शूर अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(22 intermediate revisions by 3 users not shown)
Line 1: Line 1:
रैखिक बीजगणित के गणित अनुशासन में, '''शूर अपघटन''' या शूर त्रिभुज, जिसका नाम [[ कुछ नहीं | इसाई शूर]] के नाम पर रखा गया है, [[मैट्रिक्स अपघटन]] है। यह किसी को अनेैतिक रूप से जटिल वर्ग मैट्रिक्स को [[ऊपरी-त्रिकोणीय मैट्रिक्स]] के मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।
रैखिक बीजगणित के गणित अनुशासन में, '''शूर अपघटन''' या शूर त्रिभुज, जिसका नाम [[ कुछ नहीं |इसाई शूर]] के नाम पर रखा गया है, [[मैट्रिक्स अपघटन|आव्युह अपघटन]] है। यह किसी को अनेैतिक रूप से समष्टि वर्ग आव्युह को [[ऊपरी-त्रिकोणीय मैट्रिक्स|ऊपरी-त्रिकोणीय आव्युह]] के आव्युह समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण अवयव मूल आव्युह के स्वदेशीमूल्य हैं।
 
'''मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण'''
 
== कथन ==
== कथन ==
शूर अपघटन इस प्रकार पढ़ता है: यदि {{mvar|A}} जटिल संख्या प्रविष्टियों के साथ एक {{math|''n'' × ''n''}} [[वर्ग मैट्रिक्स]] है, तो {{mvar|A}} के रूप में व्यक्त किया जा सकता है<ref name=horn1985>{{cite book | last1 = Horn | first1 = R.A. | last2 = Johnson | first2 = C.R. | name-list-style=amp | year=1985 | title = मैट्रिक्स विश्लेषण| publisher = Cambridge University Press | isbn = 0-521-38632-2}} (Section 2.3 and further at [{{Google books|plainurl=y|id=PlYQN0ypTwEC|page=79|text=Schur}} p. 79])</ref><ref name=Golub1996>{{cite book|last1=Golub | first1= G.H. |last2=Van Loan | first2 = C.F. |name-list-style=amp |year=1996 |title=मैट्रिक्स संगणना| edition=3rd | publisher=Johns Hopkins University Press | isbn=0-8018-5414-8}}(Section 7.7 at [{{Google books|plainurl=y|id=mlOa7wPX6OYC|page=313|text=Schur Decomposition}} p. 313])</ref><ref>{{cite book |first=James R. |last=Schott |title=सांख्यिकी के लिए मैट्रिक्स विश्लेषण|location=New York |publisher=John Wiley & Sons |year=2016 |edition=3rd |isbn=978-1-119-09247-6 |pages=175–178 |url=https://books.google.com/books?id=e-JFDAAAQBAJ&pg=PA177 }}</ref>
शूर अपघटन इस प्रकार पढ़ता है: यदि {{mvar|A}} समष्टि संख्या प्रविष्टियों के साथ एक {{math|''n'' × ''n''}} [[वर्ग मैट्रिक्स|वर्ग आव्युह]] है, तब {{mvar|A}} के रूप में व्यक्त किया जा सकता है<ref name=horn1985>{{cite book | last1 = Horn | first1 = R.A. | last2 = Johnson | first2 = C.R. | name-list-style=amp | year=1985 | title = मैट्रिक्स विश्लेषण| publisher = Cambridge University Press | isbn = 0-521-38632-2}} (Section 2.3 and further at [{{Google books|plainurl=y|id=PlYQN0ypTwEC|page=79|text=Schur}} p. 79])</ref><ref name=Golub1996>{{cite book|last1=Golub | first1= G.H. |last2=Van Loan | first2 = C.F. |name-list-style=amp |year=1996 |title=मैट्रिक्स संगणना| edition=3rd | publisher=Johns Hopkins University Press | isbn=0-8018-5414-8}}(Section 7.7 at [{{Google books|plainurl=y|id=mlOa7wPX6OYC|page=313|text=Schur Decomposition}} p. 313])</ref><ref>{{cite book |first=James R. |last=Schott |title=सांख्यिकी के लिए मैट्रिक्स विश्लेषण|location=New York |publisher=John Wiley & Sons |year=2016 |edition=3rd |isbn=978-1-119-09247-6 |pages=175–178 |url=https://books.google.com/books?id=e-JFDAAAQBAJ&pg=PA177 }}</ref>
<math display="block"> A = Q U Q^{-1}</math>
<math display="block"> A = Q U Q^{-1}</math>
जहां Q [[एकात्मक मैट्रिक्स]] है (जिससे इसका व्युत्क्रम <sup>−1</sup>Q भी Q का संयुग्मी स्थानान्तरण Q* हो), और U [[ऊपरी त्रिकोणीय मैट्रिक्स]] है, जिसे A का 'शूर फॉर्म' कहा जाता है। चूँकि U, A के [[समान (रैखिक बीजगणित)]] है, और चूंकि यह त्रिकोणीय है, इसलिए इसके [[eigenvalue|आइगेनवैल्यूज़]] यू की विकर्ण प्रविष्टियां हैं।
जहां Q [[एकात्मक मैट्रिक्स|एकात्मक आव्युह]] है (जिससे इसका व्युत्क्रम <sup>−1</sup>Q भी Q का संयुग्मी स्थानान्तरण Q* हो), और U [[ऊपरी त्रिकोणीय मैट्रिक्स|ऊपरी त्रिकोणीय आव्युह]] है, जिसे A का 'शूर रूप ' कहा जाता है। चूँकि U, A के [[समान (रैखिक बीजगणित)]] है, और चूंकि यह त्रिकोणीय है, इसलिए इसके [[eigenvalue|स्वदेशीमूल्य]] U की विकर्ण प्रविष्टियां हैं।


