प्रकाश चुम्बकत्व: Difference between revisions
(Created page with "{{distinguish|Photoelectric effect}} Image:Photomagnetism diagram.JPG|thumb|300px|जमीनी अवस्था और चुंबकीय अवस्था के...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{distinguish| | {{distinguish|प्रकाश विद्युत प्रभाव}} | ||
[[Image:Photomagnetism diagram.JPG|thumb|300px|जमीनी अवस्था और चुंबकीय अवस्था के बीच | [[Image:Photomagnetism diagram.JPG|thumb|300px|जमीनी अवस्था और चुंबकीय अवस्था के बीच परिवर्तन का ऊर्जा आरेख। ठोस तीर फोटॉन के अवशोषण का प्रतिनिधित्व करते हैं और धराशायी तीर गैर विकिरण प्रक्रियाओं का प्रतिनिधित्व करते हैं]]'''प्रकाश चुम्बकत्व''' ( [[लौह-चुंबकीय|फ़ोटॉन चुंबकीय प्रभाव]]) वह प्रभाव है जिसमें कोई वस्तु प्रकाश की प्रतिक्रिया में अपने लौहचुंबकीय गुणों को प्राप्त कर लेती है (और कुछ स्थितियों में खो देती है)। इस घटना के लिए वर्तमान मॉडल एक प्रकाश प्रेरित इलेक्ट्रॉन स्थानांतरण होता है, जिसमें एक [[इलेक्ट्रॉन]] की स्पिन दिशा का उलटा होता है। इससे स्पिन सांद्रता में वृद्धि होती है, जिससे चुंबकीय परिवर्तन होता है।<ref name="PejakovićManson2000">{{cite journal|last1=Pejaković|first1=Dušan A.|last2=Manson|first2=Jamie L.|last3=Miller|first3=Joel S.|last4=Epstein|first4=Arthur J.|title=अणु-आधारित चुंबक का फोटोप्रेरित चुंबकत्व, गतिशीलता और क्लस्टर ग्लास व्यवहार|journal=Physical Review Letters|volume=85|issue=9|year=2000|pages=1994–1997|issn=0031-9007|doi=10.1103/PhysRevLett.85.1994|pmid=10970666|bibcode=2000PhRvL..85.1994P}}</ref> वर्तमान में प्रभाव केवल बहुत कम तापमान पर (किसी भी महत्वपूर्ण समय के लिए) बना रहता है। किन्तु 5K जैसे तापमान पर, प्रभाव कई दिनों तक बना रह सकता है।<ref name="PejakovićManson2000" /> | ||
==तंत्र== | ==तंत्र== | ||
चुम्बकत्व और | चुम्बकत्व और विचुम्बकीकरण (जहाँ तापीय रूप से विचुम्बकीय नहीं होता) मध्यवर्ती अवस्थाओं के माध्यम से होता है <ref name="Gutlich2001">{{cite journal|last1=Gütlich|first1=P|title=फोटोस्विचेबल समन्वय यौगिक|journal=Coordination Chemistry Reviews|volume=219-221|year=2001|pages=839–879|issn=0010-8545|doi=10.1016/S0010-8545(01)00381-2}}</ref> जैसा कि दिखाया गया है (दाएं)। चुंबकीयकरण और विचुंबकीय तरंग दैर्ध्य सिस्टम को मध्यवर्ती अवस्था तक पहुंचने के लिए ऊर्जा प्रदान करते हैं जो फिर गैर-विकिरणात्मक रूप से दो स्थितियों में से एक में शिथिल होती है ((चुंबकीकरण और विचुंबकीकरण के लिए मध्यवर्ती स्थिति अलग-अलग होती है और फोटॉन प्रवाह को शिथिल द्वारा क्षीण नहीं किया जाता है) वही स्थिति जहां से सिस्टम अभी उद्दीप्त होता है)। मूल अवस्था से चुंबकीय अवस्था में सीधा परिवर्तन और, इससे भी महत्वपूर्ण बात, इसके विपरीत, एक [[निषिद्ध संक्रमण|निषिद्ध परिवर्तन]] होता है, और इससे चुंबकीय अवस्था [[मेटास्टेबल|मितस्थायी]] हो जाती है और कम तापमान पर लंबे समय तक बनी रहती है। | ||
== प्रशिया नीला एनालॉग == | == प्रशिया नीला एनालॉग == |
Revision as of 00:18, 12 August 2023
प्रकाश चुम्बकत्व ( फ़ोटॉन चुंबकीय प्रभाव) वह प्रभाव है जिसमें कोई वस्तु प्रकाश की प्रतिक्रिया में अपने लौहचुंबकीय गुणों को प्राप्त कर लेती है (और कुछ स्थितियों में खो देती है)। इस घटना के लिए वर्तमान मॉडल एक प्रकाश प्रेरित इलेक्ट्रॉन स्थानांतरण होता है, जिसमें एक इलेक्ट्रॉन की स्पिन दिशा का उलटा होता है। इससे स्पिन सांद्रता में वृद्धि होती है, जिससे चुंबकीय परिवर्तन होता है।[1] वर्तमान में प्रभाव केवल बहुत कम तापमान पर (किसी भी महत्वपूर्ण समय के लिए) बना रहता है। किन्तु 5K जैसे तापमान पर, प्रभाव कई दिनों तक बना रह सकता है।[1]
