न्यूरल कोडिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 2: Line 2:
'''न्यूरल कोडिंग''' (या '''न्यूरल प्रतिनिधित्व''') एक न्यूरल विज्ञान क्षेत्र है जो संदीपन और व्यक्तिगत या समूह न्यूरोनल प्रतिक्रियाओं और समूह में न्यूरॉन्स की विद्युत गतिविधि के बीच संबंध के बीच काल्पनिक संबंध को चित्रित करने से संबंधित है।<ref name="Brown">{{cite journal |vauthors=Brown EN, Kass RE, Mitra PP |title=Multiple neural spike train data analysis: state-of-the-art and future challenges |journal=Nat. Neurosci. |volume=7 |issue=5 |pages=456–61 |date=May 2004 |pmid=15114358 |doi=10.1038/nn1228 |s2cid=562815 }}</ref><ref>{{Cite journal|last=Johnson|first=K. O.|date=June 2000|title=तंत्रिका कोडिंग|journal=Neuron|volume=26|issue=3|pages=563–566|issn=0896-6273|pmid=10896153|doi=10.1016/S0896-6273(00)81193-9|doi-access=free}}</ref> इस सिद्धांत के आधार पर कि संवेदी और अन्य जानकारी मस्तिष्क में न्यूरॉन्स के नेटवर्क द्वारा दर्शायी जाती है, यह माना जाता है कि न्यूरॉन्स डिजिटल और एनालॉग दोनों सूचनाओं को एनकोड कर सकते हैं।<ref name="thorpe">{{cite book |first=S.J. |last=Thorpe |chapter=Spike arrival times: A highly efficient coding scheme for neural networks |chapter-url=https://www.researchgate.net/publication/247621744 |format=PDF |pages=91–94 |editor1-first=R. |editor1-last=Eckmiller |editor2-first=G. |editor2-last=Hartmann |editor3-first=G. |editor3-last=Hauske | editor3-link = Gert Hauske |title=तंत्रिका तंत्र और कंप्यूटर में समानांतर प्रसंस्करण|url=https://books.google.com/books?id=b9gmAAAAMAAJ |year=1990 |publisher=North-Holland |isbn=978-0-444-88390-2}}</ref>
'''न्यूरल कोडिंग''' (या '''न्यूरल प्रतिनिधित्व''') एक न्यूरल विज्ञान क्षेत्र है जो संदीपन और व्यक्तिगत या समूह न्यूरोनल प्रतिक्रियाओं और समूह में न्यूरॉन्स की विद्युत गतिविधि के बीच संबंध के बीच काल्पनिक संबंध को चित्रित करने से संबंधित है।<ref name="Brown">{{cite journal |vauthors=Brown EN, Kass RE, Mitra PP |title=Multiple neural spike train data analysis: state-of-the-art and future challenges |journal=Nat. Neurosci. |volume=7 |issue=5 |pages=456–61 |date=May 2004 |pmid=15114358 |doi=10.1038/nn1228 |s2cid=562815 }}</ref><ref>{{Cite journal|last=Johnson|first=K. O.|date=June 2000|title=तंत्रिका कोडिंग|journal=Neuron|volume=26|issue=3|pages=563–566|issn=0896-6273|pmid=10896153|doi=10.1016/S0896-6273(00)81193-9|doi-access=free}}</ref> इस सिद्धांत के आधार पर कि संवेदी और अन्य जानकारी मस्तिष्क में न्यूरॉन्स के नेटवर्क द्वारा दर्शायी जाती है, यह माना जाता है कि न्यूरॉन्स डिजिटल और एनालॉग दोनों सूचनाओं को एनकोड कर सकते हैं।<ref name="thorpe">{{cite book |first=S.J. |last=Thorpe |chapter=Spike arrival times: A highly efficient coding scheme for neural networks |chapter-url=https://www.researchgate.net/publication/247621744 |format=PDF |pages=91–94 |editor1-first=R. |editor1-last=Eckmiller |editor2-first=G. |editor2-last=Hartmann |editor3-first=G. |editor3-last=Hauske | editor3-link = Gert Hauske |title=तंत्रिका तंत्र और कंप्यूटर में समानांतर प्रसंस्करण|url=https://books.google.com/books?id=b9gmAAAAMAAJ |year=1990 |publisher=North-Holland |isbn=978-0-444-88390-2}}</ref>
== सिंहावलोकन ==
== सिंहावलोकन ==
शरीर की कोशिकाओं में न्यूरॉन्स बड़ी दूरी पर संकेतों को तेजी से फैलाने की अपनी क्षमता में उल्लेखनीय हैं। वे क्रिया सामर्थ्य कहे जाने वाले विशिष्ट विद्युत स्पंदों को उत्पन्न करके ऐसा करते हैं: वोल्टेज स्पाइक्स जो अक्षतंतु तक नीचे जा सकते हैं। संवेदी न्यूरॉन्स बाहरी संवेदी संदीपन, जैसे प्रकाश, ध्वनि, स्वाद, गंध और स्पर्श की उपस्थिति के साथ, विभिन्न अस्थायी पैटर्न में कार्य क्षमता के अनुक्रमों को सक्रिय करके अपनी गतिविधियों को बदलते हैं। यह ज्ञात है कि संदीपन के बारे में जानकारी कार्य क्षमता के इस पैटर्न में एन्कोड की गई है और मस्तिष्क में और उसके आसपास प्रसारित की जाती है, लेकिन यह एकमात्र तरीका नहीं है। विशिष्ट न्यूरॉन्स, जैसे कि रेटिना, श्रेणीबद्ध क्षमताओं के माध्यम से अधिक जानकारी संप्रेषित कर सकते हैं। यह क्रिया क्षमता से भिन्न है क्योंकि संदीपन की ताकत के बारे में जानकारी सीधे न्यूरॉन के आउटपुट की ताकत से संबंधित होती है। श्रेणीबद्ध क्षमता के लिए सिग्नल बहुत तेजी से क्षीण होता है, जिसके लिए कम अंतर-न्यूरॉन दूरी और उच्च न्यूरोनल घनत्व की आवश्यकता होती है। वर्गीकृत क्षमता का लाभ उच्च सूचना रेट है जो स्पाइकिंग न्यूरॉन्स की तुलना में अधिक राज्यों (यानी उच्च निष्ठा) को एन्कोड करने में सक्षम है।<ref>Sengupta B, Laughlin SB, Niven JE (2014) Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency. PLOS Computational Biology 10(1): e1003439. https://doi.org/10.1371/journal.pcbi.1003439</ref>
शरीर की कोशिकाओं में न्यूरॉन्स बड़ी दूरी पर संकेतों को तेजी से फैलाने की अपनी क्षमता में उल्लेखनीय हैं। वे क्रिया सामर्थ्य कहे जाने वाले विशिष्ट विद्युत स्पंदों को उत्पन्न करके ऐसा करते हैं: वोल्टेज स्पाइक्स जो अक्षतंतु तक नीचे जा सकते हैं। संवेदी न्यूरॉन्स बाहरी संवेदी संदीपन, जैसे प्रकाश, ध्वनि, स्वाद, गंध और स्पर्श की उपस्थिति के साथ, विभिन्न टेम्पोरल पैटर्न में कार्य क्षमता के अनुक्रमों को सक्रिय करके अपनी गतिविधियों को बदलते हैं। यह ज्ञात है कि संदीपन के बारे में जानकारी कार्य क्षमता के इस पैटर्न में एन्कोड की गई है और मस्तिष्क में और उसके आसपास प्रसारित की जाती है, लेकिन यह एकमात्र तरीका नहीं है। विशिष्ट न्यूरॉन्स, जैसे कि रेटिना, श्रेणीबद्ध क्षमताओं के माध्यम से अधिक जानकारी संप्रेषित कर सकते हैं। यह क्रिया क्षमता से भिन्न है क्योंकि संदीपन की ताकत के बारे में जानकारी सीधे न्यूरॉन के आउटपुट की ताकत से संबंधित होती है। श्रेणीबद्ध क्षमता के लिए सिग्नल बहुत तेजी से क्षीण होता है, जिसके लिए कम अंतर-न्यूरॉन दूरी और उच्च न्यूरोनल घनत्व की आवश्यकता होती है। वर्गीकृत क्षमता का लाभ उच्च सूचना रेट है जो स्पाइकिंग न्यूरॉन्स की तुलना में अधिक राज्यों (यानी उच्च निष्ठा) को एन्कोड करने में सक्षम है।<ref>Sengupta B, Laughlin SB, Niven JE (2014) Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency. PLOS Computational Biology 10(1): e1003439. https://doi.org/10.1371/journal.pcbi.1003439</ref>


हालाँकि क्रिया सामर्थ्य अवधि, आयाम और आकार में कुछ हद तक भिन्न हो सकते हैं, लेकिन उन्हें आमतौर पर न्यूरल कोडिंग अध्ययनों में समान रूढ़िबद्ध घटनाओं के रूप में माना जाता है। यदि किसी एक्शन पोटेंशिअल की संक्षिप्त अवधि (लगभग 1 एमएस) को नजरअंदाज कर दिया जाता है, तो एक एक्शन पोटेंशिअल अनुक्रम, या स्पाइक ट्रेन, को समय में सभी या किसी भी बिंदु की घटनाओं की एक श्रृंखला द्वारा चित्रित किया जा सकता है।<ref name="Gerstner">{{cite book|author-link1=Wulfram Gerstner |first1=Wulfram |last1=Gerstner |first2=Werner M. |last2=Kistler |title=Spiking Neuron Models: Single Neurons, Populations, Plasticity |url=https://books.google.com/books?id=Rs4oc7HfxIUC |year=2002 |publisher=Cambridge University Press |isbn=978-0-521-89079-3}}</ref> स्पाइक ट्रेन में दो लगातार स्पाइक्स के बीच इंटरस्पाइक अंतराल (आईएसआई) की लंबाई अक्सर स्पष्ट रूप से यादृच्छिक रूप से भिन्न होती है।<ref name="Stein">{{cite journal |vauthors=Stein RB, Gossen ER, Jones KE |title=Neuronal variability: noise or part of the signal? |journal=Nat. Rev. Neurosci. |volume=6 |issue=5 |pages=389–97 |date=May 2005 |pmid=15861181 |doi=10.1038/nrn1668 |s2cid=205500218 }}</ref> न्यूरल कोडिंग के अध्ययन में यह मापना और वर्णन करना शामिल है कि संदीपन गुण, जैसे कि प्रकाश या ध्वनि की तीव्रता, या मोटर क्रियाएं, जैसे कि हाथ की गति की दिशा, न्यूरॉन कार्रवाई क्षमता या स्पाइक्स द्वारा कैसे दर्शायी जाती हैं। न्यूरोनल फायरिंग का वर्णन और विश्लेषण करने के लिए, सांख्यिकीय विधियों और संभाव्यता सिद्धांत और स्टोकेस्टिक बिंदु प्रक्रियाओं के तरीकों को व्यापक रूप से लागू किया गया है।
हालाँकि क्रिया सामर्थ्य अवधि, आयाम और आकार में कुछ हद तक भिन्न हो सकते हैं, लेकिन उन्हें सामान्यतः न्यूरल कोडिंग अध्ययनों में समान रूढ़िबद्ध घटनाओं के रूप में माना जाता है। यदि किसी एक्शन पोटेंशिअल की संक्षिप्त अवधि (लगभग 1 एमएस) को नजरअंदाज कर दिया जाता है, तो एक्शन पोटेंशिअल अनुक्रम, या स्पाइक ट्रेन, को समय में सभी या किसी भी बिंदु की घटनाओं की श्रृंखला द्वारा चित्रित किया जा सकता है।<ref name="Gerstner">{{cite book|author-link1=Wulfram Gerstner |first1=Wulfram |last1=Gerstner |first2=Werner M. |last2=Kistler |title=Spiking Neuron Models: Single Neurons, Populations, Plasticity |url=https://books.google.com/books?id=Rs4oc7HfxIUC |year=2002 |publisher=Cambridge University Press |isbn=978-0-521-89079-3}}</ref> स्पाइक ट्रेन में दो लगातार स्पाइक्स के बीच इंटरस्पाइक अंतराल (आईएसआई) की लंबाई प्रायः स्पष्ट रूप से यादृच्छिक रूप से भिन्न होती है।<ref name="Stein">{{cite journal |vauthors=Stein RB, Gossen ER, Jones KE |title=Neuronal variability: noise or part of the signal? |journal=Nat. Rev. Neurosci. |volume=6 |issue=5 |pages=389–97 |date=May 2005 |pmid=15861181 |doi=10.1038/nrn1668 |s2cid=205500218 }}</ref> न्यूरल कोडिंग के अध्ययन में यह मापना और वर्णन करना सम्मिलित है कि संदीपन गुण, जैसे कि प्रकाश या ध्वनि की तीव्रता, या मोटर क्रियाएं, जैसे कि हाथ की गति की दिशा, न्यूरॉन कार्रवाई क्षमता या स्पाइक्स द्वारा कैसे दर्शायी जाती हैं। न्यूरोनल फायरिंग का वर्णन और विश्लेषण करने के लिए, सांख्यिकीय विधियों और संभाव्यता सिद्धांत और स्टोकेस्टिक बिंदु प्रक्रियाओं के तरीकों को व्यापक रूप से लागू किया गया है।