शूर अपघटन का तात्पर्य है कि -अपरिवर्तनीय उप-स्थानों का नेस्टेड अनुक्रम उपस्थित है {{math|1={0} = ''V''<sub>0</sub> ⊂ ''V''<sub>1</sub> ⊂ ⋯ ⊂ ''V<sub>n</sub>'' = '''C'''<sup>''n''</sup>}}, और यह कि क्रमबद्ध [[ऑर्थोनॉर्मल आधार]] उपस्थित है ({{math|'''C'''<sup>''n''</sup>}} मानक [[हर्मिटियन रूप]] के लिए) इस प्रकार कि नेस्टेड अनुक्रम में होने वाले प्रत्येक i के लिए प्रथम i आधार सदिशों {{math|''V''<sub>''i''</sub>}} का विस्तार करता है। कुछ अलग ढंग से वाक्यांशित, पहला भाग कहता है कि जटिल परिमित-आयामी वेक्टर स्थान पर [[रैखिक ऑपरेटर]] जे ऑर्बिट और स्टेबलाइजर्स पूर्ण [[ध्वज (रैखिक बीजगणित)]] {{math|1=(''V''<sub>1</sub>, ..., ''V<sub>n</sub>'')}} को स्थिर करता है।
शूर अपघटन का तात्पर्य है कि A-अपरिवर्तनीय उप-स्थानों का नेस्टेड अनुक्रम उपस्थित है {{math|1={0} = ''V''<sub>0</sub> ⊂ ''V''<sub>1</sub> ⊂ ⋯ ⊂ ''V<sub>n</sub>'' = '''C'''<sup>''n''</sup>}}, और यह कि क्रमबद्ध [[ऑर्थोनॉर्मल आधार]] उपस्थित है ({{math|'''C'''<sup>''n''</sup>}} मानक [[हर्मिटियन रूप]] के लिए) इस प्रकार कि नेस्टेड अनुक्रम में होने वाले प्रत्येक i के लिए प्रथम i आधार सदिशों {{math|''V''<sub>''i''</sub>}} का विस्तार करता है। कुछ भिन्न रूप से वाक्यांशित, प्रथम भाग कहलाता है कि समष्टि परिमित-आयामी सदिश स्थान पर [[रैखिक ऑपरेटर]] जे ऑर्बिट और स्थिर पूर्ण [[ध्वज (रैखिक बीजगणित)]] {{math|1=(''V''<sub>1</sub>, ..., ''V<sub>n</sub>'')}} को स्थिर करता है।