तंत्र
चुम्बकत्व और विचुम्बकीकरण (जहाँ तापीय रूप से विचुम्बकीय नहीं होता) मध्यवर्ती अवस्थाओं के माध्यम से होता है [2] जैसा कि दिखाया गया है (दाएं)। चुंबकीयकरण और विचुंबकीय तरंग दैर्ध्य सिस्टम को मध्यवर्ती अवस्था तक पहुंचने के लिए ऊर्जा प्रदान करते हैं जो फिर गैर-विकिरणात्मक रूप से दो स्थितियों में से एक में शिथिल होती है ((चुंबकीकरण और विचुंबकीकरण के लिए मध्यवर्ती स्थिति अलग-अलग होती है और फोटॉन प्रवाह को शिथिल द्वारा क्षीण नहीं किया जाता है) वही स्थिति जहां से सिस्टम अभी उद्दीप्त होता है)। मूल अवस्था से चुंबकीय अवस्था में सीधा परिवर्तन और, इससे भी महत्वपूर्ण बात, इसके विपरीत, एक निषिद्ध परिवर्तन होता है, और इससे चुंबकीय अवस्था मितस्थायी हो जाती है और कम तापमान पर लंबे समय तक बनी रहती है।
प्रशिया नीला एनालॉग
आणविक फोटोमैग्नेटिक सामग्रियों के सबसे आशाजनक समूहों में से एक सह-फ़े हल्का नीला एनालॉग्स हैं (यानी समान संरचना और समान रसायन वाले यौगिक प्रशिया ब्लू बनाते हैं।) प्रशिया ब्लू एनालॉग का रासायनिक सूत्र एम है1-2xसह1+x[Fe(CN)6]•ज़ह2O जहां x और z चर हैं (z शून्य हो सकता है) और M एक क्षार धातु है। प्रशियाई नीले एनालॉग्स में एक चेहरा केंद्र घन संरचना होती है।
यह आवश्यक है कि संरचना नॉन-स्टोइकोमेट्रिक यौगिक|नॉन-स्टोइकोमेट्रिक हो।[3] इस मामले में लोहे के अणुओं को पानी द्वारा यादृच्छिक रूप से प्रतिस्थापित किया जाता है (प्रति प्रतिस्थापित लोहे में पानी के 6 अणु)। यह गैर-स्टोइकोमेट्री प्रशिया के नीले एनालॉग्स के फोटोमैग्नेटिज्म के लिए आवश्यक है क्योंकि जिन क्षेत्रों में लौह रिक्ति होती है वे गैर-चुंबकीय अवस्था में अधिक स्थिर होते हैं और बिना रिक्ति वाले क्षेत्र चुंबकीय अवस्था में अधिक स्थिर होते हैं। सही आवृत्ति द्वारा रोशनी द्वारा इनमें से एक या दूसरे क्षेत्र को स्थानीय रूप से थोक अवस्था से इसकी अधिक स्थिर स्थिति में बदला जा सकता है, जिससे पूरे अणु का चरण परिवर्तन शुरू हो जाता है। विपरीत चरण परिवर्तन को उचित आवृत्ति द्वारा अन्य प्रकार के क्षेत्र को उत्तेजित करके पूरा किया जा सकता है।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Pejaković, Dušan A.; Manson, Jamie L.; Miller, Joel S.; Epstein, Arthur J. (2000). "अणु-आधारित चुंबक का फोटोप्रेरित चुंबकत्व, गतिशीलता और क्लस्टर ग्लास व्यवहार". Physical Review Letters. 85 (9): 1994–1997. Bibcode:2000PhRvL..85.1994P. doi:10.1103/PhysRevLett.85.1994. ISSN 0031-9007. PMID 10970666.
- ↑ Gütlich, P (2001). "फोटोस्विचेबल समन्वय यौगिक". Coordination Chemistry Reviews. 219–221: 839–879. doi:10.1016/S0010-8545(01)00381-2. ISSN 0010-8545.
- ↑ Kawamoto, Tohru; Asai, Yoshihiro; Abe, Shuji (2001). "अणु-आधारित चुंबकों में फोटोप्रेरित प्रतिवर्ती चरण संक्रमण का नवीन तंत्र". Physical Review Letters. 86 (2): 348–351. arXiv:cond-mat/0006076. Bibcode:2001PhRvL..86..348K. doi:10.1103/PhysRevLett.86.348. ISSN 0031-9007. PMID 11177828. S2CID 24426936.
अग्रिम पठन
- Ohkoshi, Shin-ichi; Tokoro, Hiroko (2012). "Photomagnetism in Cyano-Bridged Bimetal Assemblies". Accounts of Chemical Research. 45 (10): 1749–1758. doi:10.1021/ar300068k. ISSN 0001-4842. PMID 22869535.
- Han, Jie; Meng, Ji-Ben (2009). "Progress in synthesis, photochromism and photomagnetism of biindenylidenedione derivatives". Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 10 (3): 141–147. doi:10.1016/j.jphotochemrev.2009.10.001. ISSN 1389-5567.