बड़े पैमाने पर न्यूरल रिकॉर्डिंग और डिकोडिंग प्रौद्योगिकियों के विकास के साथ, शोधकर्ताओं ने न्यूरल कोड को क्रैक करना शुरू कर दिया है और पहले से ही वास्तविक समय न्यूरल कोड में पहली झलक प्रदान की है क्योंकि स्मृति हिप्पोकैम्पस में बनती है और याद की जाती है, एक मस्तिष्क क्षेत्र जिसे जाना जाता है स्मृति निर्माण के लिए केंद्रीय बनें।<ref>The Memory Code. http://www.scientificamerican.com/article/the-memory-code/</ref><ref>{{cite journal | last1 = Chen | first1 = G | last2 = Wang | first2 = LP | last3 = Tsien | first3 = JZ | year = 2009 | title = माउस हिप्पोकैम्पस में तंत्रिका जनसंख्या-स्तरीय स्मृति निशान| journal = PLOS ONE | volume = 4 | issue = 12| page = e8256 | doi = 10.1371/journal.pone.0008256 | pmid = 20016843 | pmc=2788416| bibcode = 2009PLoSO...4.8256C | doi-access = free }}</ref><ref>{{cite journal | last1 = Zhang | first1 = H | last2 = Chen | first2 = G | last3 = Kuang | first3 = H | last4 = Tsien | first4 = JZ | date = Nov 2013 | title = हिप्पोकैम्पस में एनएमडीए रिसेप्टर-निर्भर भय स्मृति एन्ग्राम के तंत्रिका कोड का मानचित्रण और व्याख्या करना| journal = PLOS ONE | volume = 8 | issue = 11| page = e79454 | doi = 10.1371/journal.pone.0079454 | pmid = 24302990 | pmc=3841182| bibcode = 2013PLoSO...879454Z | doi-access = free }}</ref> न्यूरल विज्ञानियों ने कई बड़े पैमाने पर मस्तिष्क डिकोडिंग परियोजनाएँ शुरू की हैं।<ref>Brain Decoding Project. http://braindecodingproject.org/</ref><ref>The Simons Collaboration on the Global Brain. https://www.simonsfoundation.org/life-sciences/simons-collaboration-global-brain/</ref>
बड़े पैमाने पर न्यूरल रिकॉर्डिंग और डिकोडिंग प्रौद्योगिकियों के विकास के साथ, शोधकर्ताओं ने न्यूरल कोड को क्रैक करना प्रारम्भ कर दिया है और पहले से ही वास्तविक समय न्यूरल कोड में पहली झलक प्रदान की है क्योंकि स्मृति हिप्पोकैम्पस में बनती है और याद की जाती है, मस्तिष्क क्षेत्र जिसे जाना जाता है मेमोरी निर्माण के लिए केंद्रीय बनें।<ref>The Memory Code. http://www.scientificamerican.com/article/the-memory-code/</ref><ref>{{cite journal | last1 = Chen | first1 = G | last2 = Wang | first2 = LP | last3 = Tsien | first3 = JZ | year = 2009 | title = माउस हिप्पोकैम्पस में तंत्रिका जनसंख्या-स्तरीय स्मृति निशान| journal = PLOS ONE | volume = 4 | issue = 12| page = e8256 | doi = 10.1371/journal.pone.0008256 | pmid = 20016843 | pmc=2788416| bibcode = 2009PLoSO...4.8256C | doi-access = free }}</ref><ref>{{cite journal | last1 = Zhang | first1 = H | last2 = Chen | first2 = G | last3 = Kuang | first3 = H | last4 = Tsien | first4 = JZ | date = Nov 2013 | title = हिप्पोकैम्पस में एनएमडीए रिसेप्टर-निर्भर भय स्मृति एन्ग्राम के तंत्रिका कोड का मानचित्रण और व्याख्या करना| journal = PLOS ONE | volume = 8 | issue = 11| page = e79454 | doi = 10.1371/journal.pone.0079454 | pmid = 24302990 | pmc=3841182| bibcode = 2013PLoSO...879454Z | doi-access = free }}</ref> न्यूरल विज्ञानियों ने कई बड़े पैमाने पर मस्तिष्क डिकोडिंग परियोजनाएँ प्रारम्भ की हैं।<ref>Brain Decoding Project. http://braindecodingproject.org/</ref><ref>The Simons Collaboration on the Global Brain. https://www.simonsfoundation.org/life-sciences/simons-collaboration-global-brain/</ref>


== एन्कोडिंग और डिकोडिंग ==
== एन्कोडिंग और डिकोडिंग ==
उद्दीपन और प्रतिक्रिया के बीच संबंध का अध्ययन दो विपरीत दृष्टिकोणों से किया जा सकता है। न्यूरल एन्कोडिंग संदीपन से प्रतिक्रिया तक के मानचित्र को संदर्भित करता है। मुख्य फोकस यह समझना है कि न्यूरॉन्स विभिन्न प्रकार की संदीपन पर कैसे प्रतिक्रिया करते हैं, और ऐसे मॉडल का निर्माण करना है जो अन्य संदीपन की प्रतिक्रियाओं की भविष्यवाणी करने का प्रयास करते हैं। [[ तंत्रिका डिकोडिंग |न्यूरल डिकोडिंग]], संदीपन की प्रतिक्रिया से लेकर रिवर्स मैप को संदर्भित करता है, और चुनौती एक संदीपन, या उस संदीपन के कुछ पहलुओं को स्पाइक अनुक्रमों से फिर से बनाना है जो इसे उद्घाटित करती है।
उद्दीपन और प्रतिक्रिया के बीच संबंध का अध्ययन दो विपरीत दृष्टिकोणों से किया जा सकता है। न्यूरल एन्कोडिंग संदीपन से प्रतिक्रिया तक के मानचित्र को संदर्भित करता है। मुख्य फोकस यह समझना है कि न्यूरॉन्स विभिन्न प्रकार की संदीपन पर कैसे प्रतिक्रिया करते हैं, और ऐसे मॉडल का निर्माण करना है जो अन्य संदीपन की प्रतिक्रियाओं की भविष्यवाणी करने का प्रयास करते हैं। [[ तंत्रिका डिकोडिंग |न्यूरल डिकोडिंग]], संदीपन की प्रतिक्रिया से लेकर रिवर्स मैप को संदर्भित करता है, और चुनौती संदीपन, या उस संदीपन के कुछ पहलुओं को स्पाइक अनुक्रमों से फिर से बनाना है जो इसे उद्घाटित करती है।


==परिकल्पित कोडिंग योजनाएं ==
==परिकल्पित कोडिंग योजनाएं ==
स्पाइक्स के अनुक्रम, या 'ट्रेन' में विभिन्न कोडिंग योजनाओं पर आधारित जानकारी हो सकती है। कुछ न्यूरॉन्स में एक पोस्टसिनेप्टिक पार्टनर जिस ताकत के साथ प्रतिक्रिया करता है वह पूरी तरह से 'फायरिंग रेट', प्रति यूनिट समय में स्पाइक्स की औसत संख्या (एक 'रेट कोड') पर निर्भर हो सकती है। दूसरी ओर, एक जटिल 'टेम्पोरल कोड' एकल स्पाइक्स के सटीक समय पर आधारित है। वे दृश्य<ref>Burcas G.T & Albright T.D. Gauging sensory representations in the brain. http://www.vcl.salk.edu/Publications/PDF/Buracas_Albright_1999_TINS.pdf</ref> और [[श्रवण प्रणाली]] जैसे किसी बाहरी संदीपन से बंधे हो सकते हैं या तंत्रिका सर्किट्री द्वारा आंतरिक रूप से उत्पन्न हो सकते हैं।<ref name="Gerstner97">{{cite journal |vauthors=Gerstner W, Kreiter AK, Markram H, Herz AV |title=Neural codes: firing rates and beyond |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue=24 |pages=12740–1 |date=November 1997 |pmid=9398065 |pmc=34168 |bibcode=1997PNAS...9412740G |doi=10.1073/pnas.94.24.12740|doi-access=free }}</ref>
स्पाइक्स के अनुक्रम, या 'ट्रेन' में विभिन्न कोडिंग योजनाओं पर आधारित जानकारी हो सकती है। कुछ न्यूरॉन्स में पोस्टसिनेप्टिक पार्टनर जिस ताकत के साथ प्रतिक्रिया करता है वह पूरी तरह से 'फायरिंग रेट', प्रति यूनिट समय में स्पाइक्स की औसत संख्या ('रेट कोड') पर निर्भर हो सकती है। दूसरी ओर, जटिल 'टेम्पोरल कोड' एकल स्पाइक्स के सटीक समय पर आधारित है। वे दृश्य<ref>Burcas G.T & Albright T.D. Gauging sensory representations in the brain. http://www.vcl.salk.edu/Publications/PDF/Buracas_Albright_1999_TINS.pdf</ref> और [[श्रवण प्रणाली]] जैसे किसी बाहरी संदीपन से बंधे हो सकते हैं या तंत्रिका सर्किट्री द्वारा आंतरिक रूप से उत्पन्न हो सकते हैं।<ref name="Gerstner97">{{cite journal |vauthors=Gerstner W, Kreiter AK, Markram H, Herz AV |title=Neural codes: firing rates and beyond |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=94 |issue=24 |pages=12740–1 |date=November 1997 |pmid=9398065 |pmc=34168 |bibcode=1997PNAS...9412740G |doi=10.1073/pnas.94.24.12740|doi-access=free }}</ref>


क्या न्यूरॉन्स रेट कोडिंग या टेम्पोरल कोडिंग का उपयोग करते हैं, यह तंत्रिका विज्ञान समुदाय के भीतर गहन बहस का विषय है, हालांकि इन शब्दों का क्या अर्थ है इसकी कोई स्पष्ट परिभाषा नहीं है।<ref name=":0">{{Cite book|last=Gerstner, Wulfram.|url=https://www.worldcat.org/oclc/57417395|title=Spiking neuron models : single neurons, populations, plasticity|date=2002|publisher=Cambridge University Press|others=Kistler, Werner M., 1969-|isbn=0-511-07817-X|location=Cambridge, U.K.|oclc=57417395}}</ref>
क्या न्यूरॉन्स रेट कोडिंग या टेम्पोरल कोडिंग का उपयोग करते हैं, यह तंत्रिका विज्ञान समुदाय के भीतर गहन बहस का विषय है, हालांकि इन शब्दों का क्या अर्थ है इसकी कोई स्पष्ट परिभाषा नहीं है।<ref name=":0">{{Cite book|last=Gerstner, Wulfram.|url=https://www.worldcat.org/oclc/57417395|title=Spiking neuron models : single neurons, populations, plasticity|date=2002|publisher=Cambridge University Press|others=Kistler, Werner M., 1969-|isbn=0-511-07817-X|location=Cambridge, U.K.|oclc=57417395}}</ref>
Line 19: Line 19:
न्यूरोनल फायरिंग संचार के रेट कोडिंग मॉडल में कहा गया है कि जैसे-जैसे संदीपन की तीव्रता बढ़ती है, कार्रवाई क्षमता की [[आवृत्ति]] या रेट, या "स्पाइक फायरिंग" बढ़ जाती है। रेट कोडिंग को कभी-कभी आवृत्ति कोडिंग भी कहा जाता है।
न्यूरोनल फायरिंग संचार के रेट कोडिंग मॉडल में कहा गया है कि जैसे-जैसे संदीपन की तीव्रता बढ़ती है, कार्रवाई क्षमता की [[आवृत्ति]] या रेट, या "स्पाइक फायरिंग" बढ़ जाती है। रेट कोडिंग को कभी-कभी आवृत्ति कोडिंग भी कहा जाता है।


रेट कोडिंग एक पारंपरिक कोडिंग योजना है, यह मानते हुए कि संदीपन के बारे में अधिकांश, यदि सभी नहीं, तो जानकारी न्यूरॉन की फायरिंग रेट में निहित होती है। क्योंकि किसी दिए गए प्रोत्साहन द्वारा उत्पन्न कार्य क्षमता का क्रम परीक्षण से परीक्षण में भिन्न होता है, न्यूरोनल प्रतिक्रियाओं को आम तौर पर सांख्यिकीय या संभाव्य रूप से व्यवहार किया जाता है। उन्हें विशिष्ट स्पाइक अनुक्रमों के बजाय फायरिंग दरों के आधार पर पहचाना जा सकता है। अधिकांश संवेदी प्रणालियों में, संदीपन की तीव्रता बढ़ने के साथ, फायरिंग रेट आम तौर पर गैर-रैखिक रूप से बढ़ जाती है।<ref name="Kandel">{{cite book |last1=Kandel |first1=E. |last2=Schwartz |first2=J. |last3=Jessel |first3=T.M. |title=तंत्रिका विज्ञान के सिद्धांत|publisher=Elsevier |year=1991 |isbn=978-0444015624 |edition=3rd |url=https://books.google.com/books?id=48hpAAAAMAAJ}}</ref> रेट कोडिंग धारणा के तहत, स्पाइक ट्रेन की अस्थायी संरचना में संभवतः एन्कोड की गई किसी भी जानकारी को अनदेखा कर दिया जाता है। परिणामस्वरूप, आईएसआई 'शोर' के संबंध में रेट कोडिंग अक्षम है लेकिन अत्यधिक मजबूत है।<ref name="Stein"/>
रेट कोडिंग एक पारंपरिक कोडिंग योजना है, यह मानते हुए कि संदीपन के बारे में अधिकांश, यदि सभी नहीं, तो जानकारी न्यूरॉन की फायरिंग रेट में निहित होती है। क्योंकि किसी दिए गए प्रोत्साहन द्वारा उत्पन्न कार्य क्षमता का क्रम परीक्षण से परीक्षण में भिन्न होता है, न्यूरोनल प्रतिक्रियाओं को सामान्यतः सांख्यिकीय या संभाव्य रूप से व्यवहार किया जाता है। उन्हें विशिष्ट स्पाइक अनुक्रमों के बजाय फायरिंग दरों के आधार पर पहचाना जा सकता है। अधिकांश संवेदी प्रणालियों में, संदीपन की तीव्रता बढ़ने के साथ, फायरिंग रेट सामान्यतः गैर-रैखिक रूप से बढ़ जाती है।<ref name="Kandel">{{cite book |last1=Kandel |first1=E. |last2=Schwartz |first2=J. |last3=Jessel |first3=T.M. |title=तंत्रिका विज्ञान के सिद्धांत|publisher=Elsevier |year=1991 |isbn=978-0444015624 |edition=3rd |url=https://books.google.com/books?id=48hpAAAAMAAJ}}</ref> रेट कोडिंग धारणा के तहत, स्पाइक ट्रेन की टेम्पोरल संरचना में संभवतः एन्कोड की गई किसी भी जानकारी को अनदेखा कर दिया जाता है। परिणामस्वरूप, आईएसआई 'रव' के संबंध में रेट कोडिंग अक्षम है लेकिन अत्यधिक स्थिर है।<ref name="Stein"/>


रेट कोडिंग के दौरान फायरिंग रेट की सटीक गणना करना बहुत महत्वपूर्ण है। वास्तव में, शब्द "फायरिंग रेट" की कुछ अलग-अलग परिभाषाएँ हैं, जो विभिन्न औसत प्रक्रियाओं को संदर्भित करती हैं, जैसे समय के साथ औसत (एकल-न्यूरॉन स्पाइक गणना के रूप में रेट) या प्रयोग के कई दोहराव (पीएसटीएच की रेट) का औसत
रेट कोडिंग के दौरान फायरिंग रेट की सटीक गणना करना बहुत महत्वपूर्ण है। वास्तव में, शब्द "फायरिंग रेट" की कुछ अलग-अलग परिभाषाएँ हैं, जो विभिन्न औसत प्रक्रियाओं को संदर्भित करती हैं, जैसे समय के साथ '''औसत ओवर टाइम''' (एकल-न्यूरॉन स्पाइक गणना के रूप में रेट) या प्रयोग के कई दोहराव (पीएसटीएच की रेट) का औसत हैl


