प्रारूप में भिन्न-भिन्न समय में [[अंतःक्रियात्मक कण प्रणाली|अंतःक्रियात्मक कण सिस्टम]] के रूप में माना जा सकता है। <ref name="IntroPCA">{{cite book|title=Probabilistic Cellular Automata | ||
| first1=R. | last1 =Fernandez | | first1=R. | last1 =Fernandez | ||
| first2=P.-Y. | last2=Louis | | first2=P.-Y. | last2=Louis | ||
Line 19: | Line 19: | ||
|date=2018 | |date=2018 | ||
|isbn=9783319655581 | |isbn=9783319655581 | ||
|chapter=Chapter 1: Overview: PCA Models and Issues | s2cid=64938352 }}</ref> अधिक विस्तृत परिचय के लिए देखे | |chapter=Chapter 1: Overview: PCA Models and Issues | s2cid=64938352 }}</ref> अधिक विस्तृत परिचय के लिए देखे | | ||
== मार्कोव स्टोकेस्टिक प्रक्रियाओं के रूप में पीसीए == | == मार्कोव स्टोकेस्टिक प्रक्रियाओं के रूप में पीसीए == | ||
असतत-समय मार्कोव प्रक्रिया के रूप में, पीसीए को उत्पाद समष्टि <math> E=\prod_{k \in G} S_k </math> (कार्टेशियन उत्पाद) पर परिभाषित किया जाता है, जहां <math> G </math> परिमित या अनंत ग्राफ है, जैसे कि <math> \mathbb Z </math> और जहां <math> S_k </math> सीमित समष्टि है, उदाहरण के लिए <math> S_k=\{-1,+1\} </math> या <math> S_k=\{0,1\} </math>। संक्रमण संभावना का उत्पाद रूप <math> P(d\sigma | \eta) = \otimes_{k \in G} p_k(d\sigma_k | \eta) </math> होता है जहां <math> \eta \in E </math> और <math> p_k(d\sigma_k | \eta) </math> पर संभाव्यता वितरण <math> S_k </math> है। सामान्यतः कुछ क्षेत्र की आवश्यकता होती है <math> p_k(d\sigma_k | \eta)=p_k(d\sigma_k | \eta_{V_k}) </math> जहां <math> \eta_{V_k}=(\eta_j)_{j\in V_k} </math> के साथ <math> {V_k} </math> का | असतत-समय मार्कोव प्रक्रिया के रूप में, पीसीए को उत्पाद समष्टि <math> E=\prod_{k \in G} S_k </math> (कार्टेशियन उत्पाद) पर परिभाषित किया जाता है, जहां <math> G </math> परिमित या अनंत ग्राफ है, जैसे कि <math> \mathbb Z </math> और जहां <math> S_k </math> सीमित समष्टि है, उदाहरण के लिए <math> S_k=\{-1,+1\} </math> या <math> S_k=\{0,1\} </math>। संक्रमण संभावना का उत्पाद रूप <math> P(d\sigma | \eta) = \otimes_{k \in G} p_k(d\sigma_k | \eta) </math> होता है जहां <math> \eta \in E </math> और <math> p_k(d\sigma_k | \eta) </math> पर संभाव्यता वितरण <math> S_k </math> है। सामान्यतः कुछ क्षेत्र की आवश्यकता होती है <math> p_k(d\sigma_k | \eta)=p_k(d\sigma_k | \eta_{V_k}) </math> जहां <math> \eta_{V_k}=(\eta_j)_{j\in V_k} </math> के साथ <math> {V_k} </math> का परिमित निकट संभाव्यता सिद्धांत के दृष्टिकोण के पश्चात् अधिक विस्तृत परिचय के लिए देखें।<ref>[https://tel.archives-ouvertes.fr/tel-00002203v1 P.-Y. Louis PhD]</ref> | ||
== स्टोकेस्टिक सेलुलर ऑटोमेटन के उदाहरण == | == स्टोकेस्टिक सेलुलर ऑटोमेटन के उदाहरण == |
Revision as of 11:36, 11 August 2023
स्टोचैस्टिक सेलुलर ऑटोमेटा या संभाव्य सेलुलर ऑटोमेटा (पीसीए) या यादृच्छिक सेलुलर ऑटोमेटा या स्थानीय रूप से इंटरैक्टिंग मार्कोव श्रृंखला [1][2] सेलुलर ऑटोमेटन का महत्वपूर्ण विस्तार हैं। सेलुलर ऑटोमेटा परस्पर क्रिया करने वाली संस्थाओं की पृथक-समय की डायनामिक सिस्टम है, जिसकी स्थिति पृथक है।
कुछ सरल सजातीय नियम के अनुसार इकाइयों के संग्रह की स्थिति प्रत्येक भिन्न-भिन्न समय पर अद्यतन की जाती है। सभी संस्थाओं की स्थितियाँ समानांतर या समकालिक रूप से अद्यतन की जाती हैं। स्टोकेस्टिक सेल्युलर ऑटोमेटा सीए हैं जिनका अद्यतन नियम स्टोकेस्टिक है, जिसका अर्थ है कि नई संस्थाओं की स्थिति को कुछ संभाव्यता वितरण के अनुसार चुना जाता है। यह असतत-समय यादृच्छिक डायनामिक सिस्टम है। संस्थाओं के मध्य स्थानिक अंतःक्रिया से, अद्यतन नियमों की सरलता के अतिरिक्त, स्व-संगठन जैसी काम्प्लेक्स सिस्टम प्रदर्शित हो सकती है। गणितीय वस्तु के रूप में, इसे स्टोकेस्टिक प्रक्रियाओं के प्रारूप में भिन्न-भिन्न समय में अंतःक्रियात्मक कण सिस्टम के रूप में माना जा सकता है। [3] अधिक विस्तृत परिचय के लिए देखे |
मार्कोव स्टोकेस्टिक प्रक्रियाओं के रूप में पीसीए
असतत-समय मार्कोव प्रक्रिया के रूप में, पीसीए को उत्पाद समष्टि (कार्टेशियन उत्पाद) पर परिभाषित किया जाता है, जहां परिमित या अनंत ग्राफ है, जैसे कि और जहां सीमित समष्टि है, उदाहरण के लिए या । संक्रमण संभावना का उत्पाद रूप होता है जहां और पर संभाव्यता वितरण है। सामान्यतः कुछ क्षेत्र की आवश्यकता होती है जहां के साथ का परिमित निकट संभाव्यता सिद्धांत के दृष्टिकोण के पश्चात् अधिक विस्तृत परिचय के लिए देखें।[4]
स्टोकेस्टिक सेलुलर ऑटोमेटन के उदाहरण
अधिकांश सेलुलर ऑटोमेटन
संभाव्य अद्यतन नियमों के साथ बहुसंख्यक सेलुलर ऑटोमेटन का संस्करण है। टूम का नियम देखें.