== प्रमाण ==
== प्रमाण ==
शूर अपघटन के लिए रचनात्मक प्रमाण इस प्रकार है: जटिल परिमित-आयामी वेक्टर स्थान पर प्रत्येक ऑपरेटर में आइगेनवेल्यू λ होता है, जो कुछ आइजेनस्पेस वी के अनुरूप होता है।<sub>&lambda;</sub>. उड़ान वी<sub>&lambda;</sub><sup>⊥</sup>इसके ऑर्थोगोनल पूरक बनें। यह स्पष्ट है कि, इस ऑर्थोगोनल अपघटन के संबंध में, में मैट्रिक्स प्रतिनिधित्व है (कोई यहां किसी भी ऑर्थोनॉर्मल आधार Z को चुन सकता है)<sub>1</sub> और ज़ेड<sub>2</sub> फैला हुआ वी<sub>&lambda;</sub>और वी<sub>&lambda;</sub><sup></sup> क्रमशः)
शूर अपघटन के लिए रचनात्मक प्रमाण इस प्रकार है: समष्टि परिमित-आयामी सदिश स्थान पर प्रत्येक ऑपरेटर ''A'' में आइगेनवेल्यू λ होता है, जो कुछ आइजेनस्पेस ''V<sub>λ</sub>'' के अनुरूप होता है। मान लीजिए ''V<sub>λ</sub>''<sup>⊥</sup> इसके ऑर्थोगोनल पूरक है। यह स्पष्ट है कि, इस ऑर्थोगोनल अपघटन के संबंध में, ''A'' में आव्युह प्रतिनिधित्व है (कोई यहां क्रमशः ''V<sub>λ</sub>'' और ''V<sub>λ</sub>''<sup></sup> तक फैले किसी भी ऑर्थोनॉर्मल आधार Z<sub>1</sub> और ''Z''<sub>2</sub> को चुन सकता है)
<math display="block">\begin{bmatrix} Z_1 & Z_2 \end{bmatrix}^{*} A \begin{bmatrix}Z_1 & Z_2\end{bmatrix} = \begin{bmatrix} \lambda \, I_{\lambda} & A_{12} \\ 0 & A_{22} \end{bmatrix}:  
<math display="block">\begin{bmatrix} Z_1 & Z_2 \end{bmatrix}^{*} A \begin{bmatrix}Z_1 & Z_2\end{bmatrix} = \begin{bmatrix} \lambda \, I_{\lambda} & A_{12} \\ 0 & A_{22} \end{bmatrix}:  
\begin{matrix}
\begin{matrix}
Line 25: Line 22:
\end{matrix}
\end{matrix}
</math>
</math>
जहां मैं<sub>&lambda;</sub>V पर पहचान ऑपरेटर है<sub>&lambda;</sub>. ए को छोड़कर उपरोक्त मैट्रिक्स ऊपरी-त्रिकोणीय होगा<sub>22</sub> अवरोध पैदा करना। लेकिन ठीक यही प्रक्रिया सब-मैट्रिक्स ए पर भी लागू की जा सकती है<sub>22</sub>, वी पर ऑपरेटर के रूप में देखा गया<sub>&lambda;</sub><sup>⊥</sup>, और इसकी उपमात्राएँ। इस प्रकार तब तक जारी रखें जब तक परिणामी मैट्रिक्स ऊपरी त्रिकोणीय न हो जाए। चूँकि प्रत्येक संयुग्मन ऊपरी-त्रिकोणीय ब्लॉक के आयाम को कम से कम बढ़ाता है, इसलिए इस प्रक्रिया में अधिकतम n चरण लगते हैं। इस प्रकार स्थान 'सी'<sup>n</sup> समाप्त हो जाएगा और प्रक्रिया ने वांछित परिणाम प्राप्त कर लिया है।<ref>{{cite web |last1=Wagner |first1=David |title=Proof of Schur’s Theorem |url=https://math.mit.edu/~gs/linearalgebra/ila5/lafe_schur03.pdf |website=Notes on Linear Algebra}}</ref>
जहां ''I<sub>λ</sub>'' ''V<sub>λ</sub>'' पर पहचान ऑपरेटर है। ''A''<sub>22</sub> को छोड़कर उपरोक्त आव्युह ऊपरी-त्रिकोणीय होगा। किंतु सम्पूर्ण रूप में यही प्रक्रिया सब-आव्युह ''A''<sub>22</sub> पर भी क्रियान्वित की जा सकती है जिसे ''V<sub>λ</sub>''<sup>⊥</sup> और इसके उपआव्युह पर ऑपरेटर के रूप में देखा गया है। इस प्रकार तब तक प्रारंभ रखें जब तक परिणामी आव्युह ऊपरी त्रिकोणीय न हो जाए। चूँकि प्रत्येक संयुग्मन ऊपरी-त्रिकोणीय ब्लॉक के आयाम को कम से कम बढ़ाता है, इसलिए इस प्रक्रिया में अधिकतम n चरण लगते हैं। इस प्रकार स्थान '''C'''<sup>''n''</sup> समाप्त हो जाएगा और प्रक्रिया ने वांछित परिणाम प्राप्त कर लिया है।<ref>{{cite web |last1=Wagner |first1=David |title=Proof of Schur’s Theorem |url=https://math.mit.edu/~gs/linearalgebra/ila5/lafe_schur03.pdf |website=Notes on Linear Algebra}}</ref>
उपरोक्त तर्क को थोड़ा इस प्रकार दोहराया जा सकता है: मान लीजिए कि λ, A का आइगेनवैल्यूज़ है, जो कुछ eigenspace V के अनुरूप है।<sub>&lambda;</sub>. A ऑपरेटर T को [[भागफल स्थान (रैखिक बीजगणित)]] 'C' पर प्रेरित करता है<sup>एन</सूप>/बी<sub>&lambda;</sub>. यह ऑपरेटर बिल्कुल A है<sub>22</sub> ऊपर से सबमैट्रिक्स। पहले की तरह, T के पास eigenspace होगा, W कहते हैं<sub>&mu;</sub>⊂ 'सी'<sup>n</sup>मॉड्यूलो बी<sub>&lambda;</sub>. डब्लू की पूर्वछवि पर ध्यान दें<sub>&mu;</sub>भागफल मानचित्र के अंतर्गत A का [[अपरिवर्तनीय उपस्थान]] है जिसमें V शामिल है<sub>&lambda;</sub>. इस तरह से जारी रखें जब तक कि परिणामी भागफल स्थान का आयाम 0 न हो जाए। फिर प्रत्येक चरण पर पाए जाने वाले आइगेनस्पेस की क्रमिक पूर्वछवियाँ ध्वज बनाती हैं जिसे A स्थिर करता है।
 
उपरोक्त तर्क को थोड़ा इस प्रकार दोहराया जा सकता है: मान लीजिए कि λ, A का स्वदेशीमूल्य है, जो कुछ ईजेनस्पेस V<sub>&lambda;</sub> के अनुरूप है। यदि A ऑपरेटर T को [[भागफल स्थान (रैखिक बीजगणित)]] '''C'''<sup>''n''</sup>/''V<sub>λ</sub>'' पर प्रेरित करता है। यह ऑपरेटर ऊपर से सम्पूर्ण रूप में ''A''<sub>22</sub> उपआव्युह है। पूर्व के पश्चात्, T के पास ईजेनस्पेस होगा, मान लीजिए ''W<sub>μ</sub>'' ⊂ '''C'''<sup>''n''</sup> modulo ''V<sub>λ</sub>''. ध्यान दें की भागफल मानचित्र के अंतर्गत ''W<sub>μ</sub>'' की पूर्वछवि ''A'' का अपरिवर्तनीय उपस्थान है जिसमे ''V<sub>λ</sub>'' सम्मिलित है। इस तरह से प्रारंभ रखें जब तक कि परिणामी भागफल स्थान का आयाम 0 न हो जाए। फिर प्रत्येक चरण पर पाए जाने वाले आइगेनस्पेस की क्रमिक पूर्वछवियाँ ध्वज बनाती हैं जिसे A स्थिर करता है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Although every square matrix has a Schur decomposition, in general this decomposition is not unique. For example, the eigenspace ''V<sub>&lambda;</sub>'' can have dimension > 1, in which case any orthonormal basis for ''V<sub>&lambda;</sub>'' would lead to the desired result.
चूँकि प्रत्येक वर्ग आव्युह में एक शूर अपघटन होता है, सामान्यतः यह अपघटन अद्वितीय नहीं होता है। उदाहरण के लिए, आइजेनस्पेस ''V<sub>&lambda;</sub>'' का आयाम > 1 हो सकता है, ऐसी स्थिति में ''V<sub>&lambda;</sub>'' के लिए कोई भी ऑर्थोनॉर्मल आधार वांछित परिणाम की ओर ले जाएगा।