रेट कोडिंग में, सीखना गतिविधि-निर्भर सिनैप्टिक वजन संशोधनों पर आधारित होता है।
रेट कोडिंग में, सीखना गतिविधि-निर्भर सिनैप्टिक वजन संशोधनों पर आधारित होता है।


रेट कोडिंग मूल रूप से 1926 में [[एडगर एड्रियन]] और [[यंगवे ज़ोटरमैन]] द्वारा दिखाई गई थी।<ref>{{cite journal|vauthors=Adrian ED, Zotterman Y|year=1926|title=The impulses produced by sensory nerve endings: Part II: The response of a single end organ.|journal=J Physiol|volume=61|issue=2|pages=151–171|doi=10.1113/jphysiol.1926.sp002281|pmid=16993780|pmc=1514782}}</ref> इस सरल प्रयोग में एक मांसपेशी पर अलग-अलग वजन लटकाए गए। जैसे-जैसे संदीपन का वजन बढ़ता गया, मांसपेशियों को संक्रमित करने वाली संवेदी तंत्रिकाओं से दर्ज की गई स्पाइक्स की संख्या भी बढ़ गई। इन मूल प्रयोगों से, एड्रियन और ज़ोटरमैन ने निष्कर्ष निकाला कि क्रिया क्षमताएँ एकात्मक घटनाएँ थीं, और घटनाओं की आवृत्ति, न कि व्यक्तिगत घटना परिमाण, अधिकांश अंतर-न्यूरोनल संचार का आधार थी।
रेट कोडिंग मूल रूप से 1926 में [[एडगर एड्रियन]] और [[यंगवे ज़ोटरमैन]] द्वारा दिखाई गई थी।<ref>{{cite journal|vauthors=Adrian ED, Zotterman Y|year=1926|title=The impulses produced by sensory nerve endings: Part II: The response of a single end organ.|journal=J Physiol|volume=61|issue=2|pages=151–171|doi=10.1113/jphysiol.1926.sp002281|pmid=16993780|pmc=1514782}}</ref> इस सरल प्रयोग में मांसपेशी पर अलग-अलग वजन लटकाए गए। जैसे-जैसे संदीपन का वजन बढ़ता गया, मांसपेशियों को संक्रमित करने वाली संवेदी तंत्रिकाओं से दर्ज की गई स्पाइक्स की संख्या भी बढ़ गई। इन मूल प्रयोगों से, एड्रियन और ज़ोटरमैन ने निष्कर्ष निकाला कि क्रिया क्षमताएँ एकात्मक घटनाएँ थीं, और घटनाओं की आवृत्ति, न कि व्यक्तिगत घटना परिमाण, अधिकांश अंतर-न्यूरोनल संचार का आधार थी।


बाद के दशकों में, फायरिंग दरों का मापन सभी प्रकार के संवेदी या कॉर्टिकल न्यूरॉन्स के गुणों का वर्णन करने के लिए एक मानक उपकरण बन गया, आंशिक रूप से प्रयोगात्मक रूप से दरों को मापने में सापेक्ष आसानी के कारण। हालाँकि, यह दृष्टिकोण स्पाइक्स के सटीक समय में निहित संभवतः सभी सूचनाओं की उपेक्षा करता है। हाल के वर्षों के दौरान, अधिक से अधिक प्रयोगात्मक साक्ष्यों ने सुझाव दिया है कि अस्थायी औसत पर आधारित एक सीधी फायरिंग रेट अवधारणा मस्तिष्क गतिविधि का वर्णन करने के लिए बहुत सरल हो सकती है।<ref name="Stein"/>
बाद के दशकों में, फायरिंग दरों का मापन सभी प्रकार के संवेदी या कॉर्टिकल न्यूरॉन्स के गुणों का वर्णन करने के लिए मानक उपकरण बन गया, आंशिक रूप से प्रयोगात्मक रूप से दरों को मापने में सापेक्ष आसानी के कारण। हालाँकि, यह दृष्टिकोण स्पाइक्स के सटीक समय में निहित संभवतः सभी सूचनाओं की उपेक्षा करता है। हाल के वर्षों के दौरान, अधिक से अधिक प्रयोगात्मक साक्ष्यों ने सुझाव दिया है कि टेम्पोरल औसत पर आधारित सीधी फायरिंग रेट अवधारणा मस्तिष्क गतिविधि का वर्णन करने के लिए बहुत सरल हो सकती है।<ref name="Stein"/>


==== स्पाइक-गणना रेट (समय के साथ औसत) ====
==== स्पाइक-काउंट रेट (समय के साथ औसत) ====
स्पाइक-गणना दर, जिसे टेम्पोरल औसत भी कहा जाता है, परीक्षण के दौरान दिखाई देने वाले स्पाइक्स की संख्या की गणना करके और परीक्षण की अवधि से विभाजित करके प्राप्त की जाती है।<ref name=":0" /> समय विंडो की लंबाई टी प्रयोगकर्ता द्वारा निर्धारित की जाती है और यह संदीपन से और तक दर्ज न्यूरॉन के प्रकार पर निर्भर करती है। व्यावहारिक रूप से, समझदार औसत प्राप्त करने के लिए, समय विंडो के भीतर कई स्पाइक्स होने चाहिए। विशिष्ट मान T = 100 ms या T = 500 ms हैं, लेकिन अवधि लंबी या छोटी भी हो सकती है (पाठ्यपुस्तक 'स्पाइकिंग न्यूरॉन मॉडल्स<ref name=":0" /> में [https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5])।
स्पाइक-काउंट रेट, जिसे टेम्पोरल औसत भी कहा जाता है, परीक्षण के दौरान दिखाई देने वाले स्पाइक्स की संख्या की गणना करके और परीक्षण की अवधि से विभाजित करके प्राप्त की जाती है।<ref name=":0" /> समय विंडो की लंबाई टी प्रयोगकर्ता द्वारा निर्धारित की जाती है और यह संदीपन से और तक दर्ज न्यूरॉन के प्रकार पर निर्भर करती है। व्यावहारिक रूप से, समझदार औसत प्राप्त करने के लिए, समय विंडो के भीतर कई स्पाइक्स होने चाहिए। विशिष्ट मान T = 100 ms या T = 500 ms हैं, लेकिन अवधि लंबी या छोटी भी हो सकती है (पाठ्यपुस्तक 'स्पाइकिंग न्यूरॉन मॉडल्स<ref name=":0" /> में [https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5])।


स्पाइक-काउंट दर को एक ही परीक्षण से निर्धारित किया जा सकता है, लेकिन परीक्षण के दौरान तंत्रिका प्रतिक्रिया में बदलाव के बारे में सभी अस्थायी समाधान खोने की कीमत पर। टेम्पोरल एवरेजिंग उन मामलों में अच्छी तरह से काम कर सकती है जहां संदीपन स्थिर है या धीरे-धीरे बदल रही है और जीव की तेज प्रतिक्रिया की आवश्यकता नहीं है - और यह स्थिति आमतौर पर प्रायोगिक प्रोटोकॉल में सामने आती है। हालाँकि, वास्तविक दुनिया का इनपुट शायद ही स्थिर होता है, लेकिन अक्सर तेजी से समय के पैमाने पर बदलता रहता है। उदाहरण के लिए, एक स्थिर छवि देखते समय भी, मनुष्य टकटकी की दिशा में तेजी से परिवर्तन करते हैं। इसलिए, रेटिनल फोटोरिसेप्टर पर प्रक्षेपित छवि हर कुछ सौ मिलीसेकेंड में बदल जाती है ([https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5] <ref name=":0" />)
स्पाइक-काउंट रेट को एक ही परीक्षण से निर्धारित किया जा सकता है, लेकिन परीक्षण के दौरान तंत्रिका प्रतिक्रिया में बदलाव के बारे में सभी टेम्पोरल समाधान खोने की कीमत पर। टेम्पोरल एवरेजिंग उन स्थितियों में अच्छी तरह से काम कर सकती है जहां संदीपन स्थिर है या धीरे-धीरे बदल रही है और जीव की तेज प्रतिक्रिया की आवश्यकता नहीं है - और यह स्थिति सामान्यतः प्रायोगिक प्रोटोकॉल में सामने आती है। हालाँकि, वास्तविक दुनिया का इनपुट शायद ही स्थिर होता है, लेकिन प्रायः तेजी से समय के पैमाने पर बदलता रहता है। उदाहरण के लिए, स्थिर छवि देखते समय भी, मनुष्य टकटकी की दिशा में तेजी से परिवर्तन करते हैं। इसलिए, रेटिनल फोटोरिसेप्टर पर प्रक्षेपित छवि हर कुछ सौ मिलीसेकेंड में बदल जाती है ([https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5] <ref name=":0" />)


इसकी कमियों के बावजूद, स्पाइक-काउंट रेट कोड की अवधारणा का न केवल प्रयोगों में बल्कि तंत्रिका नेटवर्क के मॉडल में भी व्यापक रूप से उपयोग किया जाता है। इसने इस विचार को जन्म दिया है कि एक न्यूरॉन एक एकल इनपुट चर (संदीपन शक्ति) के बारे में जानकारी को एक सतत आउटपुट चर (फायरिंग दर) में बदल देता है।
इसकी कमियों के अतिरिक्त, स्पाइक-काउंट रेट कोड की अवधारणा का न केवल प्रयोगों में बल्कि तंत्रिका नेटवर्क के मॉडल में भी व्यापक रूप से उपयोग किया जाता है। इसने इस विचार को जन्म दिया है कि न्यूरॉन एकल इनपुट चर (संदीपन शक्ति) के बारे में जानकारी को सतत आउटपुट चर (फायरिंग रेट) में बदल देता है।


इस बात के सबूत बढ़ रहे हैं कि कम से कम [[पुर्किंजे न्यूरॉन्स]] में, जानकारी केवल फायरिंग में ही एन्कोड नहीं की जाती है, बल्कि गैर-फायरिंग, शांत अवधि के समय और अवधि में भी एन्कोड की जाती है।<ref>{{cite journal |author=Forrest MD |title=इंट्रासेल्युलर कैल्शियम डायनेमिक्स एक पर्किनजे न्यूरॉन मॉडल को अपने इनपुट पर टॉगल करने और गणना प्राप्त करने की अनुमति देता है।|journal=Frontiers in Computational Neuroscience |volume=8 |pages=86 |year=2014 | doi=10.3389/fncom.2014.00086 |pmid=25191262 |pmc=4138505|doi-access=free }}</ref><ref>{{cite journal |author=Forrest MD |title=सोडियम-पोटेशियम पंप मस्तिष्क गणना में एक सूचना प्रसंस्करण तत्व है|journal= Frontiers in Physiology |volume=5 |issue=472 |pages=472 | date=December 2014 |doi=10.3389/fphys.2014.00472 |pmid=25566080 |pmc=4274886 |doi-access=free }}</ref> रेटिना कोशिकाओं से यह भी सबूत मिला है कि जानकारी न केवल फायरिंग दर में बल्कि स्पाइक टाइमिंग में भी एन्कोड की गई है।<ref name=":1">{{Cite journal|last1=Gollisch|first1=T.|last2=Meister|first2=M.|date=2008-02-22|title=सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग|url=https://www.sciencemag.org/lookup/doi/10.1126/science.1149639|journal=Science|language=en|volume=319|issue=5866|pages=1108–1111|doi=10.1126/science.1149639|pmid=18292344|bibcode=2008Sci...319.1108G|s2cid=1032537|issn=0036-8075}}</ref> आम तौर पर, जब भी किसी जीव की तीव्र प्रतिक्रिया की आवश्यकता होती है तो कुछ सौ मिलीसेकंड से अधिक की स्पाइक-गणना के रूप में परिभाषित फायरिंग दर बहुत धीमी होती है।<ref name=":0" />
इस बात के सबूत बढ़ रहे हैं कि कम से कम [[पुर्किंजे न्यूरॉन्स]] में, जानकारी केवल फायरिंग में ही एन्कोड नहीं की जाती है, बल्कि गैर-फायरिंग, शांत अवधि के समय और अवधि में भी एन्कोड की जाती है।<ref>{{cite journal |author=Forrest MD |title=इंट्रासेल्युलर कैल्शियम डायनेमिक्स एक पर्किनजे न्यूरॉन मॉडल को अपने इनपुट पर टॉगल करने और गणना प्राप्त करने की अनुमति देता है।|journal=Frontiers in Computational Neuroscience |volume=8 |pages=86 |year=2014 | doi=10.3389/fncom.2014.00086 |pmid=25191262 |pmc=4138505|doi-access=free }}</ref><ref>{{cite journal |author=Forrest MD |title=सोडियम-पोटेशियम पंप मस्तिष्क गणना में एक सूचना प्रसंस्करण तत्व है|journal= Frontiers in Physiology |volume=5 |issue=472 |pages=472 | date=December 2014 |doi=10.3389/fphys.2014.00472 |pmid=25566080 |pmc=4274886 |doi-access=free }}</ref> रेटिना कोशिकाओं से यह भी सबूत मिला है कि जानकारी न केवल फायरिंग रेट में बल्कि स्पाइक टाइमिंग में भी एन्कोड की गई है।<ref name=":1">{{Cite journal|last1=Gollisch|first1=T.|last2=Meister|first2=M.|date=2008-02-22|title=सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग|url=https://www.sciencemag.org/lookup/doi/10.1126/science.1149639|journal=Science|language=en|volume=319|issue=5866|pages=1108–1111|doi=10.1126/science.1149639|pmid=18292344|bibcode=2008Sci...319.1108G|s2cid=1032537|issn=0036-8075}}</ref> सामान्यतः, जब भी किसी जीव की तीव्र प्रतिक्रिया की आवश्यकता होती है तो कुछ सौ मिलीसेकंड से अधिक की स्पाइक-काउंट के रूप में परिभाषित फायरिंग रेट बहुत धीमी होती है।<ref name=":0" />


