क्रॉस्ड-फ़ील्ड एम्पलीफायर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 22: Line 22:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
[[Category: वाल्व एम्पलीफायर]] [[Category: माइक्रोवेव प्रौद्योगिकी]] [[Category: अमेरिकी आविष्कार]]


[[Category: Machine Translated Page]]
[[Category:Created On 07/08/2023]]
[[Category:Created On 07/08/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:अमेरिकी आविष्कार]]
[[Category:माइक्रोवेव प्रौद्योगिकी]]
[[Category:वाल्व एम्पलीफायर]]

Latest revision as of 19:02, 21 August 2023

CFA L-4756A.jpg

क्रॉस-फील्ड एम्पलीफायर (सीएफए) जिसे विशेष रूप से वेक्यूम - ट्यूब कहा जाता है, जिसे पहली बार 1950 के दशक के मध्य में प्रस्तुत किया गया था और अक्सर बहुत उच्च-शक्ति ट्रांसमीटर में माइक्रोवेव एम्पलीफायर के रूप में उपयोग किया जाता था।

इस प्रकार के नये ब्रॉडबैंड एम्पलीफायर बनाने के लिए मैग्नेट्रान सिद्धांतों को अनुकूलित करने के रेथियॉन इंजीनियर विलियम सी ब्राउन के कार्य को सामान्यतः पहले सीएफए के रूप में मान्यता दी जाती है, जिसे उन्होंने एम्प्लिट्रॉन कहा था। इसके अन्य नाम जो कभी-कभी सीएफए निर्माताओं द्वारा उपयोग किए जाते हैं उनमें प्लैटिनोट्रॉन या स्टेबिलोट्रॉन उपस्थित हैं।

सीएफए में अन्य माइक्रोवेव एम्पलीफायर ट्यूब (जैसे क्लिस्ट्रॉन ट्यूब या ट्रैवलिंग-वेव ट्यूब) की तुलना में कम लाभ (इलेक्ट्रॉनिक्स) और बैंडविड्थ (सिग्नल प्रोसेसिंग) होता है, लेकिन यह अधिक कुशल है और बहुत अधिक आउटपुट पावर (भौतिकी) में सक्षम है।

70 प्रतिशत से अधिक दक्षता रेटिंग के साथ, कई मेगावाट की चरम उत्पादन शक्ति और दसियों किलोवाट का औसत बिजली स्तर प्राप्त किया जा सकता है। उनका वर्तमान उपयोग सैटेलाइट ग्राउंड स्टेशन और गहरे अंतरिक्ष संचार नेटवर्क में है।

ऑपरेशन

क्रॉस-फील्ड एम्पलीफायर आंतरिक संचालन

सीएफए के विद्युत और चुंबकीय क्षेत्र दूसरे के लंबवत (क्रॉस्ड फ़ील्ड) होते हैं। यह उसी प्रकार का फ़ील्ड इंटरैक्शन है जिसका उपयोग मैग्नेट्रोन में किया जाता है, जिसके परिणामस्वरूप दोनों डिवाइस कई विशेषताओं जैसे उच्च शिखर शक्ति और दक्षता को साझा करते हैं, और उनकी भौतिक उपस्थिति समान होती है। चूंकि, मैग्नेट्रोन वाइब्रेटर है, और सीएफए एम्पलीफायर है, चूंकि सीएफए को किसी भी एम्पलीफायर की तरह अनुचित कम वोल्टेज के अनुप्रयोग द्वारा दोलन के लिए प्रेरित किया जा सकता है, जिसके कारण सीएफए का आरएफ परिपथ या धीमी तरंग वाली इस संरचना को ट्रैवलिंग-वेव ट्यूब में युग्मित सेल TWT या युग्मित सेल TWT के समान मान लिया जाता है।

सीएफए में यह उपयोगी गुण है कि जब बिजली बंद हो जाती है, तो इनपुट बिना किसी हानि के आउटपुट में चला जाता है। इससे विफलता की स्थिति में आरएफ बाईपास स्विचिंग की आवश्यकता से बचा जा सकता है।

दो सीएफए को केवल संचालित के साथ क्रमिक रूप से जोड़ा जा सकता है, यदि यह विफल हो जाता है, तो बिजली को प्राथमिक ट्यूब से हटाया जा सकता है और बैकअप के रूप में माध्यमिक पर लागू किया जा सकता है। इसके अंतर्निहित अतिरेक के साथ इस दृष्टिकोण का उपयोग अपोलो लूनर मॉड्यूल पर एस बैंड डाउनलिंक ट्रांसमीटर पर किया गया था, जहां उच्च दक्षता और विश्वसनीयता की आवश्यकता थी।[1]

केंद्र में हरे इलेक्ट्रोड पर बड़ा ऋणात्मक वोल्टेज रखा गया है, और बड़ा चुंबकीय क्षेत्र पृष्ठ पर लंबवत निर्देशित है। यह इलेक्ट्रॉनों की पतली घूमती हुई डिस्क बनाती है जिसका प्रवाह पैटर्न सिंक या शौचालय से निकलते समय घूमने वाले पानी के समान होते है। इस प्रकार धीमी तरंग संरचना इलेक्ट्रॉनों की घूमती हुई डिस्क के ऊपर और नीचे स्थित होती है। इस प्रकार इलेक्ट्रॉन मुख्यतः प्रकाश की गति की तुलना में बहुत धीमी गति से प्रवाहित होते हैं, और धीमी तरंग संरचना इलेक्ट्रॉन वेग से मेल खाने के लिए इनपुट आरएफ के वेग को बहुत कम कर देते हैं।

आरएफ इनपुट को धीमी तरंग संरचना में प्रस्तुत किया गया है। वैकल्पिक माइक्रोवेव क्षेत्र इलेक्ट्रॉनों को बारी-बारी से तेज़ और धीमा करने का कारण बनता है। इस प्रकार के उपकरणों के चारों ओर इलेक्ट्रॉनों के सर्पिल होने पर ये त्रुटियाँ बड़ने लगती है, और आरएफ ऊर्जा बढ़ने पर इलेक्ट्रॉन धीमे हो जाते हैं। इससे प्रवर्धन उत्पन्न होता है।

आउटपुट से इनपुट तक थोड़ी मात्रा में आरएफ फीडबैक होता है। जब डिवाइस को स्पंदित किया जाता है तो यह हल्की सी अनियमित घबराहट उत्पन्न कर देता है।

संदर्भ

  1. Grumman Aerospace (1 April 1971). "Apollo Operations Handbook, Lunar Module, LM 10 and Subsequent, Volume I, Subsystems Data, LMA790-3-LM10-and-Subsequent" (PDF). NASA. p. 804. Retrieved 21 October 2012.