मार्सिंकिविज़ इंटरपोलेशन प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 11: Line 11:


:<math>\lambda_f(t)\leq \frac{C}{t}.</math>
:<math>\lambda_f(t)\leq \frac{C}{t}.</math>
उपरोक्त असमानता में सबसे छोटे स्थिरांक C को ''''दुर्बल''' <math>L^1</math>' कहा जाता है आदर्श और साधारणतया इसके द्वारा निरूपित किया जाता है <math>\|f\|_{1,w}</math> या <math>\|f\|_{1,\infty}.</math> इसी प्रकार स्थान को साधारणतया ''L''<sup>1,''w''</sup> or ''L''<sup>1,∞</sup> द्वारा निरूपित किया जाता है।
उपरोक्त असमानता में सबसे लघु स्थिरांक C को ''''दुर्बल''' <math>L^1</math>' कहा जाता है आदर्श और साधारणतया इसके द्वारा निरूपित किया जाता है <math>\|f\|_{1,w}</math> या <math>\|f\|_{1,\infty}.</math> इसी प्रकार स्थान को साधारणतया ''L''<sup>1,''w''</sup> or ''L''<sup>1,∞</sup> द्वारा निरूपित किया जाता है।




Line 19: Line 19:


:<math>\|f\|_{1,w}\leq \|f\|_1.</math>
:<math>\|f\|_{1,w}\leq \|f\|_1.</math>
यह मार्कोव की असमानता (अका चेबीशेव की असमानता) के अतिरिक्त और कुछ नहीं है। इसका विपरीत सत्य नहीं है. उदाहरण के लिए, फलन 1/x  ''L''<sup>1</sup>,w से संबंधित है लेकिन ''L''<sup>1</sup> से नहीं है।
यह मार्कोव की असमानता (अका चेबीशेव की असमानता) के अतिरिक्त और कुछ नहीं है। इसका विपरीत सत्य नहीं है. उदाहरण के लिए, फलन 1/x  ''L''<sup>1</sup>,w से संबंधित है लेकिन ''L''<sup>1</sup> से नहीं है।


इसी प्रकार, कोई '''दुर्बल <math>L^p</math>''' समष्टि को सभी फलन f के समष्टि के रूप में परिभाषित कर सकता है, जैसे कि <math>|f|^p</math> से ''L''<sup>1,''w''</sup>  संबंधित है, और '''दुर्बल''' <math>L^p</math> मानदंड का उपयोग कर रहा है
इसी प्रकार, कोई '''दुर्बल <math>L^p</math>''' समष्टि को सभी फलन f के समष्टि के रूप में परिभाषित कर सकता है, जैसे कि <math>|f|^p</math> से ''L''<sup>1,''w''</sup>  संबंधित है, और '''दुर्बल''' <math>L^p</math> मानदंड का उपयोग कर रहा है
Line 32: Line 32:
अनौपचारिक रूप से, मार्सिंकिविज़ का प्रमेय है
अनौपचारिक रूप से, मार्सिंकिविज़ का प्रमेय है


:प्रमेय. मान लीजिए ''T'' एक परिबद्ध रैखिक संचालिका है <math>L^p</math> को <math>L^{p,w}</math> और साथ ही साथ <math>L^q</math> को <math>L^{q,w}</math>. तब T भी एक परिबद्ध संचालिका है <math>L^r</math> को <math>L^r</math> p और q के बीच किसी भी r के लिए।
:'''प्रमेय'''. मान लीजिए ''T'' एक परिबद्ध रैखिक संचालिका है <math>L^p</math> को <math>L^{p,w}</math> और साथ ही साथ <math>L^q</math> को <math>L^{q,w}</math>. तब T भी एक परिबद्ध संचालिका है <math>L^r</math> को <math>L^r</math> p और q के बीच किसी भी r के लिए।
   