==== समय-निर्भर फायरिंग रेट (कई परीक्षणों का औसत) ====
==== समय-निर्भर फायरिंग रेट (कई परीक्षणों का औसत) ====
समय-निर्भर फायरिंग दर को समय t और t+Δt के बीच एक छोटे अंतराल के दौरान दिखाई देने वाली स्पाइक्स की औसत संख्या (परीक्षणों पर औसत) के रूप में परिभाषित किया गया है, जिसे अंतराल की अवधि से विभाजित किया गया है।<ref name=":0" /> यह स्थिर और समय-निर्भर संदीपन के लिए काम करता है। प्रयोगात्मक रूप से समय-निर्भर फायरिंग दर को मापने के लिए, प्रयोगकर्ता कुछ इनपुट अनुक्रम के साथ उत्तेजित करते हुए एक न्यूरॉन से रिकॉर्ड करता है। एक ही संदीपन क्रम को कई बार दोहराया जाता है और पेरी-स्टिमुलस-टाइम हिस्टोग्राम (पीएसटीएच) में न्यूरोनल प्रतिक्रिया की सूचना दी जाती है। समय टी को संदीपन क्रम की शुरुआत के संबंध में मापा जाता है। Δt काफी बड़ा होना चाहिए (आमतौर पर एक या कुछ मिलीसेकंड की सीमा में) ताकि औसत का विश्वसनीय अनुमान प्राप्त करने के लिए अंतराल के भीतर पर्याप्त संख्या में स्पाइक्स हों। प्रयोग की सभी पुनरावृत्तियों में स्पाइक्स nK(t;t+Δt) की घटनाओं की संख्या को पुनरावृत्ति की संख्या K से विभाजित करके समय t और t+Δt के बीच न्यूरॉन की विशिष्ट गतिविधि का एक माप है। अंतराल की लंबाई Δt द्वारा एक और विभाजन न्यूरॉन की समय-निर्भर फायरिंग दर r(t) उत्पन्न करता है, जो PSTH के स्पाइक घनत्व के बराबर है ([https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5] में <ref name=":0" />)।
समय-निर्भर फायरिंग रेट को समय t और t+Δt के बीच छोटे अंतराल के दौरान दिखाई देने वाली स्पाइक्स की औसत संख्या (परीक्षणों पर औसत) के रूप में परिभाषित किया गया है, जिसे अंतराल की अवधि से विभाजित किया गया है।<ref name=":0" /> यह स्थिर और समय-निर्भर संदीपन के लिए काम करता है। प्रयोगात्मक रूप से समय-निर्भर फायरिंग रेट को मापने के लिए, प्रयोगकर्ता कुछ इनपुट अनुक्रम के साथ संदीप्त करते हुए न्यूरॉन से रिकॉर्ड करता है। एक ही संदीपन क्रम को कई बार दोहराया जाता है और पेरी-स्टिमुलस-टाइम हिस्टोग्राम (पीएसटीएच) में न्यूरोनल प्रतिक्रिया की सूचना दी जाती है। समय टी को संदीपन क्रम के प्रारम्भ के संबंध में मापा जाता है। Δt काफी बड़ा होना चाहिए (सामान्यतः या कुछ मिलीसेकंड की सीमा में) ताकि औसत का विश्वसनीय अनुमान प्राप्त करने के लिए अंतराल के भीतर पर्याप्त संख्या में स्पाइक्स हों। प्रयोग की सभी पुनरावृत्तियों में स्पाइक्स nK(t;t+Δt) की घटनाओं की संख्या को पुनरावृत्ति की संख्या K से विभाजित करके समय t और t+Δt के बीच न्यूरॉन की विशिष्ट गतिविधि का माप है। अंतराल की लंबाई Δt द्वारा एक और विभाजन न्यूरॉन की समय-निर्भर फायरिंग रेट r(t) उत्पन्न करता है, जो PSTH के स्पाइक घनत्व के बराबर है ([https://lcnwww.epfl.ch/gerstner/SPNM/node7.html अध्याय 1.5] में <ref name=":0" />)।


पर्याप्त रूप से छोटे Δt के लिए, r(t)Δt कई परीक्षणों के दौरान t और t+Δt के बीच होने वाली स्पाइक्स की औसत संख्या है। यदि Δt छोटा है, तो किसी भी परीक्षण पर t और t+Δt के बीच के अंतराल में एक से अधिक स्पाइक कभी नहीं होंगे। इसका मतलब यह है कि r(t)Δt उन परीक्षणों का अंश भी है जिन पर उन समयों के बीच स्पाइक हुआ था। समान रूप से, r(t)Δt संभावना है कि इस समय अंतराल के दौरान एक स्पाइक घटित होती है।
पर्याप्त रूप से छोटे Δt के लिए, r(t)Δt कई परीक्षणों के दौरान t और t+Δt के बीच होने वाली स्पाइक्स की औसत संख्या है। यदि Δt छोटा है, तो किसी भी परीक्षण पर t और t+Δt के बीच के अंतराल में एक से अधिक स्पाइक कभी नहीं होंगे। इसका मतलब यह है कि r(t)Δt उन परीक्षणों का अंश भी है जिन पर उन समयों के बीच स्पाइक हुआ था। समान रूप से, r(t)Δt संभावना है कि इस समय अंतराल के दौरान स्पाइक घटित होती है।


एक प्रयोगात्मक प्रक्रिया के रूप में, समय-निर्भर फायरिंग दर माप, विशेष रूप से समय-निर्भर संदीपन के मामले में, न्यूरोनल गतिविधि का मूल्यांकन करने के लिए एक उपयोगी तरीका है। इस दृष्टिकोण के साथ स्पष्ट समस्या यह है कि यह मस्तिष्क में न्यूरॉन्स द्वारा प्रयुक्त कोडिंग योजना नहीं हो सकती है। न्यूरॉन्स प्रतिक्रिया उत्पन्न करने से पहले संदीपन के बिल्कुल उसी तरीके से बार-बार उपस्थित होने की प्रतीक्षा नहीं कर सकते।<ref name=":0" />
प्रयोगात्मक प्रक्रिया के रूप में, समय-निर्भर फायरिंग रेट माप, विशेष रूप से समय-निर्भर संदीपन के स्थिति में, न्यूरोनल गतिविधि का मूल्यांकन करने के लिए उपयोगी तरीका है। इस दृष्टिकोण के साथ स्पष्ट समस्या यह है कि यह मस्तिष्क में न्यूरॉन्स द्वारा प्रयुक्त कोडिंग योजना नहीं हो सकती है। न्यूरॉन्स प्रतिक्रिया उत्पन्न करने से पहले संदीपन के बिल्कुल उसी तरीके से बार-बार उपस्थित होने की प्रतीक्षा नहीं कर सकते।<ref name=":0" />


फिर भी, प्रायोगिक समय-निर्भर फायरिंग दर माप समझ में आ सकता है, अगर स्वतंत्र न्यूरॉन्स की बड़ी आबादी है जो समान संदीपन प्राप्त करती है। एक ही बार में एन न्यूरॉन्स की आबादी से रिकॉर्डिंग करने के बजाय, एक ही न्यूरॉन से रिकॉर्ड करना और एन बार-बार किए गए रनों का औसत बनाना प्रयोगात्मक रूप से आसान है। इस प्रकार, समय-निर्भर फायरिंग दर कोडिंग इस निहित धारणा पर निर्भर करती है कि हमेशा न्यूरॉन्स की आबादी होती है।
फिर भी, प्रायोगिक समय-निर्भर फायरिंग रेट माप समझ में आ सकता है, अगर स्वतंत्र न्यूरॉन्स की बड़ी जनसंख्या है जो समान संदीपन प्राप्त करती है। एक ही बार में एन न्यूरॉन्स की जनसंख्या से रिकॉर्डिंग करने के बजाय, एक ही न्यूरॉन से रिकॉर्ड करना और एन बार-बार किए गए रनों का औसत बनाना प्रयोगात्मक रूप से आसान है। इस प्रकार, समय-निर्भर फायरिंग रेट कोडिंग इस निहित धारणा पर निर्भर करती है कि हमेशा न्यूरॉन्स की जनसंख्या होती है।


=== टेम्पोरल कोडिंग ===
=== टेम्पोरल कोडिंग ===
<!-- Image with unknown copyright status removed: [[File:Firing rate.PNG|thumb|400px|'''Figure 2. Time-dependent firinig rates for different stimulus parameters.''' The rasters show multiple trias during which an MT neuron responded to the same moving, random-dot stimulus. (Adapted from Bair and Koch, 1996)]] -->
जब जानकारी ले जाने के लिए सटीक स्पाइक टाइमिंग या उच्च-आवृत्ति फायरिंग-रेट में उतार-चढ़ाव पाया जाता है, तो तंत्रिका कोड को प्रायः टेम्पोरल कोड के रूप में पहचाना जाता है।<ref name=":0" /><ref name="Dayan">{{cite book |first1=Peter |last1=Dayan |first2=L. F. |last2=Abbott |title=Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems |url=https://books.google.com/books?id=5GSKQgAACAAJ |year=2001 |publisher=Massachusetts Institute of Technology Press |isbn=978-0-262-04199-7}}</ref> कई अध्ययनों में पाया गया है कि तंत्रिका कोड का टेम्पोरल रिज़ॉल्यूशन मिलीसेकंड समय पैमाने पर होता है, जो दर्शाता है कि सटीक स्पाइक टाइमिंग तंत्रिका कोडिंग में एक महत्वपूर्ण तत्व है।<ref name="thorpe" /><ref name="Daniel">{{cite journal  |vauthors=Butts DA, Weng C, Jin J, etal |title=तंत्रिका कोड और प्राकृतिक दृष्टि के समयमान में अस्थायी परिशुद्धता|journal=Nature |volume=449 |issue=7158 |pages=92–5 |date=September 2007 |pmid=17805296 |doi=10.1038/nature06105 |bibcode = 2007Natur.449...92B |s2cid=4402057 }}</ref><ref name=":1" /> ऐसे कोड, जो स्पाइक्स के बीच समय के माध्यम से संचार करते हैं, उन्हें इंटरपल्स इंटरवल कोड भी कहा जाता है, और हाल के अध्ययनों द्वारा समर्थित किया गया है।<ref>Singh & Levy, [http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180839 "A consensus layer V pyramidal neuron can sustain interpulse-interval coding "], ''PLoS ONE'', 2017</ref>
जब सटीक स्पाइक टाइमिंग या उच्च-आवृत्ति फायरिंग-रेट [[सांख्यिकीय उतार-चढ़ाव]] जानकारी ले जाने के लिए पाए जाते हैं, तो न्यूरल कोड को अक्सर अस्थायी कोड के रूप में पहचाना जाता है।<ref name=":0" /><ref name="Dayan">{{cite book |first1=Peter |last1=Dayan |first2=L. F. |last2=Abbott |title=Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems |url=https://books.google.com/books?id=5GSKQgAACAAJ |year=2001 |publisher=Massachusetts Institute of Technology Press |isbn=978-0-262-04199-7}}</ref> कई अध्ययनों में पाया गया है कि न्यूरल कोड का अस्थायी रिज़ॉल्यूशन मिलीसेकंड समय पैमाने पर है, जो दर्शाता है कि सटीक स्पाइक टाइमिंग न्यूरल कोडिंग में एक महत्वपूर्ण तत्व है।<ref name="thorpe" /><ref name="Daniel">{{cite journal  |vauthors=Butts DA, Weng C, Jin J, etal |title=तंत्रिका कोड और प्राकृतिक दृष्टि के समयमान में अस्थायी परिशुद्धता|journal=Nature |volume=449 |issue=7158 |pages=92–5 |date=September 2007 |pmid=17805296 |doi=10.1038/nature06105 |bibcode = 2007Natur.449...92B |s2cid=4402057 }}</ref><ref name=":1" />ऐसे कोड, जो स्पाइक्स के बीच समय के माध्यम से संचार करते हैं, उन्हें इंटरपल्स अंतराल कोड भी कहा जाता है, और हाल के अध्ययनों द्वारा समर्थित किया गया है।<ref>Singh & Levy, [http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180839 "A consensus layer V pyramidal neuron can sustain interpulse-interval coding "], ''PLoS ONE'', 2017</ref>
न्यूरॉन्स फायरिंग-रेट की उच्च-आवृत्ति उतार-चढ़ाव प्रदर्शित करते हैं जो शोर हो सकते हैं या जानकारी ले सकते हैं। रेट कोडिंग मॉडल सुझाव देते हैं कि ये अनियमितताएं शोर हैं, जबकि अस्थायी कोडिंग मॉडल सुझाव देते हैं कि वे जानकारी को एन्कोड करते हैं। यदि न्यूरल तंत्र केवल जानकारी देने के लिए रेट कोड का उपयोग करता है, तो अधिक सुसंगत, नियमित फायरिंग रेट विकासात्मक रूप से लाभप्रद होती, और न्यूरॉन्स इस कोड का उपयोग अन्य कम मजबूत विकल्पों पर करते।<ref name="van Hemmen 2006">J. Leo van Hemmen, TJ Sejnowski. 23 Problems in Systems Neuroscience. Oxford Univ. Press, 2006. p.143-158.</ref> टेम्पोरल कोडिंग "शोर" के लिए एक वैकल्पिक स्पष्टीकरण प्रदान करती है, यह सुझाव देती है कि यह वास्तव में जानकारी को एनकोड करती है और न्यूरल प्रसंस्करण को प्रभावित करती है। इस विचार को मॉडल करने के लिए, स्पाइक्स को चिह्नित करने के लिए बाइनरी प्रतीकों का उपयोग किया जा सकता है: स्पाइक के लिए 1, स्पाइक के बिना 0। टेम्पोरल कोडिंग अनुक्रम 000111000111 को 001100110011 से कुछ अलग अर्थ देने की अनुमति देती है, भले ही औसत फायरिंग रेट दोनों अनुक्रमों के लिए 6 स्पाइक्स/10 एमएस पर समान है।<ref name="Theunissen F 1995"/>हाल तक, वैज्ञानिकों ने [[पोस्ट-सिनैप्टिक क्षमता]] पैटर्न के स्पष्टीकरण के रूप में रेट एन्कोडिंग पर सबसे अधिक जोर दिया था। हालाँकि, मस्तिष्क के कार्य केवल रेट एन्कोडिंग के उपयोग की तुलना में अस्थायी रूप से अधिक सटीक हैं।<ref name=":1" />दूसरे शब्दों में, स्पाइक ट्रेन की सभी उपलब्ध जानकारी को कैप्चर करने में रेट कोड की अक्षमता के कारण आवश्यक जानकारी खो सकती है। इसके अलावा, समान (लेकिन समान नहीं) संदीपन के बीच प्रतिक्रियाएं काफी भिन्न होती हैं, जिससे पता चलता है कि स्पाइक्स के अलग-अलग पैटर्न में रेट कोड में शामिल करने की तुलना में अधिक मात्रा में जानकारी होती है।<ref name="Zador, Stevens">{{cite web|last=Zador, Stevens|first=Charles, Anthony|title=मस्तिष्क की पहेली|url=https://docs.google.com/a/stolaf.edu/viewer?a=v&pid=gmail&attid=0.1&thid=1369b5e1cdf273f9&mt=application/pdf&url=https://mail.google.com/mail/u/0/?ui%3D2%26ik%3D0a436eb2a7%26view%3Datt%26th%3D1369b5e1cdf273f9%26attid%3D0.1%26disp%3Dsafe%26realattid%3Df_h0ty13ea0%26zw&sig=AHIEtbQB4vngr9nDZaMTLUOcrk5DzePKqA|work=© Current Biology 1995, Vol 5 No 12|access-date=August 4, 2012}}</ref>
टेम्पोरल कोड (जिन्हें [https://lcnwww.epfl.ch/gerstner/SPNM/node8.html स्पाइक कोड भी कहा जाता है) <ref name=":0" />), स्पाइकिंग गतिविधि की उन विशेषताओं को नियोजित करें जिन्हें फायरिंग रेट द्वारा वर्णित नहीं किया जा सकता है। उदाहरण के लिए, संदीपन की शुरुआत के बाद समय-से-पहली-स्पाइक, पृष्ठभूमि दोलनों के संबंध में फायरिंग का चरण, आईएसआई संभाव्यता वितरण के दूसरे और उच्च सांख्यिकीय [[क्षण (गणित)]] पर आधारित विशेषताएँ, स्पाइक यादृच्छिकता, या सटीक समयबद्धता स्पाइक्स के समूह (टेम्पोरल पैटर्न) टेम्पोरल कोड के लिए उम्मीदवार हैं।<ref name="Kostal">{{cite journal |vauthors=Kostal L, Lansky P, Rospars JP |title=न्यूरोनल कोडिंग और स्पाइकिंग यादृच्छिकता|journal=Eur. J. Neurosci. |volume=26 |issue=10 |pages=2693–701 |date=November 2007 |pmid=18001270 |doi=10.1111/j.1460-9568.2007.05880.x |s2cid=15367988 }}</ref> चूंकि न्यूरल तंत्र में कोई पूर्ण समय संदर्भ नहीं है, जानकारी या तो न्यूरॉन्स की आबादी (अस्थायी पैटर्न) में स्पाइक्स के सापेक्ष समय के संदर्भ में या [[तंत्रिका दोलन|न्यूरल दोलन]]ों (फायरिंग के चरण) के संबंध में ली जाती है।<ref name="thorpe" /><ref name="Stein" />न्यूरल दोलनों की उपस्थिति में टेम्पोरल कोड को डिकोड करने का एक तरीका यह है कि दोलन चक्र के विशिष्ट चरणों में होने वाले स्पाइक्स रासायनिक सिनेप्स|पोस्ट-सिनैप्टिक न्यूरॉन को विध्रुवित करने में अधिक प्रभावी होते हैं।<ref name = "Gupta2016">{{Cite journal|last1=Gupta|first1=Nitin|last2=Singh|first2=Swikriti Saran|last3=Stopfer|first3=Mark|date=2016-12-15|title=न्यूरॉन्स में ऑसिलेटरी इंटीग्रेशन विंडो|journal=Nature Communications|volume=7|doi=10.1038/ncomms13808|issn=2041-1723|pmc=5171764|pmid=27976720|page=13808|bibcode=2016NatCo...713808G}}</ref>
किसी संदीपन द्वारा उत्पन्न स्पाइक ट्रेन या फायरिंग रेट की अस्थायी संरचना संदीपन की गतिशीलता और न्यूरल एन्कोडिंग प्रक्रिया की प्रकृति दोनों द्वारा निर्धारित की जाती है। उत्तेजनाएं जो तेजी से बदलती हैं, सटीक समय पर स्पाइक्स उत्पन्न करती हैं<ref>{{Cite journal|last1=Jolivet|first1=Renaud|last2=Rauch|first2=Alexander|last3=Lüscher|first3=Hans-Rudolf|last4=Gerstner|first4=Wulfram|date=2006-08-01|title=सरल थ्रेशोल्ड मॉडल द्वारा नियोकॉर्टिकल पिरामिडल न्यूरॉन्स के स्पाइक टाइमिंग की भविष्यवाणी करना|url=https://doi.org/10.1007/s10827-006-7074-5|journal=Journal of Computational Neuroscience|language=en|volume=21|issue=1|pages=35–49|doi=10.1007/s10827-006-7074-5|pmid=16633938|s2cid=8911457|issn=1573-6873}}</ref> (और पीएसटीएच में तेजी से बदलती फायरिंग दरें) इससे कोई फर्क नहीं पड़ता कि किस न्यूरल कोडिंग रणनीति का उपयोग किया जा रहा है। संकीर्ण अर्थ में अस्थायी कोडिंग प्रतिक्रिया में अस्थायी सटीकता को संदर्भित करती है जो केवल संदीपन की गतिशीलता से उत्पन्न नहीं होती है, लेकिन फिर भी संदीपन के गुणों से संबंधित होती है। संदीपन और एन्कोडिंग गतिशीलता के बीच परस्पर क्रिया एक अस्थायी कोड की पहचान को कठिन बना देती है।