Write the triangular matrix ''U'' as ''U'' = ''D'' + ''N'', where ''D'' is diagonal and ''N'' is strictly upper triangular (and thus a [[nilpotent matrix]]). The diagonal matrix ''D'' contains the eigenvalues of ''A'' in arbitrary order (hence its Frobenius norm, squared, is the sum of the squared moduli of the eigenvalues of ''A'', while
त्रिकोणीय आव्युह ''U'' को ''U'' = ''D'' + ''N'' के रूप में लिखें, जहां ''D'' विकर्ण है और ''N'' सशक्त से ऊपरी त्रिकोणीय है (और इस प्रकार एक [[nilpotent matrix|शून्यपोटेंट आव्युह]] है)। विकर्ण आव्युह D में अनेैतिक रूप से क्रम में A के स्वदेशीमूल्य ​​सम्मिलित हैं (इसलिए इसका फ्रोबेनियस मानदंड, वर्ग, A के स्वदेशीमूल्य ​​के वर्ग मापांक का योग है, जबकि A का फ्रोबेनियस मानदंड, वर्ग, A के वर्ग [[singular value|एकवचन मानों]] का योग है)। निलपोटेंट भाग ''N'' सामान्यतः अद्वितीय नहीं है, किंतु इसका [[Matrix norm#Frobenius norm|फ्रोबेनियस]] मानदंड विशिष्ट रूप से A द्वारा निर्धारित किया जाता है (अतः इसलिए कि A का फ्रोबेनियस मानदंड ''U'' = ''D'' + ''N'' के फ्रोबेनियस मानदंड के सामान्तर है)<ref name=":0">{{cite web |last1=Higham |first1=Nick |title=What Is a Schur Decomposition? |url=https://nhigham.com/2022/05/11/what-is-a-schur-decomposition/}}</ref>
the Frobenius norm of ''A'', squared, is the sum of the squared [[singular value]]s of ''A''). The nilpotent part ''N'' is generally not unique either, but its [[Matrix norm#Frobenius norm|Frobenius norm]] is uniquely determined by ''A'' (just because the Frobenius norm of A is equal to the Frobenius norm of ''U'' = ''D'' + ''N'').<ref>{{cite web |last1=Higham |first1=Nick |title=What Is a Schur Decomposition? |url=https://nhigham.com/2022/05/11/what-is-a-schur-decomposition/}}</ref>


It is clear that if ''A'' is a [[normal matrix]], then ''U'' from its Schur decomposition must be a [[diagonal matrix]] and the column vectors of ''Q'' are the [[eigenvector]]s of ''A''. Therefore, the Schur decomposition extends the [[Eigendecomposition of a matrix|spectral decomposition]]. In particular, if ''A'' is [[Positive-definite matrix|positive definite]], the Schur decomposition of ''A'', its spectral decomposition, and its [[singular value decomposition]] coincide.
यह स्पष्ट है कि यदि A एक [[normal matrix|सामान्य आव्युह]] है, तब इसके शूर अपघटन से ''U'' एक [[diagonal matrix|विकर्ण आव्युह]] होना चाहिए और ''Q'' के कॉलम सदिश ''A'' के [[eigenvector|आइजनसदिश]] हैं। इसलिए, शूर अपघटन वर्णक्रमीय अपघटन का विस्तार करता है। विशेष रूप से, यदि ''A'' धनात्मक निश्चित है, तब ''A'' का शूर अपघटन, इसका [[Eigendecomposition of a matrix|वर्णक्रमीय अपघटन]], और इसका [[singular value decomposition|एकवचन मूल्य अपघटन]] मेल खाता है।


A [[commutative operation|commuting]] family {''A<sub>i</sub>''} of matrices can be simultaneously triangularized, i.e. there exists a unitary matrix ''Q'' such that, for every ''A<sub>i</sub>'' in the given family, ''Q A<sub>i</sub> Q*'' is upper triangular. This can be readily deduced from the above proof. Take element ''A'' from {''A<sub>i</sub>''} and again consider an eigenspace ''V<sub>A</sub>''. Then ''V<sub>A</sub>'' is invariant under all matrices in {''A<sub>i</sub>''}. Therefore, all matrices in {''A<sub>i</sub>''} must share one common eigenvector in ''V<sub>A</sub>''. Induction then proves the claim. As a corollary, we have that every commuting family of normal matrices can be simultaneously [[Diagonalizable matrix|diagonalized]].
आव्युह के एक [[commutative operation|कम्यूटिंग]] वर्ग {''A<sub>i</sub>''} को एक साथ त्रिकोणीय बनाया जा सकता है, अर्थात एक एकात्मक आव्युह Q उपस्थित है, जैसे कि, दिए गए वर्ग में प्रत्येक ''A<sub>i</sub>'' के लिए, Q Ai Q* ऊपरी त्रिकोणीय है। इसका अनुमान उपरोक्त प्रमाण से सरलता से लगाया जा सकता है। {''A<sub>i</sub>''} से अवयव A लें और फिर से एक ईजेनस्पेस ''V<sub>A</sub>'' पर विचार करें। तब ''V<sub>A</sub>'' {''A<sub>i</sub>''} में सभी आव्यूहों के अंतर्गत अपरिवर्तनीय है। इसलिए, {''A<sub>i</sub>''} में सभी आव्युह को ''V<sub>A</sub>'' में एक सामान्य ईजेनवेक्टर साझा करना होगा। प्रेरण तब अनुरोध सिद्ध करता है। परिणाम के रूप में, हमारे पास यह है कि सामान्य आव्युह के प्रत्येक आने वाले वर्ग को एक साथ विकर्ण किया जा सकता है।


