अपसैंपलिंग: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 109: Line 109:
* {{cite web |title=Matlab example of using polyphase filters for interpolation |url=http://www.dsplog.com/2007/05/12/polyphase-filters-for-interpolation/ }}
* {{cite web |title=Matlab example of using polyphase filters for interpolation |url=http://www.dsplog.com/2007/05/12/polyphase-filters-for-interpolation/ }}
{{DSP}}
{{DSP}}
[[Category: अंकीय संकेत प्रक्रिया]] [[Category: संकेत आगे बढ़ाना]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:अंकीय संकेत प्रक्रिया]]
[[Category:संकेत आगे बढ़ाना]]

Latest revision as of 17:25, 21 August 2023

अंकीय संकेत प्रक्रिया में, अपसैंपलिंग, विस्तार और अंतर्वेशन एक मल्टी-रेट डिजिटल सिग्नल प्रोसेसिंग सिस्टम में नमूना दर रूपांतरण की प्रक्रिया से जुड़े शब्द हैं। अपसैंपलिंग विस्तार का पर्याय हो सकता है, या यह विस्तार और फ़िल्टरिंग (अंतर्वेशन) की पूरी प्रक्रिया का वर्णन कर सकता है।[1][2][3]जब किसी सिग्नल या अन्य निरंतर फ़ंक्शन के नमूनों के अनुक्रम पर अपसैंपलिंग की जाती है, तो यह उस अनुक्रम का एक अनुमान उत्पन्न करता है जो सिग्नल को उच्च दर (या प्रति इंच बिंदू, एक तस्वीर के मामले में) पर नमूना करके प्राप्त किया गया होगा। उदाहरण के लिए, यदि 44,100 नमूने/सेकंड पर कॉम्पैक्ट डिस्क ऑडियो को 5/4 के कारक द्वारा अपसैंपल किया जाता है, तो परिणामी नमूना-दर 55,125 है।

पूर्णांक कारक द्वारा अपसैंपलिंग

चित्र 1: एक डॉट उत्पाद का चित्रण, जिसके परिणामस्वरूप L=4, n=9, j=3 मामले के लिए एक आउटपुट नमूना (हरे रंग में) प्राप्त होता है। इनपुट नमूनों की प्रत्येक जोड़ी के बीच तीन वैचारिक सम्मिलित शून्य दर्शाए गए हैं। उन्हें गणना से हटाना ही मल्टीरेट फ़िल्टर को मोनोरेट फ़िल्टर से अलग करता है।

एक पूर्णांक कारक L द्वारा दर में वृद्धि को 2-चरणीय प्रक्रिया के रूप में समझाया जा सकता है, एक समान कार्यान्वयन के साथ जो अधिक कुशल है:[4]

  1. विस्तार: एक क्रम बनाएं, मूल नमूने सम्मिलित हैं, L − 1 शून्य से अलग किया गया। इस ऑपरेशन के लिए एक संकेतन है:
  2. अंतर्वेशन: लो पास फिल्टर के साथ असंततताओं को सुचारू करें, जो शून्य को प्रतिस्थापित करता है।

इस अनुप्रयोग में, फ़िल्टर को अंतर्वेशन फ़िल्टर कहा जाता है, और इसके डिज़ाइन पर नीचे चर्चा की गई है। जब अंतर्वेशन फ़िल्टर एक परिमित आवेग प्रतिक्रिया प्रकार होता है, तो इसकी दक्षता में सुधार किया जा सकता है, क्योंकि शून्य इसके डॉट उत्पाद गणना में कुछ भी योगदान नहीं देता है। उन्हें डेटा स्ट्रीम और गणना दोनों से हटाना एक आसान मामला है। प्रत्येक आउटपुट नमूने के लिए मल्टीरेट इंटरपोलेटिंग एफआईआर फ़िल्टर द्वारा की गई गणना एक डॉट उत्पाद है:[lower-alpha 1][upper-alpha 1]

  and for any

 

 

 

 

(Eq.1)