अस्थायी कोडिंग में, सीखने को गतिविधि-निर्भर सिनैप्टिक विलंब संशोधनों द्वारा समझाया जा सकता है।<ref>{{cite book |last1=Geoffrois |first1=E. |last2=Edeline |first2=J.M. |last3=Vibert |first3=J.F. |chapter=Learning by Delay Modifications |editor-first=Frank H. |editor-last=Eeckman |title=न्यूरॉन्स और तंत्रिका तंत्र में गणना|chapter-url=https://books.google.com/books?id=S4ek3S6fDRUC&pg=PA133 |year=1994 |publisher=Springer |isbn=978-0-7923-9465-5 |pages=133–8}}</ref> संशोधन स्वयं न केवल स्पाइक दरों (रेट कोडिंग) पर बल्कि स्पाइक टाइमिंग पैटर्न (टेम्पोरल कोडिंग) पर भी निर्भर हो सकते हैं, यानी, [[स्पाइक-टाइमिंग-निर्भर प्लास्टिसिटी]] का एक विशेष मामला हो सकता है।<ref>Sjöström, Jesper, and Wulfram Gerstner. "Spike-timing dependent plasticity." Spike-timing dependent plasticity 35 (2010).</ref>
न्यूरॉन्स फायरिंग रेट में उच्च आवृत्ति के उतार-चढ़ाव का प्रदर्शन करते हैं जो रव हो सकता है या जानकारी ले जा सकता है। रेट कोडिंग मॉडल सुझाव देते हैं कि ये अनियमितताएं रव हैं, जबकि टेम्पोरल कोडिंग मॉडल सुझाव देते हैं कि वे जानकारी को एनकोड करते हैं। यदि तंत्रिका तंत्र केवल सूचना देने के लिए रेट कोड का उपयोग करता है, तो एक अधिक सुसंगत, नियमित फायरिंग रेट विकासात्मक रूप से लाभप्रद होती, और न्यूरॉन्स अन्य कम स्थिर विकल्पों की तुलना में इस कोड का उपयोग करते।<ref name="van Hemmen 2006">J. Leo van Hemmen, TJ Sejnowski. 23 Problems in Systems Neuroscience. Oxford Univ. Press, 2006. p.143-158.</ref> टेम्पोरल कोडिंग "रव" के लिए एक वैकल्पिक स्पष्टीकरण प्रदान करती है, यह सुझाव देती है कि यह वास्तव में जानकारी को एनकोड करती है और तंत्रिका प्रसंस्करण को प्रभावित करती है। इस विचार को मॉडल करने के लिए, स्पाइक्स को चिह्नित करने के लिए बाइनरी प्रतीकों का उपयोग किया जा सकता है: स्पाइक के लिए 1, बिना स्पाइक के 0 टेम्पोरल कोडिंग अनुक्रम 000111000111 को 001100110011 से कुछ अलग अर्थ देने की अनुमति देती है, भले ही औसत फायरिंग रेट दोनों अनुक्रमों के लिए 6 स्पाइक्स/10 एमएस पर समान है।<ref name="Theunissen F 1995" /> कुछ समय पहले तक, वैज्ञानिकों ने पोस्ट-सिनैप्टिक संभावित पैटर्न के स्पष्टीकरण के रूप में रेट एन्कोडिंग पर सबसे अधिक जोर दिया था। हालाँकि, मस्तिष्क के कार्य केवल रेट एन्कोडिंग के उपयोग की तुलना में टेम्पोरल रूप से अधिक सटीक होते हैं।<ref name=":1" /> दूसरे शब्दों में, स्पाइक ट्रेन की सभी उपलब्ध सूचनाओं को पकड़ने में रेट कोड की असमर्थता के कारण आवश्यक जानकारी खो सकती है। इसके अलावा, समान (लेकिन समान नहीं) संदीपन के बीच प्रतिक्रियाएं काफी भिन्न होती हैं, जिससे यह पता चलता है कि स्पाइक्स के अलग-अलग पैटर्न में रेट कोड में सम्मिलित करने की तुलना में अधिक मात्रा में जानकारी होती है।<ref name="Zador, Stevens">{{cite web|last=Zador, Stevens|first=Charles, Anthony|title=मस्तिष्क की पहेली|url=https://docs.google.com/a/stolaf.edu/viewer?a=v&pid=gmail&attid=0.1&thid=1369b5e1cdf273f9&mt=application/pdf&url=https://mail.google.com/mail/u/0/?ui%3D2%26ik%3D0a436eb2a7%26view%3Datt%26th%3D1369b5e1cdf273f9%26attid%3D0.1%26disp%3Dsafe%26realattid%3Df_h0ty13ea0%26zw&sig=AHIEtbQB4vngr9nDZaMTLUOcrk5DzePKqA|work=© Current Biology 1995, Vol 5 No 12|access-date=August 4, 2012}}</ref>
अस्थायी कोडिंग का मुद्दा स्वतंत्र-स्पाइक कोडिंग के मुद्दे से अलग और स्वतंत्र है। यदि प्रत्येक स्पाइक ट्रेन में अन्य सभी स्पाइक्स से स्वतंत्र है, तो न्यूरल कोड का अस्थायी चरित्र समय-निर्भर फायरिंग रेट आर (टी) के व्यवहार से निर्धारित होता है। यदि r(t) समय के साथ धीरे-धीरे बदलता है, तो कोड को आमतौर पर रेट कोड कहा जाता है, और यदि यह तेजी से बदलता है, तो कोड को अस्थायी कहा जाता है।