In the infinite dimensional setting, not every [[bounded operator]] on a [[Banach space]] has an invariant subspace. However, the upper-triangularization of an arbitrary square matrix does generalize to [[compact operator]]s. Every [[compact operator]] on a complex Banach space has a [[Flag (linear algebra)#Subspace nest|nest]] of closed invariant subspaces.
अनंत आयामी सेटिंग में, [[Banach space|बैनाच समिष्ट]] पर प्रत्येक [[bounded operator|बाउंडेड ऑपरेटर]] के पास एक अपरिवर्तनीय उप-स्थान नहीं होता है। चूँकि, एक अनेैतिक रूप से वर्ग आव्युह का ऊपरी-त्रिकोणीकरण कॉम्पैक्ट ऑपरेटरों के लिए सामान्यीकरण करता है। समष्टि बानाच समिष्ट पर प्रत्येक [[compact operator|कॉम्पैक्ट ऑपरेटर]] के पास विवृत अपरिवर्तनीय उप-स्थानों का एक [[compact operator|नेस्ट]] होता है।
== गणना ==
== गणना ==
किसी दिए गए मैट्रिक्स के शूर अपघटन की गणना [[क्यूआर एल्गोरिदम]] या इसके वेरिएंट द्वारा संख्यात्मक रूप से की जाती है। दूसरे शब्दों में, मैट्रिक्स के अनुरूप [[विशेषता बहुपद]] की जड़ों की शूर अपघटन प्राप्त करने के लिए आवश्यक रूप से गणना नहीं की जाती है। इसके विपरीत, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए विशेषता बहुपद की जड़ों की गणना करने के लिए उसके [[साथी मैट्रिक्स]] के शूर अपघटन का पता लगाकर किया जा सकता है। इसी तरह, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए मैट्रिक्स के आइगेनवैल्यू की गणना करने के लिए किया जाता है, जो शूर अपघटन के ऊपरी त्रिकोणीय मैट्रिक्स की विकर्ण प्रविष्टियां हैं। यद्यपि क्यूआर एल्गोरिथ्म औपचारिक रूप से संचालन का अनंत अनुक्रम है, मशीन परिशुद्धता के लिए अभिसरण व्यावहारिक रूप से बिग ओ नोटेशन में प्राप्त किया जाता है |<math>\mathcal{O}(n^3)</math>परिचालन.<ref>{{Cite book|last1=Trefethen|first1=Lloyd N.|url=https://www.worldcat.org/oclc/36084666 | title=संख्यात्मक रैखिक बीजगणित|last2=Bau|first2=David|date=1997|publisher=Society for Industrial and Applied Mathematics |year=1997 |isbn=0-89871-361-7 |location=Philadelphia|pages=193–194|oclc=36084666}}</ref>
किसी दिए गए आव्युह के शूर अपघटन की गणना [[क्यूआर एल्गोरिदम]] या इसके वेरिएंट द्वारा संख्यात्मक रूप से की जाती है। दूसरे शब्दों में, आव्युह के अनुरूप [[विशेषता बहुपद]] की रूट की शूर अपघटन प्राप्त करने के लिए आवश्यक रूप से गणना नहीं की जाती है। इसके विपरीत, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए विशेषता बहुपद की रूट की गणना करने के लिए उसके [[साथी मैट्रिक्स|सहयोगी आव्युह]] के शूर अपघटन का पता लगाकर किया जा सकता है। इसी प्रकार, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए आव्युह के आइगेनवैल्यू की गणना करने के लिए किया जाता है, जो शूर अपघटन के ऊपरी त्रिकोणीय आव्युह की विकर्ण प्रविष्टियां हैं। यद्यपि क्यूआर एल्गोरिथ्म औपचारिक रूप से संचालन का अनंत अनुक्रम है, मशीन परिशुद्धता के लिए अभिसरण व्यावहारिक रूप से <math>\mathcal{O}(n^3)</math> परिचालन बिग ओ नोटेशन में प्राप्त किया जाता है।<ref>{{Cite book|last1=Trefethen|first1=Lloyd N.|url=https://www.worldcat.org/oclc/36084666 | title=संख्यात्मक रैखिक बीजगणित|last2=Bau|first2=David|date=1997|publisher=Society for Industrial and Applied Mathematics |year=1997 |isbn=0-89871-361-7 |location=Philadelphia|pages=193–194|oclc=36084666}}</ref> [[LAPACK|लैपैक]] उपयोगकर्ता गाइड में नॉनसिमेट्रिक ईजेनप्रॉब्लम्स अनुभाग देखें।<ref>{{cite book| last1=Anderson|first1=E| last2=Bai|first2=Z| last3=Bischof|first3=C| last4=Blackford|first4=S| last5=Demmel|first5=J| last6=Dongarra|first6=J| last7=Du Croz|first7=J| last8=Greenbaum|first8=A| last9=Hammarling|first9=S| last10=McKenny|first10=A| last11=Sorensen|first11=D| title=लैपैक उपयोगकर्ता मार्गदर्शिका| date=1995| publisher=Society for Industrial and Applied Mathematics| location=Philadelphia, PA| isbn=0-89871-447-8| url=http://www.netlib.org/lapack/lug/}}</ref>
[[LAPACK]] उपयोगकर्ता गाइड में नॉनसिमेट्रिक ईजेनप्रॉब्लम्स अनुभाग देखें।<ref>{{cite book| last1=Anderson|first1=E| last2=Bai|first2=Z| last3=Bischof|first3=C| last4=Blackford|first4=S| last5=Demmel|first5=J| last6=Dongarra|first6=J| last7=Du Croz|first7=J| last8=Greenbaum|first8=A| last9=Hammarling|first9=S| last10=McKenny|first10=A| last11=Sorensen|first11=D| title=लैपैक उपयोगकर्ता मार्गदर्शिका| date=1995| publisher=Society for Industrial and Applied Mathematics| location=Philadelphia, PA| isbn=0-89871-447-8| url=http://www.netlib.org/lapack/lug/}}</ref>
== अनुप्रयोग ==
== अनुप्रयोग ==
[[झूठ सिद्धांत]] अनुप्रयोगों में शामिल हैं:
[[झूठ सिद्धांत|लाई सिद्धांत]] अनुप्रयोगों में सम्मिलित हैं:
* प्रत्येक व्युत्क्रमणीय ऑपरेटर [[बोरेल समूह]] में समाहित है।
* प्रत्येक व्युत्क्रमणीय ऑपरेटर [[बोरेल समूह]] में समाहित है।
* प्रत्येक ऑपरेटर [[ध्वज अनेक गुना]] का बिंदु तय करता है।
* प्रत्येक ऑपरेटर [[ध्वज अनेक गुना|फ़्लैग मैनिफोल्ड]] का बिंदु तय करता है।