   
दूसरे शब्दों में, भले ही किसी को चरम ''p'' और ''q'' पर केवल दुर्बल सीमा की आवश्यकता हो, नियमित सीमा अभी भी कायम है। इसे और अधिक औपचारिक बनाने के लिए, किसी को यह समझाना होगा कि T केवल [[सघन सेट|सघन]] उपसमुच्चय पर घिरा है और इसे पूरा किया जा सकता है। इन विवरणों के लिए रिज़्ज़-थोरिन प्रमेय देखें।
दूसरे शब्दों में, भले ही किसी को चरम ''p'' और ''q'' पर केवल दुर्बल सीमा की आवश्यकता हो, नियमित सीमा अभी भी कायम है। इसे और अधिक औपचारिक बनाने के लिए, किसी को यह समझाना होगा कि T केवल [[सघन सेट|सघन]] उपसमुच्चय पर घिरा है और इसे पूरा किया जा सकता है। इन विवरणों के लिए रिज़्ज़-थोरिन प्रमेय देखें।
Line 41: Line 41:
:<math>\|Tf\|_{p,w} \le N_p\|f\|_p,</math>
:<math>\|Tf\|_{p,w} \le N_p\|f\|_p,</math>
:<math>\|Tf\|_{q,w} \le N_q\|f\|_q,</math>
:<math>\|Tf\|_{q,w} \le N_q\|f\|_q,</math>
ताकि Lp से Lp,w तक T का ऑपरेटर मानदंड अधिकतम ''N<sub>p</sub>'' पर हो, और ''L<sup>q</sup>'' से ''L<sup>q</sup>''<sup>,''w''</sup> तक T का ऑपरेटर मानदंड अधिकतम ''N<sub>q</sub>'' पर हो। फिर निम्नलिखित अंतर्वेशन असमानता ''p'' और ''q'' और सभी ''f'' ∈ ''L<sup>r</sup>'' के बीच सभी ''r'' के लिए लागू होती है:
ताकि Lp से Lp,w तक T का ऑपरेटर मानदंड अधिकतम ''N<sub>p</sub>'' पर हो, और ''L<sup>q</sup>'' से ''L<sup>q</sup>''<sup>,''w''</sup> तक T का ऑपरेटर मानदंड अधिकतम ''N<sub>q</sub>'' पर हो। फिर निम्नलिखित '''अंतर्वेशन असमानता''' ''p'' और ''q'' और सभी ''f'' ∈ ''L<sup>r</sup>'' के बीच सभी ''r'' के लिए लागू होती है:


:<math>\|Tf\|_r\le \gamma N_p^\delta N_q^{1-\delta}\|f\|_r</math>
:<math>\|Tf\|_r\le \gamma N_p^\delta N_q^{1-\delta}\|f\|_r</math>
Line 50: Line 50:
सीमा तक जाकर q = ∞ के लिए स्थिरांक δ और γ भी दिए जा सकते हैं।
सीमा तक जाकर q = ∞ के लिए स्थिरांक δ और γ भी दिए जा सकते हैं।


प्रमेय का एक संस्करण अधिक सामान्यतः तब भी लागू होता है जब T को केवल निम्नलिखित अर्थों में एक रैखिककल्प ऑपरेटर माना जाता है: एक स्थिरांक C > 0 उपस्थित होता है जिससे T संतुष्ट होता है
प्रमेय का एक संस्करण अधिक सामान्यतः तब भी लागू होता है जब T को केवल निम्नलिखित अर्थों में एक रैखिककल्प ऑपरेटर माना जाता है: एक स्थिरांक C > 0 उपस्थित होता है जिससे ''T'' संतुष्ट होता है


:<math>|T(f+g)(x)| \le C(|Tf(x)|+|Tg(x)|)</math>
:<math>|T(f+g)(x)| \le C(|Tf(x)|+|Tg(x)|)</math>
Line 56: Line 56:


:<math>\gamma=2C\left(\frac{r(q-p)}{(r-p)(q-r)}\right)^{1/r}.</math>
:<math>\gamma=2C\left(\frac{r(q-p)}{(r-p)(q-r)}\right)^{1/r}.</math>
एक ऑपरेटर T (संभवतः क्वासिलिनियर) फॉर्म के अनुमान को संतुष्ट करता है
एक ऑपरेटर T (संभवतः रैखिककल्प) फॉर्म के अनुमान को संतुष्ट करता है