==== संवेदी प्रणालियों में अस्थायी कोडिंग ====
टेम्पोरल कोड (जिन्हें स्पाइक कोड <ref name=":0" /> भी कहा जाता है), स्पाइकिंग गतिविधि की उन विशेषताओं को नियोजित करते हैं जिन्हें फायरिंग रेट द्वारा वर्णित नहीं किया जा सकता है। उदाहरण के लिए, संदीपन के प्रारम्भ के बाद '''टाइम-टू-फर्स्ट-स्पाइक''', पृष्ठभूमि दोलनों के संबंध में '''फायरिंग का चरण''', आईएसआई संभाव्यता वितरण के दूसरे और उच्च सांख्यिकीय क्षणों पर आधारित विशेषताएँ, स्पाइक यादृच्छिकता, या स्पाइक्स के सटीक समयबद्ध समूह ('''टेम्पोरल पैटर्न''') टेम्पोरल कोड के लिए उम्मीदवार हैं।<ref name="Kostal">{{cite journal |vauthors=Kostal L, Lansky P, Rospars JP |title=न्यूरोनल कोडिंग और स्पाइकिंग यादृच्छिकता|journal=Eur. J. Neurosci. |volume=26 |issue=10 |pages=2693–701 |date=November 2007 |pmid=18001270 |doi=10.1111/j.1460-9568.2007.05880.x |s2cid=15367988 }}</ref> चूंकि तंत्रिका तंत्र में कोई पूर्ण समय संदर्भ नहीं है, इसलिए जानकारी या तो न्यूरॉन्स की जनसंख्या (टेम्पोरल पैटर्न) में स्पाइक्स के सापेक्ष समय के संदर्भ में या चल रहे मस्तिष्क दोलन (फायरिंग के चरण) के संबंध में ली जाती है।<ref name="thorpe" /><ref name="Stein" /> तंत्रिका दोलनों की उपस्थिति में टेम्पोरल कोड को डिकोड करने का एक तरीका यह है कि दोलन चक्र के विशिष्ट चरणों में होने वाली स्पाइक्स पोस्ट-सिनैप्टिक न्यूरॉन को विध्रुवित करने में अधिक प्रभावी होती हैं।<ref name="Gupta2016">{{Cite journal|last1=Gupta|first1=Nitin|last2=Singh|first2=Swikriti Saran|last3=Stopfer|first3=Mark|date=2016-12-15|title=न्यूरॉन्स में ऑसिलेटरी इंटीग्रेशन विंडो|journal=Nature Communications|volume=7|doi=10.1038/ncomms13808|issn=2041-1723|pmc=5171764|pmid=27976720|page=13808|bibcode=2016NatCo...713808G}}</ref>
बहुत संक्षिप्त संदीपन के लिए, एक न्यूरॉन की अधिकतम फायरिंग रेट एक से अधिक स्पाइक उत्पन्न करने के लिए पर्याप्त तेज़ नहीं हो सकती है। इस एकल स्पाइक में निहित संक्षिप्त संदीपन के बारे में जानकारी के घनत्व के कारण, ऐसा प्रतीत होता है कि स्पाइक के समय में एक निश्चित अवधि में कार्रवाई क्षमता की औसत आवृत्ति की तुलना में अधिक जानकारी देनी होगी। यह मॉडल [[ध्वनि स्थानीयकरण]] के लिए विशेष रूप से महत्वपूर्ण है, जो मस्तिष्क के भीतर मिलीसेकेंड के क्रम पर होता है। मस्तिष्क को अपेक्षाकृत कम न्यूरल प्रतिक्रिया के आधार पर बड़ी मात्रा में जानकारी प्राप्त करनी चाहिए। इसके अतिरिक्त, यदि प्रति सेकंड दस स्पाइक्स के क्रम पर कम फायरिंग रेट को अलग-अलग संदीपन के लिए मनमाने ढंग से बंद रेट कोडिंग से अलग किया जाना चाहिए, तो इन दो संदीपन में भेदभाव करने की कोशिश करने वाले न्यूरॉन को पर्याप्त जानकारी जमा करने के लिए एक सेकंड या अधिक तक इंतजार करने की आवश्यकता हो सकती है। यह कई जीवों के अनुरूप नहीं है जो मिलीसेकंड की समय सीमा में संदीपन के बीच भेदभाव करने में सक्षम हैं, यह सुझाव देते हुए कि रेट कोड काम पर एकमात्र मॉडल नहीं है।<ref name="Theunissen F 1995">{{cite journal | last1 = Theunissen | first1 = F | last2 = Miller | first2 = JP | year = 1995 | title = Temporal Encoding in Nervous Systems: A Rigorous Definition | journal = Journal of Computational Neuroscience | volume = 2 | issue = 2| pages = 149–162 | doi=10.1007/bf00961885| pmid = 8521284 | s2cid = 206786736 }}</ref>
दृश्य संदीपन के तेज़ एन्कोडिंग के लिए, यह सुझाव दिया गया है कि रेटिना के न्यूरॉन्स संदीपन की शुरुआत और पहली कार्रवाई क्षमता के बीच विलंबता समय में दृश्य जानकारी को एन्कोड करते हैं, जिसे पहली स्पाइक या टाइम-टू-फर्स्ट-स्पाइक के लिए विलंबता भी कहा जाता है।<ref>{{cite journal|last=Gollisch|first=T.|author2=Meister, M.|title=सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग|journal=Science|date=22 February 2008|volume=319|issue=5866|pages=1108–1111|doi=10.1126/science.1149639|pmid=18292344|bibcode=2008Sci...319.1108G|s2cid=1032537|url=https://semanticscholar.org/paper/3a06deb42293b278fbfcb6be2507ad2003df7ddd}}</ref> इस प्रकार की अस्थायी कोडिंग श्रवण और सोमाटो-संवेदी प्रणाली में भी दिखाई गई है। ऐसी कोडिंग योजना का मुख्य दोष आंतरिक न्यूरोनल उतार-चढ़ाव के प्रति इसकी संवेदनशीलता है।<ref>{{cite journal|last=Wainrib|first=Gilles|author2=Michèle, Thieullen |author3=Khashayar, Pakdaman |title=प्रथम-स्पाइक में विलंबता की आंतरिक परिवर्तनशीलता|journal=Biological Cybernetics|date=7 April 2010|volume=103|issue=1|pages=43–56|doi=10.1007/s00422-010-0384-8|pmid=20372920|s2cid=7121609}}</ref> मकाक के विज़ुअल कॉर्टेक्स#प्राइमरी विज़ुअल कॉर्टेक्स (V1) में, संदीपन की शुरुआत के सापेक्ष पहले स्पाइक का समय स्पाइक्स के बीच के अंतराल की तुलना में अधिक जानकारी प्रदान करता पाया गया। हालाँकि, इंटरस्पाइक अंतराल का उपयोग अतिरिक्त जानकारी को एन्कोड करने के लिए किया जा सकता है, जो विशेष रूप से महत्वपूर्ण है जब स्पाइक रेट अपनी सीमा तक पहुंच जाती है, जैसा कि उच्च-विपरीत स्थितियों में होता है। इस कारण से, अस्थायी कोडिंग क्रमिक बदलावों के बजाय परिभाषित किनारों को कोड करने में भूमिका निभा सकती है।<ref>{{cite journal | last1 = Victor | first1 = Johnathan D | year = 2005 | title = स्पाइक ट्रेन मेट्रिक्स| doi = 10.1016/j.conb.2005.08.002 | pmid = 16140522 | journal = Current Opinion in Neurobiology | volume = 15 | issue = 5| pages = 585–592 | pmc = 2713191 }}</ref>
स्तनधारी [[स्वाद प्रणाली]] अपनी विशिष्ट संदीपन और जीव की आसानी से पहचानी जाने वाली प्रतिक्रियाओं के कारण अस्थायी कोडिंग का अध्ययन करने के लिए उपयोगी है।<ref>{{cite journal | last1 = Hallock | first1 = Robert M. | last2 = Di Lorenzo | first2 = Patricia M. | year = 2006 | title = स्वाद प्रणाली में टेम्पोरल कोडिंग| doi = 10.1016/j.neubiorev.2006.07.005 | pmid = 16979239 | journal = Neuroscience & Biobehavioral Reviews | volume = 30 | issue = 8| pages = 1145–1160 | s2cid = 14739301 }}</ref> अस्थायी रूप से एन्कोड की गई जानकारी एक जीव को एक ही श्रेणी (मीठा, कड़वा, खट्टा, नमकीन, उमामी) के विभिन्न स्वादों के बीच भेदभाव करने में मदद कर सकती है जो स्पाइक गणना के संदर्भ में बहुत समान प्रतिक्रियाएं उत्पन्न करती हैं। प्रत्येक स्वादक द्वारा प्राप्त पैटर्न के अस्थायी घटक का उपयोग उसकी पहचान निर्धारित करने के लिए किया जा सकता है (उदाहरण के लिए, दो कड़वे स्वादक, जैसे कुनैन और डेनाटोनियम के बीच का अंतर)। इस तरह, स्वाद प्रणाली में रेट कोडिंग और टेम्पोरल कोडिंग दोनों का उपयोग किया जा सकता है - बुनियादी स्वाद प्रकार के लिए रेट, अधिक विशिष्ट भेदभाव के लिए टेम्पोरल।<ref name="Carleton A 2010">{{cite journal | last1 = Carleton | first1 = Alan | last2 = Accolla | first2 = Riccardo | last3 = Simon | first3 = Sidney A. | year = 2010 | title = स्तनधारी स्वाद प्रणाली में कोडिंग| doi = 10.1016/j.tins.2010.04.002 | pmid = 20493563 | journal = Trends in Neurosciences | volume = 33 | issue = 7| pages = 326–334 | pmc = 2902637 }}</ref> स्तनधारी स्वाद प्रणाली पर शोध से पता चला है कि न्यूरॉन्स की आबादी में अस्थायी पैटर्न में प्रचुर मात्रा में जानकारी मौजूद है, और यह जानकारी रेट कोडिंग योजनाओं द्वारा निर्धारित की गई जानकारी से भिन्न है। संदीपन के जवाब में न्यूरॉन्स के समूह सिंक्रनाइज़ हो सकते हैं। प्राइमेट्स में मस्तिष्क के अग्र कॉर्टिकल भाग से संबंधित अध्ययनों में, न्यूरॉन्स की छोटी आबादी में केवल कुछ मिलीसेकंड लंबाई के कम समय के पैमाने के साथ सटीक पैटर्न पाए गए, जो कुछ सूचना प्रसंस्करण व्यवहारों से संबंधित थे। हालाँकि, पैटर्न से बहुत कम जानकारी निर्धारित की जा सकी; एक संभावित सिद्धांत यह है कि वे मस्तिष्क में होने वाले उच्च-क्रम प्रसंस्करण का प्रतिनिधित्व करते हैं।<ref name="Zador, Stevens"/>


दृश्य प्रणाली की तरह, चूहों के घ्राण बल्ब में माइट्रल सेल|माइट्रल/ट्यूफ्टेड कोशिकाओं में, सूँघने की क्रिया की शुरुआत के सापेक्ष प्रथम-स्पाइक विलंबता गंध के बारे में अधिकांश जानकारी को एन्कोड करती प्रतीत होती है। स्पाइक विलंबता का उपयोग करने की यह रणनीति किसी गंधक की त्वरित पहचान और उस पर प्रतिक्रिया करने की अनुमति देती है। इसके अलावा, कुछ माइट्रल/टुफ्टेड कोशिकाओं में दिए गए गंधकों के लिए विशिष्ट फायरिंग पैटर्न होते हैं। इस प्रकार की अतिरिक्त जानकारी एक निश्चित गंध को पहचानने में मदद कर सकती है, लेकिन यह पूरी तरह से आवश्यक नहीं है, क्योंकि जानवर की सूँघने के दौरान औसत स्पाइक गणना भी एक अच्छा पहचानकर्ता थी।<ref>{{cite journal | last1 = Wilson | first1 = Rachel I | year = 2008 | title = घ्राण धारणा के तंत्रिका और व्यवहारिक तंत्र| journal = Current Opinion in Neurobiology | volume = 18 | issue = 4| pages = 408–412 | doi=10.1016/j.conb.2008.08.015| pmid = 18809492 | pmc = 2596880 }}</ref> उसी तर्ज पर, खरगोशों की घ्राण प्रणाली के साथ किए गए प्रयोगों ने अलग-अलग पैटर्न दिखाए जो गंधकों के विभिन्न उपसमूहों के साथ सहसंबद्ध थे, और टिड्डी घ्राण प्रणाली के साथ प्रयोगों में एक समान परिणाम प्राप्त हुआ।<ref name="Theunissen F 1995"/>
किसी संदीपन द्वारा उत्पन्न स्पाइक ट्रेन या फायरिंग रेट की टेम्पोरल संरचना संदीपन की गतिशीलता और न्यूरल एन्कोडिंग प्रक्रिया की प्रकृति दोनों द्वारा निर्धारित की जाती है। संदीपन जो तेजी से बदलती हैं, सटीक समय पर स्पाइक्स उत्पन्न करती हैं<ref>{{Cite journal|last1=Jolivet|first1=Renaud|last2=Rauch|first2=Alexander|last3=Lüscher|first3=Hans-Rudolf|last4=Gerstner|first4=Wulfram|date=2006-08-01|title=सरल थ्रेशोल्ड मॉडल द्वारा नियोकॉर्टिकल पिरामिडल न्यूरॉन्स के स्पाइक टाइमिंग की भविष्यवाणी करना|url=https://doi.org/10.1007/s10827-006-7074-5|journal=Journal of Computational Neuroscience|language=en|volume=21|issue=1|pages=35–49|doi=10.1007/s10827-006-7074-5|pmid=16633938|s2cid=8911457|issn=1573-6873}}</ref> (और पीएसटीएच में तेजी से बदलती फायरिंग रेट) इससे कोई फर्क नहीं पड़ता कि किस न्यूरल कोडिंग रणनीति का उपयोग किया जा रहा है। संकीर्ण अर्थ में टेम्पोरल कोडिंग प्रतिक्रिया में टेम्पोरल सटीकता को संदर्भित करती है जो केवल संदीपन की गतिशीलता से उत्पन्न नहीं होती है, लेकिन फिर भी संदीपन के गुणों से संबंधित होती है। संदीपन और एन्कोडिंग गतिशीलता के बीच परस्पर क्रिया टेम्पोरल कोड की पहचान को कठिन बना देती है।


टेम्पोरल कोडिंग में, सीखने को गतिविधि-निर्भर सिनैप्टिक विलंब संशोधनों द्वारा समझाया जा सकता है।<ref>{{cite book |last1=Geoffrois |first1=E. |last2=Edeline |first2=J.M. |last3=Vibert |first3=J.F. |chapter=Learning by Delay Modifications |editor-first=Frank H. |editor-last=Eeckman |title=न्यूरॉन्स और तंत्रिका तंत्र में गणना|chapter-url=https://books.google.com/books?id=S4ek3S6fDRUC&pg=PA133 |year=1994 |publisher=Springer |isbn=978-0-7923-9465-5 |pages=133–8}}</ref> संशोधन स्वयं न केवल स्पाइक दरों (रेट कोडिंग) पर निर्भर हो सकते हैं, बल्कि स्पाइक टाइमिंग पैटर्न (टेम्पोरल कोडिंग) पर भी निर्भर हो सकते हैं, यानी, [[स्पाइक-टाइमिंग-निर्भर प्लास्टिसिटी]] का एक विशेष स्थिति हो सकता है।<ref>Sjöström, Jesper, and Wulfram Gerstner. "Spike-timing dependent plasticity." Spike-timing dependent plasticity 35 (2010).</ref>


==== अस्थायी कोडिंग अनुप्रयोग ====
टेम्पोरल कोडिंग का मुद्दा स्वतंत्र-स्पाइक कोडिंग के मुद्दे से भिन्न और स्वतंत्र है। यदि प्रत्येक स्पाइक ट्रेन में अन्य सभी स्पाइक्स से स्वतंत्र है, तो तंत्रिका कोड का टेम्पोरल चरित्र समय-निर्भर फायरिंग दर आर (t) के व्यवहार द्वारा निर्धारित किया जाता है। यदि r(t) समय के साथ धीरे-धीरे बदलता है, तो कोड को सामान्यतः रेट कोड कहा जाता है, और यदि यह तेजी से बदलता है, तो कोड को टेम्पोरल कहा जाता है।
अस्थायी कोडिंग की विशिष्टता के लिए सूचनात्मक, विश्वसनीय, प्रयोगात्मक डेटा को मापने के लिए अत्यधिक परिष्कृत तकनीक की आवश्यकता होती है। [[ऑप्टोजेनेटिक्स]] में हुई प्रगति न्यूरोलॉजिस्ट को व्यक्तिगत न्यूरॉन्स में स्पाइक्स को नियंत्रित करने, विद्युत और स्थानिक एकल-कोशिका रिज़ॉल्यूशन की पेशकश करने की अनुमति देती है। उदाहरण के लिए, नीली रोशनी प्रकाश-गेटेड आयन चैनल [[चैनलरोडोप्सिन]] को खोलने का कारण बनती है, जिससे कोशिका विध्रुवित होती है और स्पाइक उत्पन्न होती है। जब कोशिका को नीली रोशनी का एहसास नहीं होता है, तो चैनल बंद हो जाता है, और न्यूरॉन स्पाइक करना बंद कर देता है। स्पाइक्स का पैटर्न नीली रोशनी संदीपन के पैटर्न से मेल खाता है। माउस डीएनए में चैनलरोडोप्सिन जीन अनुक्रम डालकर, शोधकर्ता स्पाइक्स और इसलिए माउस के कुछ व्यवहारों को नियंत्रित कर सकते हैं (उदाहरण के लिए, माउस को बाईं ओर मोड़ना)।<ref name="youtube.com">Karl Diesseroth, Lecture. "Personal Growth Series: Karl Diesseroth on Cracking the Neural Code." Google Tech Talks. November 21, 2008. https://www.youtube.com/watch?v=5SLdSbp6VjM</ref> शोधकर्ताओं के पास, ऑप्टोजेनेटिक्स के माध्यम से, समान माध्य फायरिंग रेट को बनाए रखते हुए एक न्यूरॉन में विभिन्न टेम्पोरल कोड को प्रभावित करने के लिए उपकरण होते हैं, और इस तरह यह परीक्षण कर सकते हैं कि विशिष्ट न्यूरल सर्किट में टेम्पोरल कोडिंग होती है या नहीं।<ref name="Han X 2009">Han X, Qian X, Stern P, Chuong AS, Boyden ES. "Informational lesions: optical perturbations of spike timing and neural synchrony via microbial opsin gene fusions."  Cambridge, Massachusetts: MIT Media Lad, 2009.</ref>
ऑप्टोजेनेटिक तकनीक में कई न्यूरोलॉजिकल और मनोवैज्ञानिक विकारों की जड़ में स्पाइक असामान्यताओं के सुधार को सक्षम करने की क्षमता भी है।<ref name="Han X 2009"/>यदि न्यूरॉन्स व्यक्तिगत स्पाइक टाइमिंग पैटर्न में जानकारी को एन्कोड करते हैं, तो केवल औसत फायरिंग दरों को देखते हुए कोड को क्रैक करने का प्रयास करने से मुख्य सिग्नल छूट सकते हैं।<ref name="Theunissen F 1995"/>न्यूरल कोड के किसी भी अस्थायी रूप से एन्कोड किए गए पहलू को समझना और न्यूरॉन्स में इन अनुक्रमों को दोहराने से अवसाद (मनोदशा), [[एक प्रकार का मानसिक विकार]] और पार्किंसंस रोग जैसे न्यूरल संबंधी विकारों के अधिक नियंत्रण और उपचार की अनुमति मिल सकती है। एकल कोशिकाओं में स्पाइक अंतराल का विनियमन औषधीय एजेंटों को अंतःशिरा में जोड़ने की तुलना में अधिक सटीक रूप से मस्तिष्क गतिविधि को नियंत्रित करता है।<ref name="youtube.com"/>