== सामान्यीकृत शूर अपघटन ==
== सामान्यीकृत शूर अपघटन ==
वर्ग आव्यूह और बी को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को इस प्रकार गुणनखंडित करता है <math>A = QSZ^*</math> और <math>B = QTZ^*</math>, जहां Q और Z एकात्मक मैट्रिक्स हैं, और S और T [[ऊपरी त्रिकोणीय]] हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।<ref name=Golub1996/>{{rp|p=375}}
वर्ग आव्यूह ''A'' और ''B'' को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को <math>A = QSZ^*</math> और <math>B = QTZ^*</math> के रूप में गुणनखंडित करता है, जहां Q और Z एकात्मक आव्युह हैं, और S और T [[ऊपरी त्रिकोणीय]] हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।<ref name=Golub1996/>{{rp|p=375}}


सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda</math> जो मैट्रिक्स#अतिरिक्त विषयों के ईगेंडेकंपोजीशन को हल करता है <math>A\mathbf{x}=\lambda B\mathbf{x}</math> (जहाँ x अज्ञात अशून्य सदिश है) की गणना ''S'' के विकर्ण तत्वों और ''T'' के विकर्ण तत्वों के अनुपात के रूप में की जा सकती है। अर्थात्, मैट्रिक्स तत्वों को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ''i''वां सामान्यीकृत आइगेनवैल्यूज़ <math>\lambda_i</math> संतुष्ट <math>\lambda_i = S_{ii} / T_{ii}</math>.
सामान्यीकृत स्वदेशीमूल्य <math>\lambda</math> जो सामान्यीकृत स्वदेशीमूल्य समस्या <math>A\mathbf{x}=\lambda B\mathbf{x}</math> (जहाँ x अज्ञात अशून्य सदिश है) को हल करता है गणना ''S'' के विकर्ण अवयव और ''T'' के विकर्ण अवयव के अनुपात के रूप में की जा सकती है। अर्थात्, आव्युह अवयव को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ''i''th सामान्यीकृत स्वदेशीमूल्य <math>\lambda_i</math><math>\lambda_i = S_{ii} / T_{ii}</math> को संतुष्ट करता है।


== संदर्भ ==
== संदर्भ ==
<references />
<references />
[[Category: मैट्रिक्स सिद्धांत]] [[Category: प्रमाण युक्त लेख]] [[Category: मैट्रिक्स अपघटन]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:प्रमाण युक्त लेख]]
[[Category:मैट्रिक्स अपघटन]]
[[Category:मैट्रिक्स सिद्धांत]]

Latest revision as of 10:20, 22 August 2023

रैखिक बीजगणित के गणित अनुशासन में, शूर अपघटन या शूर त्रिभुज, जिसका नाम इसाई शूर के नाम पर रखा गया है, आव्युह अपघटन है। यह किसी को अनेैतिक रूप से समष्टि वर्ग आव्युह को ऊपरी-त्रिकोणीय आव्युह के आव्युह समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण अवयव मूल आव्युह के स्वदेशीमूल्य हैं।

कथन

शूर अपघटन इस प्रकार पढ़ता है: यदि A समष्टि संख्या प्रविष्टियों के साथ एक n × n वर्ग आव्युह है, तब A के रूप में व्यक्त किया जा सकता है[1][2][3]

जहां Q एकात्मक आव्युह है (जिससे इसका व्युत्क्रम −1Q भी Q का संयुग्मी स्थानान्तरण Q* हो), और U ऊपरी त्रिकोणीय आव्युह है, जिसे A का 'शूर रूप ' कहा जाता है। चूँकि U, A के समान (रैखिक बीजगणित) है, और चूंकि यह त्रिकोणीय है, इसलिए इसके स्वदेशीमूल्य U की विकर्ण प्रविष्टियां हैं।