:<math>\|Tf\|_{q,w}\le C\|f\|_p</math>
:<math>\|Tf\|_{q,w}\le C\|f\|_p</math>
Line 66: Line 66:
* यदि T दुर्बल प्रकार (''p''<sub>0</sub>, ''q''<sub>0</sub>) और दुर्बल प्रकार (''p''<sub>1</sub>, ''q''<sub>1</sub>) का एक रैखिककल्पऑपरेटर है जहां ''q''<sub>0</sub> ≠ ''q''<sub>1</sub> है, तो प्रत्येक θ ∈ (0,1) के लिए, T प्रकार (''p'',''q'') का है, ''p'' और ''q'' फॉर्म के ''p'' ≤ ''q'' के साथ
* यदि T दुर्बल प्रकार (''p''<sub>0</sub>, ''q''<sub>0</sub>) और दुर्बल प्रकार (''p''<sub>1</sub>, ''q''<sub>1</sub>) का एक रैखिककल्पऑपरेटर है जहां ''q''<sub>0</sub> ≠ ''q''<sub>1</sub> है, तो प्रत्येक θ ∈ (0,1) के लिए, T प्रकार (''p'',''q'') का है, ''p'' और ''q'' फॉर्म के ''p'' ≤ ''q'' के साथ
::<math>\frac{1}{p} = \frac{1-\theta}{p_0}+\frac{\theta}{p_1},\quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.</math>
::<math>\frac{1}{p} = \frac{1-\theta}{p_0}+\frac{\theta}{p_1},\quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.</math>
बाद वाला सूत्रीकरण होल्डर की असमानता और द्वैत तर्क के अनुप्रयोग के माध्यम से पूर्व से अनुसरण करता है।{{Citation needed|reason=How to use Hölder's inequality and the special case?|date=June 2016}}
बाद वाला सूत्रीकरण होल्डर की असमानता और द्वैत तर्क के अनुप्रयोग के माध्यम से पूर्व से अनुसरण करता है।


==अनुप्रयोग और उदाहरण==
==अनुप्रयोग और उदाहरण==
एक प्रसिद्ध एप्लिकेशन उदाहरण हिल्बर्ट ट्रांसफॉर्म है। [[गुणक (फूरियर विश्लेषण)]] के रूप में देखे जाने पर, किसी फलन f के हिल्बर्ट ट्रांसफ़ॉर्म की गणना पहले f के [[फूरियर रूपांतरण]] को लेकर, फिर [[साइन फ़ंक्शन|साइन फलन]] द्वारा गुणा करके और अंत में व्युत्क्रम फ़ोरियर ट्रांसफ़ॉर्म को लागू करके की जा सकती है।
एक प्रसिद्ध एप्लिकेशन उदाहरण हिल्बर्ट ट्रांसफॉर्म है। [[गुणक (फूरियर विश्लेषण)]] के रूप में देखे जाने पर, किसी फलन f के हिल्बर्ट ट्रांसफ़ॉर्म की गणना पहले f के [[फूरियर रूपांतरण]] को लेकर, फिर [[साइन फ़ंक्शन|साइन फलन]] द्वारा गुणा करके और अंत में व्युत्क्रम फ़ोरियर ट्रांसफ़ॉर्म को लागू करके की जा सकती है।




इसलिए पार्सेवल का प्रमेय आसानी से दिखाता है कि [[हिल्बर्ट परिवर्तन]] से घिरा हुआ है <math>L^2</math> को <math>L^2</math>. एक बहुत कम स्पष्ट तथ्य यह है कि यह सीमाबद्ध है <math>L^1</math> को <math>L^{1,w}</math>. इसलिए मार्सिंकिविज़ के प्रमेय से पता चलता है कि यह से घिरा हुआ है <math>L^p</math> को <math>L^p</math> किसी भी 1 < p < 2 के लिए है। दोहरे समष्टि तर्क दर्शाते हैं कि यह 2 < p < ∞ के लिए भी परिबद्ध है। वास्तव में, हिल्बर्ट रूपांतरण वास्तव में 1 या ∞ के बराबर p के लिए असीमित है।
इसलिए पार्सेवल का प्रमेय आसानी से दिखाता है कि [[हिल्बर्ट परिवर्तन]] से घिरा हुआ है <math>L^2</math> को <math>L^2</math>. एक बहुत कम स्पष्ट तथ्य यह है कि यह सीमाबद्ध है <math>L^1</math> को <math>L^{1,w}</math>. इसलिए मार्सिंकिविज़ के प्रमेय से पता चलता है कि यह से घिरा हुआ है <math>L^p</math> को <math>L^p</math> किसी भी 1 < p < 2 के लिए है। दोहरे समष्टि तर्क दर्शाते हैं कि यह 2 < p < ∞ के लिए भी परिबद्ध है। वास्तव में, हिल्बर्ट रूपांतरण वास्तव में 1 या ∞ के बराबर p के लिए असीमित है।


