इलास्टिक पेंडुलम: Difference between revisions
m (Neeraja moved page लोचदार पेंडुलम to इलास्टिक पेंडुलम without leaving a redirect) |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 98: | Line 98: | ||
{{Chaos theory}} | {{Chaos theory}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 26/07/2023]] | [[Category:Created On 26/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Missing redirects]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:अराजक मानचित्र]] | |||
[[Category:गणितीय भौतिकी]] | |||
[[Category:गतिशील प्रणालियाँ]] | |||
[[Category:पेंडुलम]] |
Latest revision as of 17:57, 21 August 2023
भौतिकी और गणित में, गतिशील प्रणालियों के क्षेत्र में, इलास्टिक पेंडुलम[1][2] (इसे स्प्रिंग पेंडुलम भी कहा जाता है[3][4] या स्विन्गिंग स्प्रिंग कहा जाता है) भौतिक प्रणाली है जहां द्रव्यमान का भाग स्प्रिंग (उपकरण) से जुड़ा होता है जिससे कि परिणामी गति में पेंडुलम (गणित) और आयामी स्प्रिंग-द्रव्यमान प्रणाली दोनों के अवयव सम्मिलित होंते है ।[2] प्रणाली चाओटिक बेहेवियर को प्रदर्शित करती है और प्रारंभिक स्थितियों के प्रति संवेदनशील है।[2] इस प्रकार इलास्टिक पेंडुलम की गति युग्मित साधारण अंतर समीकरण के समूह द्वारा नियंत्रित होती है।
विश्लेषण और व्याख्या
इस प्रकार की प्रणाली साधारण पेंडुलम की तुलना में बहुत अधिक सम्मिश्र होती है, क्योंकि स्प्रिंग के गुण प्रणाली में स्वतंत्रता का अतिरिक्त आयाम जोड़ते हैं। उदाहरण के लिए, जब स्प्रिंग संपीड़ित होता है, तो छोटी त्रिज्या कोणीय गति के संरक्षण के कारण स्प्रिंग को तेजी से आगे बढ़ने का कारण बनती है। यह भी संभव है कि स्प्रिंग की सीमा होती है जो पेंडुलम की गति से आगे निकल जाती है, जिससे यह पेंडुलम की गति के प्रति व्यावहारिक रूप से निष्पक्ष हो जाती है।
लैग्रेंजियन
स्प्रिंग की बाकी लंबाई होती है और इसे लम्बाई तक खींचा जा सकता है. जहाँ पेंडुलम का दोलन कोण होता है .
लैग्रेंजियन (क्षेत्र सिद्धांत) है:
जहाँ गतिज ऊर्जा है और स्थितिज ऊर्जा है.
देखना। हुक का नियम स्प्रिंग की स्थितिज ऊर्जा ही है:
जहाँ स्प्रिंग स्थिरांक है.
दूसरी ओर, गुरुत्वाकर्षण से संभावित ऊर्जा द्रव्यमान की ऊंचाई से निर्धारित होती है। किसी दिए गए कोण और विस्थापन के लिए, स्थितिज ऊर्जा है:
जहाँ गुरुत्वाकर्षण त्वरण है.
गतिज ऊर्जा निम्न द्वारा दी जाती है:
जहाँ द्रव्यमान का वेग है. तथा को अन्य वेरिएबलों से संबंधित करने के लिए, वेग को स्प्रिंग के अनुदिश और लंबवत गति के संयोजन के रूप में लिखा जाता है:
तब लैग्रेंजियन बन जाता है:[1]
गति के समीकरण
स्वतंत्रता की दो डिग्री के साथ, और के लिए गति के समीकरण दो यूलर-लैग्रेंज समीकरणों का उपयोग करके पाए जा सकते हैं:
के लिए :[1]:
पृथक:
और के लिए :[1]
पृथक:
इलास्टिक पेंडुलम को अब दो युग्मित साधारण अंतर समीकरणों के साथ वर्णित किया गया है। इन्हें संख्यात्मक विश्लेषण से हल किया जा सकता है। इसके अतिरिक्त, कोई व्यक्ति ऑर्डर-चाओस-ऑर्डर की रोचक घटना का अध्ययन करने के लिए इस प्रणाली में विश्लेषणात्मक विधियों का उपयोग कर सकता है[6]
यह भी देखें
- डबल पेंडुलम
- डफिंग ऑसिलेटर
- पेंडुलम (गणित)
- स्प्रिंग-मास प्रणाली
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Xiao, Qisong; et al. "लोचदार पेंडुलम की गतिशीलता" (PDF).
- ↑ 2.0 2.1 2.2 Pokorny, Pavel (2008). "Stability Condition for Vertical Oscillation of 3-dim Heavy Spring Elastic Pendulum" (PDF). Regular and Chaotic Dynamics. 13 (3): 155–165. Bibcode:2008RCD....13..155P. doi:10.1134/S1560354708030027. S2CID 56090968.
- ↑ Sivasrinivas, Kolukula. "स्प्रिंग पेंडुलम".
- ↑ Hill, Christian (19 July 2017). "स्प्रिंग पेंडुलम".
- ↑ Simionescu, P.A. (2014). ऑटोकैड उपयोगकर्ताओं के लिए कंप्यूटर सहायता प्राप्त ग्राफ़िंग और सिमुलेशन उपकरण (1st ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4822-5290-3.
- ↑ Anurag, Anurag; Basudeb, Mondal; Bhattacharjee, Jayanta Kumar; Chakraborty, Sagar (2020). "समतलीय लोचदार लोलक में क्रम-अराजकता-क्रम संक्रमण को समझना". Physica D. 402: 132256. Bibcode:2020PhyD..40232256A. doi:10.1016/j.physd.2019.132256. S2CID 209905775.
अग्रिम पठन
- Pokorny, Pavel (2008). "Stability Condition for Vertical Oscillation of 3-dim Heavy Spring Elastic Pendulum" (PDF). Regular and Chaotic Dynamics. 13 (3): 155–165. Bibcode:2008RCD....13..155P. doi:10.1134/S1560354708030027. S2CID 56090968.
- Pokorny, Pavel (2009). "Continuation of Periodic Solutions of Dissipative and Conservative Systems: Application to Elastic Pendulum" (PDF). Mathematical Problems in Engineering. 2009: 1–15. doi:10.1155/2009/104547.
बाहरी संबंध
- Holovatsky V., Holovatska Y. (2019) "Oscillations of an elastic pendulum" (interactive animation), Wolfram Demonstrations Project, published February 19, 2019.