जालक यादृच्छिक क्षेत्रों से संबंध
पीसीए का उपयोग सांख्यिकीय यांत्रिकी में लौहचुंबकत्व के आइसिंग मॉडल का अनुकरण करने के लिए किया जा सकता है।[5] मॉडलों की कुछ श्रेणियों का अध्ययन सांख्यिकीय यांत्रिकी के दृष्टिकोण से किया गया था।
सेलुलर पॉट्स मॉडल
सशक्त संबंध है [6] संभाव्य सेलुलर ऑटोमेटा और सेलुलर पॉट्स मॉडल के मध्य विशेष रूप से जब इसे समानांतर में प्रयुक्त किया जाता है।
गैर मार्कोवियन सामान्यीकरण
गैल्वेस-लोचेरबैक मॉडल गैर मार्कोवियन कथन के साथ सामान्यीकृत पीसीए का उदाहरण है।
संदर्भ
- ↑ Toom, A. L. (1978), Locally Interacting Systems and their Application in Biology: Proceedings of the School-Seminar on Markov Interaction Processes in Biology, held in Pushchino, March 1976, Lecture Notes in Mathematics, vol. 653, Springer-Verlag, Berlin-New York, ISBN 978-3-540-08450-1, MR 0479791
- ↑ R. L. Dobrushin; V. I. Kri︠u︡kov; A. L. Toom (1978). Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. ISBN 9780719022067.
- ↑ Fernandez, R.; Louis, P.-Y.; Nardi, F. R. (2018). "Chapter 1: Overview: PCA Models and Issues". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_1. ISBN 9783319655581. S2CID 64938352.
- ↑ P.-Y. Louis PhD
- ↑ Vichniac, G. (1984), "Simulating physics with cellular automata", Physica D, 10 (1–2): 96–115, Bibcode:1984PhyD...10...96V, doi:10.1016/0167-2789(84)90253-7.
- ↑ Boas, Sonja E. M.; Jiang, Yi; Merks, Roeland M. H.; Prokopiou, Sotiris A.; Rens, Elisabeth G. (2018). "Chapter 18: Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_18. hdl:1887/69811. ISBN 9783319655581.
अग्रिम पठन
- Almeida, R. M.; Macau, E. E. N. (2010), "Stochastic cellular automata model for wildland fire spread dynamics", 9th Brazilian Conference on Dynamics, Control and their Applications, June 7–11, 2010, doi:10.1088/1742-6596/285/1/012038.
- Clarke, K. C.; Hoppen, S. (1997), "A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area" (PDF), Environment and Planning B: Planning and Design, 24 (2): 247–261, doi:10.1068/b240247, S2CID 40847078.
- Mahajan, Meena Bhaskar (1992), Studies in language classes defined by different types of time-varying cellular automata, Ph.D. dissertation, Indian Institute of Technology Madras.
- Nishio, Hidenosuke; Kobuchi, Youichi (1975), "Fault tolerant cellular spaces", Journal of Computer and System Sciences, 11 (2): 150–170, doi:10.1016/s0022-0000(75)80065-1, MR 0389442.
- Smith, Alvy Ray, III (1972), "Real-time language recognition by one-dimensional cellular automata", Journal of Computer and System Sciences, 6 (3): 233–253, doi:10.1016/S0022-0000(72)80004-7, MR 0309383
{{citation}}
: CS1 maint: multiple names: authors list (link). - Louis, P.-Y.; Nardi, F. R., eds. (2018). Probabilistic Cellular Automata. Emergence, Complexity and Computation. Vol. 27. Springer. doi:10.1007/978-3-319-65558-1. hdl:2158/1090564. ISBN 9783319655581.
- Agapie, A.; Andreica, A.; Giuclea, M. (2014), "Probabilistic Cellular Automata", Journal of Computational Biology, 21 (9): 699–708, doi:10.1089/cmb.2014.0074, PMC 4148062, PMID 24999557