एक अन्य प्रसिद्ध उदाहरण हार्डी-लिटिलवुड मैक्सिमम फलन है, जो रैखिक के बजाय केवल सबलीनियर ऑपरेटर है। जबकि <math>L^p</math> को <math>L^p</math> सीमा तुरंत से प्राप्त की जा सकती है <math>L^1</math> दुर्बल होना <math>L^1</math> चरों के एक चतुर परिवर्तन द्वारा अनुमान लगाने के लिए, मार्सिंकिविज़ अंतर्वेशन एक अधिक सहज दृष्टिकोण है। चूंकि हार्डी-लिटलवुड मैक्सिमल फलन तुच्छ रूप से सीमित है <math>L^\infty</math> को <math>L^\infty</math>, सभी के लिए सशक्त बाध्यता <math>p>1</math> दुर्बल (1,1) अनुमान और अंतर्वेशन से तुरंत अनुसरण करता है। दुर्बल (1,1) अनुमान विटाली लेम्मा को कवर कर रहा है से प्राप्त किया जा सकता है।
एक अन्य प्रसिद्ध उदाहरण हार्डी-लिटिलवुड मैक्सिमम फलन है, जो रैखिक के बदले में केवल सबलीनियर ऑपरेटर है। जबकि <math>L^p</math> को <math>L^p</math> सीमा तुरंत से प्राप्त की जा सकती है <math>L^1</math> दुर्बल होना <math>L^1</math> चरों के एक चतुर परिवर्तन द्वारा अनुमान लगाने के लिए, मार्सिंकिविज़ अंतर्वेशन एक अधिक सहज दृष्टिकोण है। चूंकि हार्डी-लिटलवुड मैक्सिमल फलन तुच्छ रूप से सीमित है <math>L^\infty</math> को <math>L^\infty</math>, सभी के लिए सशक्त बाध्यता <math>p>1</math> दुर्बल (1,1) अनुमान और अंतर्वेशन से तुरंत अनुसरण करता है। दुर्बल (1,1) अनुमान विटाली लेम्मा को कवर कर रहा है से प्राप्त किया जा सकता है।


==इतिहास==
==इतिहास==
प्रमेय की घोषणा सबसे पहले किसके द्वारा की गई थी? {{harvtxt|मारसिंकेविच|1939}}, जिन्होंने द्वितीय विश्व युद्ध में मरने से कुछ समय पहले एंटोनी ज़िगमंड को यह परिणाम दिखाया था। ज़िगमंड द्वारा प्रमेय को लगभग भुला दिया गया था, और एकवचन अभिन्न ऑपरेटरों के सिद्धांत पर उनके मूल फलनों से यह अनुपस्थित था। बाद में {{harvtxt|ज़िग्मुंड|1956}} ने अनुभव किया कि मार्सिंक्यूविक्ज़ का परिणाम उनके काम को बहुत सरल बना सकता है, जिस समय उन्होंने अपने पूर्व छात्र के प्रमेय को अपने स्वयं के सामान्यीकरण के साथ प्रकाशित किया।
प्रमेय की घोषणा सबसे पहले किसके द्वारा की गई थी? {{harvtxt|मारसिंकेविच|1939}}, जिन्होंने द्वितीय विश्व युद्ध में मरने से कुछ समय पहले एंटोनी ज़िगमंड को यह परिणाम दिखाया था। ज़िगमंड द्वारा प्रमेय को लगभग भुला दिया गया था, और एकवचन अभिन्न ऑपरेटरों के सिद्धांत पर उनके मूल फलनों से यह अनुपस्थित था। बाद में {{harvtxt|ज़िग्मुंड|1956}} ने अनुभव किया कि मार्सिंक्यूविक्ज़ का परिणाम उनके काम को बहुत सरल बना सकता है, जिस समय उन्होंने अपने पूर्व छात्र के प्रमेय को अपने स्वयं के सामान्यीकरण के साथ प्रकाशित किया।