जहां h[•] अनुक्रम अंतर्वेशन फ़िल्टर की आवेग प्रतिक्रिया है, और K, k का सबसे बड़ा मान है जिसके लिए h[j + kL] गैर-शून्य है। मामले में L = 2, एच[•] को आधे-बैंड फ़िल्टर के रूप में डिज़ाइन किया जा सकता है, जहां लगभग आधे गुणांक शून्य हैं और डॉट उत्पादों में सम्मिलित करने की आवश्यकता नहीं है। L के अंतराल पर लिए गए आवेग प्रतिक्रिया गुणांक एक अनुवर्ती बनाते हैं, और L ऐसे अनुवर्ती (जिन्हें 'चरण' कहा जाता है) एक साथ बहुसंकेतन होते हैं। आवेग प्रतिक्रिया का प्रत्येक एल चरण x[•] डेटा स्ट्रीम के समान अनुक्रमिक मानों को फ़िल्टर कर रहा है और L अनुक्रमिक आउटपुट मानों में से एक का उत्पादन कर रहा है। कुछ मल्टी-प्रोसेसर आर्किटेक्चर में, इन डॉट उत्पादों को एक साथ निष्पादित किया जाता है, ऐसी स्थिति में इसे 'पॉलीफ़ेज़' फ़िल्टर कहा जाता है।

पूर्णता के लिए, अब हम उल्लेख करते हैं कि प्रत्येक चरण का संभावित, लेकिन असंभावित, कार्यान्वयन h[•] सरणी की एक प्रति में अन्य चरणों के गुणांकों को शून्य से बदलना है, और प्रक्रिया करना है L पर अनुक्रम मूल इनपुट दर से कई गुना तेज है। तब प्रत्येक L आउटपुट का L-1 शून्य होता है। वांछित y[•] अनुक्रम चरणों का योग है, जहां प्रत्येक योग के L-1 पद समान रूप से शून्य हैं। एक चरण के उपयोगी आउटपुट के बीच L-1 शून्य की गणना करना और उन्हें एक योग में जोड़ना प्रभावी रूप से क्षय है। यह बिल्कुल भी उनकी गणना न करने जैसा ही परिणाम है। उस समतुल्यता को दूसरी महान पहचान के रूप में जाना जाता है।[5]इसका उपयोग कभी-कभी पॉलीफ़ेज़ विधि की व्युत्पत्ति में किया जाता है।

अंतर्वेशन फ़िल्टर डिज़ाइन

चित्र 2: पहले ग्राफ़ का पहला त्रिभुज एक सतत फ़ंक्शन x(t) के फूरियर रूपांतरण X(f) को दर्शाता है। पहले ग्राफ की संपूर्णता 1/टी की कम दर पर निरंतर फ़ंक्शन x(t) का नमूना लेकर गठित अनुक्रम x[n] के असतत-समय फूरियर रूपांतरण को दर्शाती है। दूसरा ग्राफ़ उच्च डेटा-दर पर लोपास फ़िल्टर के अनुप्रयोग को दर्शाता है, जिसे मूल नमूनों के बीच शून्य-मूल्य वाले नमूने डालकर कार्यान्वित किया जाता है। और तीसरा ग्राफ़ फ़िल्टर आउटपुट का DTFT है। निचली तालिका फ़िल्टर डिज़ाइन टूल द्वारा उपयोग की जाने वाली विभिन्न आवृत्ति इकाइयों में अधिकतम फ़िल्टर बैंडविड्थ को व्यक्त करती है।

यह मान लीजिये किसी भी फ़ंक्शन का निरंतर फूरियर रूपांतरण हो, जिनके नमूने कुछ अंतराल पर, के बराबर अनुक्रम, फिर असतत-समय फूरियर रूपांतरण (डीटीएफटी)। अनुक्रम फूरियर श्रृंखला के आवधिक योग का प्रतिनिधित्व है [lower-alpha 2]

 

 

 

 

(Eq.2)

जब सेकंड की इकाइयाँ हैं, हेटर्स (Hz) हर्ट्ज़ (हर्ट्ज) की इकाइयाँ हैं। सैम्पलिंग कई गुना तेज (अंतराल पर ) आवधिकता को एक कारक से बढ़ा देता है [lower-alpha 3]

 

 

 

 

(Eq.3)

जो प्रक्षेप का वांछित परिणाम भी है। इन दोनों वितरणों का एक उदाहरण चित्र 2 के पहले और तीसरे ग्राफ़ में दर्शाया गया है।