शूर अपघटन का तात्पर्य है कि A-अपरिवर्तनीय उप-स्थानों का नेस्टेड अनुक्रम उपस्थित है {0} = V0V1 ⊂ ⋯ ⊂ Vn = Cn, और यह कि क्रमबद्ध ऑर्थोनॉर्मल आधार उपस्थित है (Cn मानक हर्मिटियन रूप के लिए) इस प्रकार कि नेस्टेड अनुक्रम में होने वाले प्रत्येक i के लिए प्रथम i आधार सदिशों Vi का विस्तार करता है। कुछ भिन्न रूप से वाक्यांशित, प्रथम भाग कहलाता है कि समष्टि परिमित-आयामी सदिश स्थान पर रैखिक ऑपरेटर जे ऑर्बिट और स्थिर पूर्ण ध्वज (रैखिक बीजगणित) (V1, ..., Vn) को स्थिर करता है।

प्रमाण

शूर अपघटन के लिए रचनात्मक प्रमाण इस प्रकार है: समष्टि परिमित-आयामी सदिश स्थान पर प्रत्येक ऑपरेटर A में आइगेनवेल्यू λ होता है, जो कुछ आइजेनस्पेस Vλ के अनुरूप होता है। मान लीजिए Vλ इसके ऑर्थोगोनल पूरक है। यह स्पष्ट है कि, इस ऑर्थोगोनल अपघटन के संबंध में, A में आव्युह प्रतिनिधित्व है (कोई यहां क्रमशः Vλ और Vλ तक फैले किसी भी ऑर्थोनॉर्मल आधार Z1 और Z2 को चुन सकता है)

जहां Iλ Vλ पर पहचान ऑपरेटर है। A22 को छोड़कर उपरोक्त आव्युह ऊपरी-त्रिकोणीय होगा। किंतु सम्पूर्ण रूप में यही प्रक्रिया सब-आव्युह A22 पर भी क्रियान्वित की जा सकती है जिसे Vλ और इसके उपआव्युह पर ऑपरेटर के रूप में देखा गया है। इस प्रकार तब तक प्रारंभ रखें जब तक परिणामी आव्युह ऊपरी त्रिकोणीय न हो जाए। चूँकि प्रत्येक संयुग्मन ऊपरी-त्रिकोणीय ब्लॉक के आयाम को कम से कम बढ़ाता है, इसलिए इस प्रक्रिया में अधिकतम n चरण लगते हैं। इस प्रकार स्थान Cn समाप्त हो जाएगा और प्रक्रिया ने वांछित परिणाम प्राप्त कर लिया है।[4]

उपरोक्त तर्क को थोड़ा इस प्रकार दोहराया जा सकता है: मान लीजिए कि λ, A का स्वदेशीमूल्य है, जो कुछ ईजेनस्पेस Vλ के अनुरूप है। यदि A ऑपरेटर T को भागफल स्थान (रैखिक बीजगणित) Cn/Vλ पर प्रेरित करता है। यह ऑपरेटर ऊपर से सम्पूर्ण रूप में A22 उपआव्युह है। पूर्व के पश्चात्, T के पास ईजेनस्पेस होगा, मान लीजिए WμCn modulo Vλ. ध्यान दें की भागफल मानचित्र के अंतर्गत Wμ की पूर्वछवि A का अपरिवर्तनीय उपस्थान है जिसमे Vλ सम्मिलित है। इस तरह से प्रारंभ रखें जब तक कि परिणामी भागफल स्थान का आयाम 0 न हो जाए। फिर प्रत्येक चरण पर पाए जाने वाले आइगेनस्पेस की क्रमिक पूर्वछवियाँ ध्वज बनाती हैं जिसे A स्थिर करता है।

टिप्पणियाँ

चूँकि प्रत्येक वर्ग आव्युह में एक शूर अपघटन होता है, सामान्यतः यह अपघटन अद्वितीय नहीं होता है। उदाहरण के लिए, आइजेनस्पेस Vλ का आयाम > 1 हो सकता है, ऐसी स्थिति में Vλ के लिए कोई भी ऑर्थोनॉर्मल आधार वांछित परिणाम की ओर ले जाएगा।

त्रिकोणीय आव्युह U को U = D + N के रूप में लिखें, जहां D विकर्ण है और N सशक्त से ऊपरी त्रिकोणीय है (और इस प्रकार एक शून्यपोटेंट आव्युह है)। विकर्ण आव्युह D में अनेैतिक रूप से क्रम में A के स्वदेशीमूल्य ​​सम्मिलित हैं (इसलिए इसका फ्रोबेनियस मानदंड, वर्ग, A के स्वदेशीमूल्य ​​के वर्ग मापांक का योग है, जबकि A का फ्रोबेनियस मानदंड, वर्ग, A के वर्ग एकवचन मानों का योग है)। निलपोटेंट भाग N सामान्यतः अद्वितीय नहीं है, किंतु इसका फ्रोबेनियस मानदंड विशिष्ट रूप से A द्वारा निर्धारित किया जाता है (अतः इसलिए कि A का फ्रोबेनियस मानदंड U = D + N के फ्रोबेनियस मानदंड के सामान्तर है)।[5]