1964 में रिचर्ड एलन हंट|रिचर्ड ए. हंट और [[गुइडो वीस]] ने मार्सिंकिविज़ अंतर्वेशन प्रमेय का एक नया प्रमाण प्रकाशित किया।<ref name="HuntWeiss1964">{{cite journal|last1=Hunt|first1=Richard A.|last2=Weiss|first2=Guido|title=मार्सिंकिविज़ इंटरपोलेशन सिद्धांत|journal=Proceedings of the American Mathematical Society|volume=15|issue=6|year=1964|pages=996–998|issn=0002-9939|doi=10.1090/S0002-9939-1964-0169038-4|doi-access=free}}</ref>
1964 में रिचर्ड एलन हंट|रिचर्ड ए. हंट और [[गुइडो वीस]] ने मार्सिंकिविज़ अंतर्वेशन प्रमेय का एक नया प्रमाण प्रकाशित किया।<ref name="HuntWeiss1964">{{cite journal|last1=Hunt|first1=Richard A.|last2=Weiss|first2=Guido|title=मार्सिंकिविज़ इंटरपोलेशन सिद्धांत|journal=Proceedings of the American Mathematical Society|volume=15|issue=6|year=1964|pages=996–998|issn=0002-9939|doi=10.1090/S0002-9939-1964-0169038-4|doi-access=free}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[अंतर्वेशन स्थान|अंतर्वेशन समष्टि]]
* [[अंतर्वेशन स्थान|अंतर्वेशन समष्टि]]
Line 97: Line 94:
*{{Citation | last1=Zygmund | first1=A. | title=On a theorem of Marcinkiewicz concerning interpolation of operations |mr=0080887 | year=1956 | journal=[[Journal de Mathématiques Pures et Appliquées]]|series= Neuvième Série | issn=0021-7824 | volume=35 | pages=223–248}}
*{{Citation | last1=Zygmund | first1=A. | title=On a theorem of Marcinkiewicz concerning interpolation of operations |mr=0080887 | year=1956 | journal=[[Journal de Mathématiques Pures et Appliquées]]|series= Neuvième Série | issn=0021-7824 | volume=35 | pages=223–248}}


{{Lp spaces}}
{{Functional analysis}}
[[Category: फूरियर विश्लेषण]] [[Category: कार्यात्मक विश्लेषण में प्रमेय]] [[Category: एल.पी. स्थान]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:एल.पी. स्थान]]
[[Category:कार्यात्मक विश्लेषण में प्रमेय]]
[[Category:फूरियर विश्लेषण]]

Latest revision as of 18:15, 21 August 2023

गणित में, जोज़ेफ़ मार्सिंकिविज़ (1939) द्वारा खोजा गया मार्सिंकिविज़ अंतर्वेशन (इंटरपोलेशन) प्रमेय, Lp समष्टि पर फलन करने वाले गैर-रेखीय ऑपरेटरों के मानदंडों को सीमित करने का परिणाम है।

मार्सिंकीविज़ का प्रमेय रैखिक ऑपरेटरों के बारे में रिज़्ज़-थोरिन प्रमेय के समान है, लेकिन गैर-रेखीय ऑपरेटरों पर भी लागू होता है।

प्रारंभिक

मान लीजिए f वास्तविक या सम्मिश्र मानों वाला एक मापने योग्य फलन है, जो माप स्थान (X, F, ω) पर परिभाषित है। f का वितरण फलन किसके द्वारा परिभाषित किया गया है

तब f को दुर्बल कहा जाता है यदि एक स्थिरांक C उपस्थित है जैसे कि f का वितरण फलन सभी t > 0 के लिए निम्नलिखित असमानता को संतुष्ट करता है:

उपरोक्त असमानता में सबसे लघु स्थिरांक C को 'दुर्बल ' कहा जाता है आदर्श और साधारणतया इसके द्वारा निरूपित किया जाता है या इसी प्रकार स्थान को साधारणतया L1,w or L1,∞ द्वारा निरूपित किया जाता है।


(नोट: यह शब्दावली थोड़ी भ्रामक है क्योंकि दुर्बल मानदंड त्रिकोण असमानता को संतुष्ट नहीं करता है जैसा कि फलनों के योग पर विचार करके देखा जा सकता है द्वारा दिए गए और , जिसका मानक 2 नहीं 4 है।)

कोई फलन L का है1,wऔर इसके अतिरिक्त एक में असमानता है

यह मार्कोव की असमानता (अका चेबीशेव की असमानता) के अतिरिक्त और कुछ नहीं है। इसका विपरीत सत्य नहीं है. उदाहरण के लिए, फलन 1/x L1,w से संबंधित है लेकिन L1 से नहीं है।

इसी प्रकार, कोई दुर्बल समष्टि को सभी फलन f के समष्टि के रूप में परिभाषित कर सकता है, जैसे कि से L1,w संबंधित है, और दुर्बल मानदंड का उपयोग कर रहा है

अधिकांश सीधे तौर पर, Lp,w मानदंड को असमानता में सर्वोत्तम स्थिरांक C के रूप में परिभाषित किया गया है

सभी t > 0 के लिए.

निरूपण

अनौपचारिक रूप से, मार्सिंकिविज़ का प्रमेय है

प्रमेय. मान लीजिए T एक परिबद्ध रैखिक संचालिका है को और साथ ही साथ को . तब T भी एक परिबद्ध संचालिका है को p और q के बीच किसी भी r के लिए।

दूसरे शब्दों में, भले ही किसी को चरम p और q पर केवल दुर्बल सीमा की आवश्यकता हो, नियमित सीमा अभी भी कायम है। इसे और अधिक औपचारिक बनाने के लिए, किसी को यह समझाना होगा कि T केवल सघन उपसमुच्चय पर घिरा है और इसे पूरा किया जा सकता है। इन विवरणों के लिए रिज़्ज़-थोरिन प्रमेय देखें।


मानक के अनुमानों में जहां मार्सिंकिविज़ का प्रमेय रीज़-थोरिन प्रमेय से दुर्बल है। प्रमेय इसके लिए सीमा देता है T का मानदंड लेकिन यह सीमा अनंत तक बढ़ जाती है क्योंकि r या तो p या q में परिवर्तित हो जाता है। विशेष रूप से (डिबेनेडेटो 2002, प्रमेय VIII.9.2), लगता है कि

ताकि Lp से Lp,w तक T का ऑपरेटर मानदंड अधिकतम Np पर हो, और Lq से Lq,w तक T का ऑपरेटर मानदंड अधिकतम Nq पर हो। फिर निम्नलिखित अंतर्वेशन असमानता p और q और सभी fLr के बीच सभी r के लिए लागू होती है:

जहाँ

और

सीमा तक जाकर q = ∞ के लिए स्थिरांक δ और γ भी दिए जा सकते हैं।

प्रमेय का एक संस्करण अधिक सामान्यतः तब भी लागू होता है जब T को केवल निम्नलिखित अर्थों में एक रैखिककल्प ऑपरेटर माना जाता है: एक स्थिरांक C > 0 उपस्थित होता है जिससे T संतुष्ट होता है

लगभग हर जगह के लिए x. प्रमेय बिल्कुल वैसा ही है जैसा कहा गया है, इसके अतिरिक्त कि γ द्वारा प्रतिस्थापित किया गया है

एक ऑपरेटर T (संभवतः रैखिककल्प) फॉर्म के अनुमान को संतुष्ट करता है

दुर्बल प्रकार (p,q) का कहा जाता है। यदि T, Lp से Lq तक एक परिबद्ध परिवर्तन है तो एक ऑपरेटर केवल (p,q) प्रकार का होता है:

अंतर्वेशन प्रमेय का अधिक सामान्य सूत्रीकरण इस प्रकार है:

  • यदि T दुर्बल प्रकार (p0, q0) और दुर्बल प्रकार (p1, q1) का एक रैखिककल्पऑपरेटर है जहां q0q1 है, तो प्रत्येक θ ∈ (0,1) के लिए, T प्रकार (p,q) का है, p और q फॉर्म के pq के साथ

बाद वाला सूत्रीकरण होल्डर की असमानता और द्वैत तर्क के अनुप्रयोग के माध्यम से पूर्व से अनुसरण करता है।

अनुप्रयोग और उदाहरण

एक प्रसिद्ध एप्लिकेशन उदाहरण हिल्बर्ट ट्रांसफॉर्म है। गुणक (फूरियर विश्लेषण) के रूप में देखे जाने पर, किसी फलन f के हिल्बर्ट ट्रांसफ़ॉर्म की गणना पहले f के फूरियर रूपांतरण को लेकर, फिर साइन फलन द्वारा गुणा करके और अंत में व्युत्क्रम फ़ोरियर ट्रांसफ़ॉर्म को लागू करके की जा सकती है।


इसलिए पार्सेवल का प्रमेय आसानी से दिखाता है कि हिल्बर्ट परिवर्तन से घिरा हुआ है को . एक बहुत कम स्पष्ट तथ्य यह है कि यह सीमाबद्ध है को . इसलिए मार्सिंकिविज़ के प्रमेय से पता चलता है कि यह से घिरा हुआ है को किसी भी 1 < p < 2 के लिए है। दोहरे समष्टि तर्क दर्शाते हैं कि यह 2 < p < ∞ के लिए भी परिबद्ध है। वास्तव में, हिल्बर्ट रूपांतरण वास्तव में 1 या ∞ के बराबर p के लिए असीमित है।

एक अन्य प्रसिद्ध उदाहरण हार्डी-लिटिलवुड मैक्सिमम फलन है, जो रैखिक के बदले में केवल सबलीनियर ऑपरेटर है। जबकि को सीमा तुरंत से प्राप्त की जा सकती है दुर्बल होना चरों के एक चतुर परिवर्तन द्वारा अनुमान लगाने के लिए, मार्सिंकिविज़ अंतर्वेशन एक अधिक सहज दृष्टिकोण है। चूंकि हार्डी-लिटलवुड मैक्सिमल फलन तुच्छ रूप से सीमित है को , सभी के लिए सशक्त बाध्यता दुर्बल (1,1) अनुमान और अंतर्वेशन से तुरंत अनुसरण करता है। दुर्बल (1,1) अनुमान विटाली लेम्मा को कवर कर रहा है से प्राप्त किया जा सकता है।

इतिहास

प्रमेय की घोषणा सबसे पहले किसके द्वारा की गई थी? मारसिंकेविच (1939), जिन्होंने द्वितीय विश्व युद्ध में मरने से कुछ समय पहले एंटोनी ज़िगमंड को यह परिणाम दिखाया था। ज़िगमंड द्वारा प्रमेय को लगभग भुला दिया गया था, और एकवचन अभिन्न ऑपरेटरों के सिद्धांत पर उनके मूल फलनों से यह अनुपस्थित था। बाद में ज़िग्मुंड (1956) ने अनुभव किया कि मार्सिंक्यूविक्ज़ का परिणाम उनके काम को बहुत सरल बना सकता है, जिस समय उन्होंने अपने पूर्व छात्र के प्रमेय को अपने स्वयं के सामान्यीकरण के साथ प्रकाशित किया।

1964 में रिचर्ड एलन हंट|रिचर्ड ए. हंट और गुइडो वीस ने मार्सिंकिविज़ अंतर्वेशन प्रमेय का एक नया प्रमाण प्रकाशित किया।[1]

यह भी देखें

संदर्भ

  1. Hunt, Richard A.; Weiss, Guido (1964). "मार्सिंकिविज़ इंटरपोलेशन सिद्धांत". Proceedings of the American Mathematical Society. 15 (6): 996–998. doi:10.1090/S0002-9939-1964-0169038-4. ISSN 0002-9939.