जब अतिरिक्त नमूनों में शून्य डाला जाता है, तो वे नमूना-अंतराल को घटाकर कम कर देते हैं फूरियर श्रृंखला के शून्य-मूल्य वाले शब्दों को छोड़कर, इसे इस प्रकार लिखा जा सकता है:

जो के बराबर है Eq.2, के मूल्य की परवाह किए बिना जो उच्च डेटा-दर पर कार्यान्वित डिजिटल फ़िल्टर की डीटीएफटी आवधिकता निर्धारित करती है। दूसरा ग्राफ़ एक लोपास फ़िल्टर और दर्शाता है वांछित वर्णक्रमीय वितरण (तीसरा ग्राफ़) के परिणामस्वरूप। फ़िल्टर की बैंडविड्थ मूल की नाइक्विस्ट आवृत्ति है अनुक्रम[upper-alpha 2] Hz की इकाइयों में वह मान है लेकिन फ़िल्टर डिज़ाइन अनुप्रयोगों को आमतौर पर सामान्यीकृत आवृत्ति (इकाई) की आवश्यकता होती है। (चित्र 2, तालिका देखें)

भिन्नात्मक कारक द्वारा अपसैंपलिंग

मान लीजिए कि L / M अपसैंपलिंग कारक को दर्शाता है, जहां L > M

  1. L के कारक द्वारा अपसैंपल
  2. M के कारक द्वारा डाउनसैंपलिंग (सिग्नल प्रोसेसिंग)

डेटा दर बढ़ाने के बाद अपसैंपलिंग के लिए लोपास फ़िल्टर की आवश्यकता होती है, और डाउनसैंपलिंग के लिए डिकिमेशन से पहले लोपास फ़िल्टर की आवश्यकता होती है। इसलिए, दोनों ऑपरेशनों को दो कटऑफ आवृत्तियों में से कम के साथ एक ही फिल्टर द्वारा पूरा किया जा सकता है। L > M केस के लिए, अंतर्वेशन फ़िल्टर कटऑफ़, प्रति मध्यवर्ती नमूना चक्र, निम्न आवृत्ति है।

यह भी देखें

टिप्पणियाँ

  1. The interpolation filter output sequence is defined by a convolution:
    The only terms for which can be non-zero are those for which is an integer multiple of   Thus:   for integer values of   and the convolution can be rewritten as:
  2. Realizable low-pass filters have a "skirt", where the response diminishes from near unity to near zero. So in practice the cutoff frequency is placed far enough below the theoretical cutoff that the filter's skirt is contained below the theoretical cutoff.


पृष्ठ उद्धरण

  1. Crochiere and Rabiner "2.3". p 38. eq 2.80, where    which also requires    and  
  2. f.harris 2004. "2.2". p 23. fig 2.12 (top).
  3. f.harris 2004. "2.2". p 23. fig 2.12 (bottom).

संदर्भ

  1. Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). "4.6.2". Discrete-Time Signal Processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 172. ISBN 0-13-754920-2.
  2. Crochiere, R.E.; Rabiner, L.R. (1983). "2.3". Multirate Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall. pp. 35–36. ISBN 0136051626.
  3. Poularikas, Alexander D. (September 1998). Handbook of Formulas and Tables for Signal Processing (1 ed.). CRC Press. pp. 42–48. ISBN 0849385792.
  4. Harris, Frederic J. (2004-05-24). "2.2". Multirate Signal Processing for Communication Systems. Upper Saddle River, NJ: Prentice Hall PTR. pp. 20–21. ISBN 0131465112. The process of up sampling can be visualized as a two-step progression. The process starts by increasing the sample-rate of an input series x(n) by resampling [expansion]. The zero-packed time series is processed by a filter h(n). In reality the processes of sample-rate increase and bandwidth reduction are merged in a single process called a multirate filter.
  5. Strang, Gilbert; Nguyen, Truong (1996-10-01). Wavelets and Filter Banks (2 ed.). Wellesley, MA: Wellesley-Cambridge Press. p. 101. ISBN 0961408871. the Noble Identities apply to each polyphase component ... they don't apply to the whole filter.


अग्रिम पठन