यह स्पष्ट है कि यदि A एक सामान्य आव्युह है, तब इसके शूर अपघटन से U एक विकर्ण आव्युह होना चाहिए और Q के कॉलम सदिश A के आइजनसदिश हैं। इसलिए, शूर अपघटन वर्णक्रमीय अपघटन का विस्तार करता है। विशेष रूप से, यदि A धनात्मक निश्चित है, तब A का शूर अपघटन, इसका वर्णक्रमीय अपघटन, और इसका एकवचन मूल्य अपघटन मेल खाता है।

आव्युह के एक कम्यूटिंग वर्ग {Ai} को एक साथ त्रिकोणीय बनाया जा सकता है, अर्थात एक एकात्मक आव्युह Q उपस्थित है, जैसे कि, दिए गए वर्ग में प्रत्येक Ai के लिए, Q Ai Q* ऊपरी त्रिकोणीय है। इसका अनुमान उपरोक्त प्रमाण से सरलता से लगाया जा सकता है। {Ai} से अवयव A लें और फिर से एक ईजेनस्पेस VA पर विचार करें। तब VA {Ai} में सभी आव्यूहों के अंतर्गत अपरिवर्तनीय है। इसलिए, {Ai} में सभी आव्युह को VA में एक सामान्य ईजेनवेक्टर साझा करना होगा। प्रेरण तब अनुरोध सिद्ध करता है। परिणाम के रूप में, हमारे पास यह है कि सामान्य आव्युह के प्रत्येक आने वाले वर्ग को एक साथ विकर्ण किया जा सकता है।

अनंत आयामी सेटिंग में, बैनाच समिष्ट पर प्रत्येक बाउंडेड ऑपरेटर के पास एक अपरिवर्तनीय उप-स्थान नहीं होता है। चूँकि, एक अनेैतिक रूप से वर्ग आव्युह का ऊपरी-त्रिकोणीकरण कॉम्पैक्ट ऑपरेटरों के लिए सामान्यीकरण करता है। समष्टि बानाच समिष्ट पर प्रत्येक कॉम्पैक्ट ऑपरेटर के पास विवृत अपरिवर्तनीय उप-स्थानों का एक नेस्ट होता है।

गणना

किसी दिए गए आव्युह के शूर अपघटन की गणना क्यूआर एल्गोरिदम या इसके वेरिएंट द्वारा संख्यात्मक रूप से की जाती है। दूसरे शब्दों में, आव्युह के अनुरूप विशेषता बहुपद की रूट की शूर अपघटन प्राप्त करने के लिए आवश्यक रूप से गणना नहीं की जाती है। इसके विपरीत, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए विशेषता बहुपद की रूट की गणना करने के लिए उसके सहयोगी आव्युह के शूर अपघटन का पता लगाकर किया जा सकता है। इसी प्रकार, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए आव्युह के आइगेनवैल्यू की गणना करने के लिए किया जाता है, जो शूर अपघटन के ऊपरी त्रिकोणीय आव्युह की विकर्ण प्रविष्टियां हैं। यद्यपि क्यूआर एल्गोरिथ्म औपचारिक रूप से संचालन का अनंत अनुक्रम है, मशीन परिशुद्धता के लिए अभिसरण व्यावहारिक रूप से परिचालन बिग ओ नोटेशन में प्राप्त किया जाता है।[6] लैपैक उपयोगकर्ता गाइड में नॉनसिमेट्रिक ईजेनप्रॉब्लम्स अनुभाग देखें।[7]

अनुप्रयोग

लाई सिद्धांत अनुप्रयोगों में सम्मिलित हैं:

सामान्यीकृत शूर अपघटन

वर्ग आव्यूह A और B को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को और के रूप में गुणनखंडित करता है, जहां Q और Z एकात्मक आव्युह हैं, और S और T ऊपरी त्रिकोणीय हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।[2]: 375 

सामान्यीकृत स्वदेशीमूल्य जो सामान्यीकृत स्वदेशीमूल्य समस्या (जहाँ x अज्ञात अशून्य सदिश है) को हल करता है गणना S के विकर्ण अवयव और T के विकर्ण अवयव के अनुपात के रूप में की जा सकती है। अर्थात्, आव्युह अवयव को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, ith सामान्यीकृत स्वदेशीमूल्य को संतुष्ट करता है।

संदर्भ

  1. Horn, R.A. & Johnson, C.R. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. ISBN 0-521-38632-2. (Section 2.3 and further at p. 79)
  2. 2.0 2.1 Golub, G.H. & Van Loan, C.F. (1996). मैट्रिक्स संगणना (3rd ed.). Johns Hopkins University Press. ISBN 0-8018-5414-8.(Section 7.7 at p. 313)
  3. Schott, James R. (2016). सांख्यिकी के लिए मैट्रिक्स विश्लेषण (3rd ed.). New York: John Wiley & Sons. pp. 175–178. ISBN 978-1-119-09247-6.
  4. Wagner, David. "Proof of Schur's Theorem" (PDF). Notes on Linear Algebra.
  5. Higham, Nick. "What Is a Schur Decomposition?".
  6. Trefethen, Lloyd N.; Bau, David (1997). संख्यात्मक रैखिक बीजगणित. Philadelphia: Society for Industrial and Applied Mathematics. pp. 193–194. ISBN 0-89871-361-7. OCLC 36084666.{{cite book}}: CS1 maint: date and year (link)
  7. Anderson, E; Bai, Z; Bischof, C; Blackford, S; Demmel, J; Dongarra, J; Du Croz, J; Greenbaum, A; Hammarling, S; McKenny, A; Sorensen, D (1995). लैपैक उपयोगकर्ता मार्गदर्शिका. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-447-8.