ऊर्जा संचालक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 20: Line 20:


====निरंतर ऊर्जा ====
====निरंतर ऊर्जा ====
परिभाषा से काम करते हुए, स्थिर ऊर्जा वाले कण के तरंग फलन के लिए आंशिक समाधान का निर्माण किया जा सकता है। यदि तरंग फलन को वियोज्य माना जाता है, तो समय निर्भरता को इस प्रकार कहा जा सकता है <math>e^{-iEt/\hbar}</math>, जहाँ E स्थिर ऊर्जा है। पूरे में,<ref>{{Cite book |last=Young |first=Hugh D. |url=https://www.worldcat.org/oclc/1057733965 |title=आधुनिक भौतिकी के साथ सियर्स और ज़ेमांस्की विश्वविद्यालय भौतिकी|publisher=[[Pearson Education]] |others=Roger A. Freedman, A. Lewis Ford, Hugh D. Young |year=2020 |isbn=978-0-13-515955-2 |edition=15th extended |location=Hoboken, N.J. |language=en |oclc=1057733965}}</ref>
परिभाषा से काम करते हुए, स्थिर ऊर्जा वाले कण के तरंग फलन के लिए आंशिक समाधान का निर्माण किया जा सकता है। यदि तरंग फलन को वियोज्य माना जाता है, तो समय निर्भरता को इस प्रकार कहा जा सकता है <math>e^{-iEt/\hbar}</math>, जहाँ E स्थिर ऊर्जा है। पूर्णतः,<ref>{{Cite book |last=Young |first=Hugh D. |url=https://www.worldcat.org/oclc/1057733965 |title=आधुनिक भौतिकी के साथ सियर्स और ज़ेमांस्की विश्वविद्यालय भौतिकी|publisher=[[Pearson Education]] |others=Roger A. Freedman, A. Lewis Ford, Hugh D. Young |year=2020 |isbn=978-0-13-515955-2 |edition=15th extended |location=Hoboken, N.J. |language=en |oclc=1057733965}}</ref>
<math display="block">\Psi(\mathbf{r}, t) = \psi(\mathbf{r}) e^{-iEt/\hbar}</math>
<math display="block">\Psi(\mathbf{r}, t) = \psi(\mathbf{r}) e^{-iEt/\hbar}</math>
यहाँ <math>\psi(\mathbf{r})</math> स्थिति पर निर्भर तरंग फलन का आंशिक समाधान है। ऊर्जा ऑपरेटर को प्रयुक्त करते हुए, हमारे पास है
यहाँ <math>\psi(\mathbf{r})</math> स्थिति पर निर्भर तरंग फलन का आंशिक समाधान है। ऊर्जा ऑपरेटर को प्रयुक्त करते हुए, हमारे पास है
Line 30: Line 30:
===क्लेन-गॉर्डन समीकरण===
===क्लेन-गॉर्डन समीकरण===


विशेष सापेक्षता में द्रव्यमान # सापेक्षतावादी ऊर्जा-संवेग समीकरण|सापेक्षतावादी द्रव्यमान-ऊर्जा संबंध:
विशेष सापेक्षता में द्रव्यमान # सापेक्षतावादी ऊर्जा-संवेग समीकरण सापेक्षतावादी द्रव्यमान-ऊर्जा संबंध: से होता है |
<math display="block">E^2 = (pc)^2 + (mc^2)^2 </math>
<math display="block">E^2 = (pc)^2 + (mc^2)^2 </math>
जहां फिर से E = कुल ऊर्जा, p = कण का कुल 3-संवेग, m = [[अपरिवर्तनीय द्रव्यमान]], और c = [[प्रकाश की [[गति]]]], इसी तरह क्लेन-गॉर्डन समीकरण प्राप्त कर सकते हैं:
जहां फिर से E = कुल ऊर्जा, p = कण का कुल 3-संवेग, m = [[अपरिवर्तनीय द्रव्यमान]], और c = [[प्रकाश की [[गति]]]], इसी तरह क्लेन-गॉर्डन समीकरण प्राप्त कर सकते हैं:

Revision as of 19:54, 8 August 2023

ऊर्जा संचालक क्वांटम यांत्रिकी में, ऊर्जा को ऑपरेटर के संदर्भ में परिभाषित किया गया है, जो समय अनुवाद समरूपता के परिणामस्वरूप प्रणाली के तरंग फलन पर कार्य करता है।

परिभाषा

यह इसके द्वारा दिया गया है:[1]

यह तरंग फलन (प्रणाली के विभिन्न कॉन्फ़िगरेशन स्थान (भौतिकी) के लिए संभाव्यता आयाम) पर कार्य करता है