==== संवेदी प्रणालियों में टेम्पोरल कोडिंग ====
बहुत ही संक्षिप्त संदीपन के लिए, न्यूरॉन की अधिकतम फायरिंग दर इतनी तेज़ नहीं हो सकती कि एक से अधिक स्पाइक उत्पन्न कर सके। इस एकल स्पाइक में निहित संक्षिप्त संदीपन के बारे में जानकारी की सघनता के कारण, ऐसा प्रतीत होता है कि स्पाइक के समय में किसी निश्चित समयावधि में कार्रवाई क्षमता की औसत आवृत्ति की तुलना में अधिक जानकारी देनी होगी। यह मॉडल विशेष रूप से ध्वनि स्थानीयकरण के लिए महत्वपूर्ण है, जो मस्तिष्क के भीतर मिलीसेकंड के क्रम पर होता है। मस्तिष्क को अपेक्षाकृत छोटी तंत्रिका प्रतिक्रिया के आधार पर बड़ी मात्रा में जानकारी प्राप्त करनी होगी। इसके अतिरिक्त, यदि प्रति सेकंड दस स्पाइक्स के क्रम पर कम फायरिंग दरों को अलग-अलग संदीपन के लिए मनमाने ढंग से बंद दर कोडिंग से अलग किया जाना चाहिए, तो इन दो संदीपन में भेदभाव करने की कोशिश करने वाले न्यूरॉन को पर्याप्त जानकारी जमा करने के लिए एक सेकंड या उससे अधिक तक इंतजार करने की आवश्यकता हो सकती है। यह कई जीवों के अनुरूप नहीं है जो मिलीसेकेंड की समय सीमा में संदीपन के बीच भेदभाव करने में सक्षम हैं, यह सुझाव देते हुए कि दर कोड काम करने वाला एकमात्र मॉडल नहीं है।<ref name="Theunissen F 1995">{{cite journal | last1 = Theunissen | first1 = F | last2 = Miller | first2 = JP | year = 1995 | title = Temporal Encoding in Nervous Systems: A Rigorous Definition | journal = Journal of Computational Neuroscience | volume = 2 | issue = 2| pages = 149–162 | doi=10.1007/bf00961885| pmid = 8521284 | s2cid = 206786736 }}</ref>


==== फायरिंग का चरण कोड ====
दृश्य संदीपन के तेजी से एन्कोडिंग के लिए, यह सुझाव दिया गया है कि रेटिना के न्यूरॉन्स संदीपन के प्रारम्भ और पहली कार्रवाई क्षमता के बीच विलंबता समय में दृश्य जानकारी को एनकोड करते हैं, जिसे पहली स्पाइक या टाइम-टू-फर्स्ट-स्पाइक के लिए विलंबता भी कहा जाता है।<ref>{{cite journal|last=Gollisch|first=T.|author2=Meister, M.|title=सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग|journal=Science|date=22 February 2008|volume=319|issue=5866|pages=1108–1111|doi=10.1126/science.1149639|pmid=18292344|bibcode=2008Sci...319.1108G|s2cid=1032537|url=https://semanticscholar.org/paper/3a06deb42293b278fbfcb6be2507ad2003df7ddd}}</ref> इस प्रकार की टेम्पोरल कोडिंग को श्रवण और सोमाटो-संवेदी प्रणाली में भी दिखाया गया है। ऐसी कोडिंग योजना का मुख्य दोष इसकी आंतरिक न्यूरोनल उतार-चढ़ाव के प्रति संवेदनशीलता है।<ref>{{cite journal|last=Wainrib|first=Gilles|author2=Michèle, Thieullen |author3=Khashayar, Pakdaman |title=प्रथम-स्पाइक में विलंबता की आंतरिक परिवर्तनशीलता|journal=Biological Cybernetics|date=7 April 2010|volume=103|issue=1|pages=43–56|doi=10.1007/s00422-010-0384-8|pmid=20372920|s2cid=7121609}}</ref> मकाक के प्राथमिक दृश्य प्रांतस्था में, संदीपन के प्रारम्भ के सापेक्ष पहले स्पाइक का समय स्पाइक्स के बीच के अंतराल की तुलना में अधिक जानकारी प्रदान करता पाया गया। हालाँकि, इंटरस्पाइक अंतराल का उपयोग अतिरिक्त जानकारी को एनकोड करने के लिए किया जा सकता है, जो विशेष रूप से तब महत्वपूर्ण होता है जब स्पाइक दर अपनी सीमा तक पहुंच जाती है, जैसा कि उच्च-विपरीत स्थितियों में होता है। इस कारण से, टेम्पोरल कोडिंग क्रमिक बदलावों के बजाय परिभाषित किनारों को कोड करने में भूमिका निभा सकती है।<ref>{{cite journal | last1 = Victor | first1 = Johnathan D | year = 2005 | title = स्पाइक ट्रेन मेट्रिक्स| doi = 10.1016/j.conb.2005.08.002 | pmid = 16140522 | journal = Current Opinion in Neurobiology | volume = 15 | issue = 5| pages = 585–592 | pmc = 2713191 }}</ref>
{{main|Phase precession}}
{{further|Phase resetting in neurons}}
फ़ेज़-ऑफ़-फ़ायरिंग कोड एक न्यूरल कोडिंग योजना है जो न्यूरल दोलनों के आधार पर कार्रवाई संभावित गणना कोड को समय संदर्भ के साथ जोड़ती है। इस प्रकार का कोड निम्न स्तर पर चल रहे स्थानीय दोलनों के चरण के आधार पर समय संदर्भ के अनुसार प्रत्येक स्पाइक के लिए एक समय लेबल को ध्यान में रखता है<ref name="Montemurro" />या उच्च आवृत्तियाँ।<ref name="Gamma cycle">{{cite journal |vauthors=Fries P, Nikolić D, Singer W |title=गामा चक्र|journal=Trends Neurosci. |volume=30 |issue=7 |pages=309–16 |date=July 2007 |pmid=17555828 |doi=10.1016/j.tins.2007.05.005 |s2cid=3070167 }}</ref>
यह दिखाया गया है कि कुछ कॉर्टिकल संवेदी क्षेत्रों में न्यूरॉन्स समृद्ध प्राकृतिक संदीपन को केवल उनकी स्पाइक गणना के बजाय, चल रहे नेटवर्क ऑसिलेटरी उतार-चढ़ाव के चरण के सापेक्ष उनके स्पाइक समय के संदर्भ में एन्कोड करते हैं।<ref name="Montemurro">{{cite journal|doi=10.1016/j.cub.2008.02.023|pmid=18328702|title=प्राथमिक दृश्य कॉर्टेक्स में प्राकृतिक दृश्य उत्तेजनाओं की चरण-ऑफ-फायरिंग कोडिंग|journal=Current Biology|volume=18|issue=5|pages=375–380|year=2008|last1=Montemurro|first1=Marcelo A.|last2=Rasch|first2=Malte J.|last3=Murayama|first3=Yusuke|last4=Logothetis|first4=Nikos K.|last5=Panzeri|first5=Stefano|doi-access=free}}</ref><ref>[http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf Spike arrival times: A highly efficient coding scheme for neural networks] {{webarchive|url=https://web.archive.org/web/20120215151304/http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf |date=2012-02-15 }}, SJ Thorpe - Parallel processing in neural systems, 1990</ref> स्थानीय क्षेत्र संभावित संकेत जनसंख्या (नेटवर्क) दोलनों को दर्शाते हैं। फायरिंग के चरण कोड को अक्सर अस्थायी कोड के रूप में वर्गीकृत किया जाता है, हालांकि स्पाइक्स (यानी नेटवर्क दोलन चरण) के लिए उपयोग किया जाने वाला समय लेबल समय के लिए एक कम-रिज़ॉल्यूशन (मोटे-दानेदार) संदर्भ है। परिणामस्वरूप, अक्सर चरण के लिए केवल चार अलग-अलग मान कम आवृत्तियों में दोलनों के चरण के संबंध में इस तरह के कोड में सभी सूचना सामग्री का प्रतिनिधित्व करने के लिए पर्याप्त होते हैं। फ़ेज़-ऑफ़-फ़ायरिंग कोड मोटे तौर पर [[ समुद्री घोड़ा ]] की स्थान कोशिकाओं में देखी गई प्लेस सेल#फ़ेज़ प्रीसेशन घटना पर आधारित है। इस कोड की एक अन्य विशेषता यह है कि न्यूरॉन्स संवेदी न्यूरॉन्स के समूह के बीच स्पाइकिंग के पसंदीदा क्रम का पालन करते हैं, जिसके परिणामस्वरूप फायरिंग अनुक्रम होता है।<ref name="Firing sequences">{{cite journal |vauthors=Havenith MN, Yu S, Biederlack J, Chen NH, Singer W, Nikolić D |title=सिंक्रोनाइज़ेशन न्यूरॉन्स को क्रम में सक्रिय बनाता है, और उत्तेजना गुण निर्धारित करते हैं कि आगे कौन है|journal=J. Neurosci. |volume=31 |issue=23 |pages=8570–84 |date=June 2011 |pmid=21653861 |pmc=6623348 |doi=10.1523/JNEUROSCI.2817-10.2011 |doi-access=free }}</ref>
[[उच्च आवृत्ति दोलन]]ों को भी शामिल करने के लिए दृश्य कॉर्टेक्स में चरण कोड दिखाया गया है।<ref name="Firing sequences" />गामा दोलन के एक चक्र के भीतर, प्रत्येक न्यूरॉन का अपना पसंदीदा सापेक्ष फायरिंग समय होता है। परिणामस्वरूप, न्यूरॉन्स की एक पूरी आबादी एक फायरिंग अनुक्रम उत्पन्न करती है जिसकी अवधि लगभग 15 एमएस तक होती है।<ref name="Firing sequences"/>


स्तनधारी स्वाद प्रणाली अपनी विशिष्ट संदीपन और जीव की आसानी से समझी जाने वाली प्रतिक्रियाओं के कारण टेम्पोरल कोडिंग का अध्ययन करने के लिए उपयोगी है।<ref>{{cite journal | last1 = Hallock | first1 = Robert M. | last2 = Di Lorenzo | first2 = Patricia M. | year = 2006 | title = स्वाद प्रणाली में टेम्पोरल कोडिंग| doi = 10.1016/j.neubiorev.2006.07.005 | pmid = 16979239 | journal = Neuroscience & Biobehavioral Reviews | volume = 30 | issue = 8| pages = 1145–1160 | s2cid = 14739301 }}</ref> टेम्पोरल रूप से एन्कोड की गई जानकारी एक जीव को एक ही श्रेणी (मीठा, कड़वा, खट्टा, नमकीन, उमामी) के विभिन्न टेस्टैंट के बीच भेदभाव करने में मदद कर सकती है जो स्पाइक गिनती के संदर्भ में बहुत समान प्रतिक्रियाएं उत्पन्न करती हैं। प्रत्येक स्वादक द्वारा प्राप्त पैटर्न के टेम्पोरल घटक का उपयोग इसकी पहचान निर्धारित करने के लिए किया जा सकता है (उदाहरण के लिए, दो कड़वे स्वादक, जैसे कि कुनैन और डेनाटोनियम के बीच का अंतर)। इस तरह, रेट कोडिंग और टेम्पोरल कोडिंग दोनों का उपयोग स्वाद प्रणाली में किया जा सकता है - बुनियादी स्वाद प्रकार के लिए दर, अधिक विशिष्ट भेदभाव के लिए टेम्पोरल।<ref name="Carleton A 2010">{{cite journal | last1 = Carleton | first1 = Alan | last2 = Accolla | first2 = Riccardo | last3 = Simon | first3 = Sidney A. | year = 2010 | title = स्तनधारी स्वाद प्रणाली में कोडिंग| doi = 10.1016/j.tins.2010.04.002 | pmid = 20493563 | journal = Trends in Neurosciences | volume = 33 | issue = 7| pages = 326–334 | pmc = 2902637 }}</ref> स्तनधारी स्वाद प्रणाली पर शोध से पता चला है कि न्यूरॉन्स की जनसंख्या में टेम्पोरल पैटर्न में प्रचुर मात्रा में जानकारी उपस्थित है, और यह जानकारी दर कोडिंग योजनाओं द्वारा निर्धारित जानकारी से भिन्न है। किसी संदीपन की प्रतिक्रिया में न्यूरॉन्स के समूह समकालिक हो सकते हैं। प्राइमेट्स में मस्तिष्क के सामने के कॉर्टिकल हिस्से से संबंधित अध्ययनों में, न्यूरॉन्स की छोटी जनसंख्या में केवल कुछ मिलीसेकंड की लंबाई के एक छोटे समय के पैमाने के साथ सटीक पैटर्न पाए गए, जो कुछ सूचना-प्रसंस्करण व्यवहारों से संबंधित थे। हालाँकि, पैटर्न से बहुत कम जानकारी निर्धारित की जा सकती है; संभावित सिद्धांत यह है कि वे मस्तिष्क में होने वाले उच्च-क्रम प्रसंस्करण का प्रतिनिधित्व करते हैं।<ref name="Zador, Stevens" />