आवेदन

किसी प्रणाली की पूर्ण ऊर्जा के लिए ऊर्जा ऑपरेटर पत्राचार सिद्धांत का उपयोग किया जाता है। श्रोडिंगर समीकरण मात्रा प्रणाली के धीमी गति से बदलते (सापेक्षता के गैर-सिद्धांत) तरंग फलन की स्थान- और समय-निर्भरता का वर्णन करता है। बाध्य प्रणाली के लिए इस समीकरण का समाधान भिन्न है (अनुमत राज्यों का समूह, प्रत्येक ऊर्जा स्तर द्वारा विशेषता) जिसके परिणाम स्वरूप क्वांटम की अवधारणा उत्पन्न होती है।

श्रोडिंगर समीकरण

श्रोडिंगर समीकरण के लिए ऊर्जा ऑपरेटर का उपयोग करना होता है |

प्राप्त किया जा सकता है:
जहां i काल्पनिक इकाई है, ħ घटा हुआ प्लैंक स्थिरांक है , और हैमिल्टनियन (क्वांटम यांत्रिकी) ऑपरेटर (भौतिकी) होता है।

निरंतर ऊर्जा

परिभाषा से काम करते हुए, स्थिर ऊर्जा वाले कण के तरंग फलन के लिए आंशिक समाधान का निर्माण किया जा सकता है। यदि तरंग फलन को वियोज्य माना जाता है, तो समय निर्भरता को इस प्रकार कहा जा सकता है , जहाँ E स्थिर ऊर्जा है। पूर्णतः,[2]

यहाँ स्थिति पर निर्भर तरंग फलन का आंशिक समाधान है। ऊर्जा ऑपरेटर को प्रयुक्त करते हुए, हमारे पास है
इसे स्थिर अवस्था के रूप में भी जाना जाता है, और इसका उपयोग समय-स्वतंत्र श्रोडिंगर समीकरण का विश्लेषण करने के लिए किया जा सकता है:
जहाँ E ऊर्जा का प्रतिमान मान है।

क्लेन-गॉर्डन समीकरण

विशेष सापेक्षता में द्रव्यमान # सापेक्षतावादी ऊर्जा-संवेग समीकरण सापेक्षतावादी द्रव्यमान-ऊर्जा संबंध: से होता है |

जहां फिर से E = कुल ऊर्जा, p = कण का कुल 3-संवेग, m = अपरिवर्तनीय द्रव्यमान, और c = [[प्रकाश की गति]], इसी तरह क्लेन-गॉर्डन समीकरण प्राप्त कर सकते हैं:
यहाँ संवेग संचालक है. वह है:

व्युत्पत्ति

ऊर्जा ऑपरेटर आसानी से मुक्त कण तरंग फलन (श्रोडिंगर के समीकरण के लिए विमान तरंग समाधान) का उपयोग करके प्राप्त किया जाता है।[3] आयाम में प्रारंभ तरंग फलन है

का समय व्युत्पन्न Ψ है
डी ब्रोगली संबंध द्वारा:
अपने पास
समीकरण को पुनः व्यवस्थित करने से होता है
जहां ऊर्जा कारक ई अदिश (गणित) मान है, कण में जो ऊर्जा है और जो मान मापा जाता है। आंशिक व्युत्पन्न रैखिक संचालिका है इसलिए यह अभिव्यक्ति ऊर्जा के लिए संचालिका है:
यह निष्कर्ष निकाला जा सकता है कि अदिश ई संचालिका का आइगेन मान है, जबकि ऑपरेटर है. इन परिणामों का सारांश:
3-डी समतल तरंग के लिए
व्युत्पत्ति बिल्कुल समान है, क्योंकि समय और इसलिए समय व्युत्पत्ति सहित पद में कोई परिवर्तन नहीं किया गया है। चूंकि रैखिक ऑपरेटर, वे समतल तरंगों के किसी भी रैखिक संयोजन के लिए मान्य हैं, और इसलिए वे तरंग फलन या ऑपरेटरों के गुणों को प्रभावित किए बिना किसी भी तरंग फलन पर कार्य कर सकते हैं। इसलिए यह किसी भी तरंग फलन के लिए सत्य होना चाहिए। यह उपरोक्त क्लेन-गॉर्डन समीकरण जैसे सापेक्षतावादी क्वांटम यांत्रिकी में भी काम करता है।

यह भी देखें

संदर्भ

  1. Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546-9
  2. Young, Hugh D. (2020). आधुनिक भौतिकी के साथ सियर्स और ज़ेमांस्की विश्वविद्यालय भौतिकी (in English). Roger A. Freedman, A. Lewis Ford, Hugh D. Young (15th extended ed.). Hoboken, N.J.: Pearson Education. ISBN 978-0-13-515955-2. OCLC 1057733965.
  3. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0