दृश्य प्रणाली की तरह, चूहों के घ्राण बल्ब में माइट्रल/टुफ्टेड कोशिकाओं में, सूंघने की क्रिया के प्रारम्भ के सापेक्ष पहली-स्पाइक विलंबता गंध के बारे में अधिकांश जानकारी को एन्कोड करती प्रतीत होती है। स्पाइक विलंबता का उपयोग करने की यह रणनीति किसी गंधक की त्वरित पहचान और प्रतिक्रिया की अनुमति देती है। इसके अतिरिक्त, कुछ माइट्रल/टुफ्टेड कोशिकाओं में दिए गए गंधकों के लिए विशिष्ट फायरिंग पैटर्न होते हैं। इस प्रकार की अतिरिक्त जानकारी एक निश्चित गंध को पहचानने में मदद कर सकती है, लेकिन यह पूरी तरह से आवश्यक नहीं है, क्योंकि जानवर की सूँघने की प्रक्रिया में औसत स्पाइक गिनती भी एक अच्छा पहचानकर्ता थी।<ref>{{cite journal | last1 = Wilson | first1 = Rachel I | year = 2008 | title = घ्राण धारणा के तंत्रिका और व्यवहारिक तंत्र| journal = Current Opinion in Neurobiology | volume = 18 | issue = 4| pages = 408–412 | doi=10.1016/j.conb.2008.08.015| pmid = 18809492 | pmc = 2596880 }}</ref> उसी तर्ज पर, खरगोशों की घ्राण प्रणाली के साथ किए गए प्रयोगों ने अलग-अलग पैटर्न दिखाए जो गंधकों के विभिन्न उपसमूहों के साथ सहसंबद्ध थे, और टिड्डे की घ्राण प्रणाली के साथ प्रयोगों में समान परिणाम प्राप्त हुआ।<ref name="Theunissen F 1995" />
==== टेम्पोरल कोडिंग अनुप्रयोग ====
टेम्पोरल कोडिंग की विशिष्टता के लिए सूचनात्मक, विश्वसनीय, प्रायोगिक डेटा को मापने के लिए अत्यधिक परिष्कृत तकनीक की आवश्यकता होती है। [[ऑप्टोजेनेटिक्स]] में हुई प्रगति से न्यूरोलॉजिस्ट को व्यक्तिगत न्यूरॉन्स में स्पाइक्स को नियंत्रित करने की अनुमति मिलती है, जो विद्युत और स्थानिक एकल-कोशिका रिज़ॉल्यूशन की पेशकश करता है। उदाहरण के लिए, नीली रोशनी प्रकाश-गेटेड आयन चैनल [[चैनलरोडोप्सिन]] को खोलने का कारण बनती है, कोशिका को विध्रुवित करती है और स्पाइक उत्पन्न करती है। जब कोशिका नीली रोशनी को महसूस नहीं कर पाती है, तो चैनल बंद हो जाता है और न्यूरॉन स्पाइक करना बंद कर देता है। स्पाइक्स का पैटर्न नीले प्रकाश उत्तेजनाओं के पैटर्न से मेल खाता है। माउस डीएनए में चैनलरोडोप्सिन जीन अनुक्रम डालकर, शोधकर्ता स्पाइक्स और इसलिए माउस के कुछ व्यवहारों को नियंत्रित कर सकते हैं (उदाहरण के लिए, माउस को बाईं ओर मोड़ना)।<ref name="youtube.com">Karl Diesseroth, Lecture. "Personal Growth Series: Karl Diesseroth on Cracking the Neural Code." Google Tech Talks. November 21, 2008. https://www.youtube.com/watch?v=5SLdSbp6VjM</ref> ऑप्टोजेनेटिक्स के माध्यम से शोधकर्ताओं के पास समान माध्य फायरिंग दर को बनाए रखते हुए न्यूरॉन में विभिन्न टेम्पोरल कोड को प्रभावित करने के लिए उपकरण हैं, और इस तरह यह परीक्षण कर सकते हैं कि विशिष्ट न्यूरल सर्किट में टेम्पोरल कोडिंग होती है या नहीं।<ref name="Han X 2009">Han X, Qian X, Stern P, Chuong AS, Boyden ES. "Informational lesions: optical perturbations of spike timing and neural synchrony via microbial opsin gene fusions."  Cambridge, Massachusetts: MIT Media Lad, 2009.</ref>
ऑप्टोजेनेटिक तकनीक में कई न्यूरोलॉजिकल और मनोवैज्ञानिक विकारों की जड़ में स्पाइक असामान्यताओं के सुधार को सक्षम करने की भी क्षमता है।<ref name="Han X 2009" /> यदि न्यूरॉन्स व्यक्तिगत स्पाइक टाइमिंग पैटर्न में जानकारी को एनकोड करते हैं, तो केवल औसत फायरिंग दर को देखते हुए कोड को क्रैक करने का प्रयास करने से मुख्य सिग्नल छूट सकते हैं।<ref name="Theunissen F 1995" /> तंत्रिका कोड के किसी भी अस्थायी रूप से एन्कोडेड पहलू को समझना और न्यूरॉन्स में इन अनुक्रमों को दोहराने से अवसाद, सिज़ोफ्रेनिया और पार्किंसंस रोग जैसे तंत्रिका संबंधी विकारों के अधिक नियंत्रण और उपचार की अनुमति मिल सकती है। एकल कोशिकाओं में स्पाइक अंतराल का विनियमन औषधीय एजेंटों को अंतःशिरा रूप से जोड़ने की तुलना में अधिक सटीक रूप से मस्तिष्क गतिविधि को नियंत्रित करता है।<ref name="youtube.com" />
==== फेज-ऑफ-फायरिंग कोड ====
{{main|चरण पूर्वता}}
{{further|न्यूरॉन्स में फेज रीसेटिंग}}
फ़ेज़-ऑफ़-फ़ायरिंग कोड तंत्रिका कोडिंग योजना है जो दोलनों के आधार पर स्पाइक काउंट कोड को समय संदर्भ के साथ जोड़ती है। इस प्रकार का कोड निम्न<ref name="Montemurro">{{cite journal|doi=10.1016/j.cub.2008.02.023|pmid=18328702|title=प्राथमिक दृश्य कॉर्टेक्स में प्राकृतिक दृश्य उत्तेजनाओं की चरण-ऑफ-फायरिंग कोडिंग|journal=Current Biology|volume=18|issue=5|pages=375–380|year=2008|last1=Montemurro|first1=Marcelo A.|last2=Rasch|first2=Malte J.|last3=Murayama|first3=Yusuke|last4=Logothetis|first4=Nikos K.|last5=Panzeri|first5=Stefano|doi-access=free}}</ref> या उच्च आवृत्तियों पर स्थानीय चल रहे दोलनों के चरण के आधार पर समय संदर्भ के अनुसार प्रत्येक स्पाइक के लिए एक समय लेबल को ध्यान में रखता है।<ref name="Gamma cycle">{{cite journal |vauthors=Fries P, Nikolić D, Singer W |title=गामा चक्र|journal=Trends Neurosci. |volume=30 |issue=7 |pages=309–16 |date=July 2007 |pmid=17555828 |doi=10.1016/j.tins.2007.05.005 |s2cid=3070167 }}</ref>
यह दिखाया गया है कि कुछ कॉर्टिकल संवेदी क्षेत्रों में न्यूरॉन्स समृद्ध प्राकृतिक उत्तेजनाओं को केवल उनकी स्पाइक गिनती के बजाय, चल रहे नेटवर्क ऑसिलेटरी उतार-चढ़ाव के चरण के सापेक्ष उनके स्पाइक समय के संदर्भ में कूटबद्ध करते हैं।<ref name="Montemurro" /><ref>[http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf Spike arrival times: A highly efficient coding scheme for neural networks] {{webarchive|url=https://web.archive.org/web/20120215151304/http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf |date=2012-02-15 }}, SJ Thorpe - Parallel processing in neural systems, 1990</ref> स्थानीय क्षेत्र संभावित संकेत जनसंख्या (नेटवर्क) दोलनों को प्रतिबिंबित करते हैं। फायरिंग के चरण कोड को प्रायः अस्थायी कोड के रूप में वर्गीकृत किया जाता है, हालांकि स्पाइक्स (यानी नेटवर्क दोलन चरण) के लिए उपयोग किया जाने वाला समय लेबल समय के लिए एक कम-रिज़ॉल्यूशन (मोटे-दानेदार) संदर्भ है। नतीजतन, प्रायः चरण के लिए केवल चार अलग-अलग मान कम आवृत्तियों में दोलनों के चरण के संबंध में इस प्रकार के कोड में सभी सूचना सामग्री का प्रतिनिधित्व करने के लिए पर्याप्त होते हैं। फ़ेज़-ऑफ़-फायरिंग कोड हिप्पोकैम्पस की स्थान कोशिकाओं में देखी गई चरण पूर्वता घटना पर आधारित है। इस कोड की एक अन्य विशेषता यह है कि न्यूरॉन्स संवेदी न्यूरॉन्स के एक समूह के बीच स्पाइकिंग के पसंदीदा क्रम का पालन करते हैं, जिसके परिणामस्वरूप फायरिंग अनुक्रम होता है।<ref name="Firing sequences">{{cite journal |vauthors=Havenith MN, Yu S, Biederlack J, Chen NH, Singer W, Nikolić D |title=सिंक्रोनाइज़ेशन न्यूरॉन्स को क्रम में सक्रिय बनाता है, और उत्तेजना गुण निर्धारित करते हैं कि आगे कौन है|journal=J. Neurosci. |volume=31 |issue=23 |pages=8570–84 |date=June 2011 |pmid=21653861 |pmc=6623348 |doi=10.1523/JNEUROSCI.2817-10.2011 |doi-access=free }}</ref>
दृश्य कॉर्टेक्स में चरण कोड को उच्च-आवृत्ति दोलनों को भी सम्मिलित करते हुए दिखाया गया है।[42] गामा दोलन के एक चक्र के भीतर, प्रत्येक न्यूरॉन का अपना पसंदीदा रिश्तेदार फायरिंग समय होता है। परिणामस्वरूप, न्यूरॉन्स की एक पूरी जनसंख्या एक फायरिंग अनुक्रम उत्पन्न करती है जिसकी अवधि लगभग 15 एमएस तक होती है।<ref name="Firing sequences" />
=== जनसंख्या कोडिंग ===
=== जनसंख्या कोडिंग ===
जनसंख्या कोडिंग कई न्यूरॉन्स की संयुक्त गतिविधियों का उपयोग करके संदीपन का प्रतिनिधित्व करने की एक विधि है। जनसंख्या कोडिंग में, प्रत्येक न्यूरॉन में इनपुट के कुछ सेट पर प्रतिक्रियाओं का वितरण होता है, और इनपुट के बारे में कुछ मूल्य निर्धारित करने के लिए कई न्यूरॉन्स की प्रतिक्रियाओं को जोड़ा जा सकता है। सैद्धांतिक दृष्टिकोण से, जनसंख्या कोडिंग न्यूरल विज्ञान में कुछ गणितीय रूप से अच्छी तरह से तैयार की गई समस्याओं में से एक है। यह न्यूरल कोडिंग की आवश्यक विशेषताओं को समझता है और फिर भी सैद्धांतिक विश्लेषण के लिए काफी सरल है।<ref name="Wu">{{cite journal |vauthors=Wu S, Amari S, Nakahara H |title=Population coding and decoding in a neural field: a computational study |journal=Neural Comput |volume=14 |issue=5 |pages=999–1026 |date=May 2002 |pmid=11972905 |doi=10.1162/089976602753633367 |s2cid=1122223 }}</ref> प्रायोगिक अध्ययनों से पता चला है कि यह कोडिंग प्रतिमान मस्तिष्क के सेंसर और मोटर क्षेत्रों में व्यापक रूप से उपयोग किया जाता है।
जनसंख्या कोडिंग कई न्यूरॉन्स की संयुक्त गतिविधियों का उपयोग करके उत्तेजनाओं को दर्शाने की एक विधि है। जनसंख्या कोडिंग में, प्रत्येक न्यूरॉन के पास इनपुट के कुछ सेट पर प्रतिक्रियाओं का वितरण होता है, और इनपुट के बारे में कुछ मूल्य निर्धारित करने के लिए कई न्यूरॉन्स की प्रतिक्रियाओं को जोड़ा जा सकता है। सैद्धांतिक दृष्टिकोण से, जनसंख्या कोडिंग तंत्रिका विज्ञान में गणितीय रूप से अच्छी तरह से तैयार की गई कुछ समस्याओं में से एक है। यह तंत्रिका कोडिंग की आवश्यक विशेषताओं को समझता है और फिर भी सैद्धांतिक विश्लेषण के लिए काफी सरल है।<ref name="Wu">{{cite journal |vauthors=Wu S, Amari S, Nakahara H |title=Population coding and decoding in a neural field: a computational study |journal=Neural Comput |volume=14 |issue=5 |pages=999–1026 |date=May 2002 |pmid=11972905 |doi=10.1162/089976602753633367 |s2cid=1122223 }}</ref> प्रायोगिक अध्ययनों से पता चला है कि इस कोडिंग प्रतिमान का व्यापक रूप से मस्तिष्क के सेंसर और मोटर क्षेत्रों में उपयोग किया जाता है।


उदाहरण के लिए, दृश्य क्षेत्र [[मेडियल टेम्पोरल लोब]] (एमटी) में, न्यूरॉन्स को चलती दिशा में ट्यून किया जाता है।<ref name="Maunsell">{{cite journal |vauthors=Maunsell JH, Van Essen DC |title=मकाक बंदर के मध्य अस्थायी दृश्य क्षेत्र में न्यूरॉन्स के कार्यात्मक गुण। I. उत्तेजना की दिशा, गति और अभिविन्यास के लिए चयनात्मकता|journal=J. Neurophysiol. |volume=49 |issue=5 |pages=1127–47 |date=May 1983 |pmid=6864242 |doi=10.1152/jn.1983.49.5.1127 |s2cid=8708245 |url=https://semanticscholar.org/paper/0bb3df8cfca9f04bc5ad21cd9851603a7a1fb31f }}</ref> एक विशेष दिशा में चलती हुई वस्तु की प्रतिक्रिया में, एमटी में कई न्यूरॉन्स पूरी आबादी में शोर-दूषित और [[सामान्य वितरण]]|घंटी के आकार की गतिविधि पैटर्न के साथ आग लगाते हैं। किसी एक न्यूरॉन के सिग्नल में मौजूद उतार-चढ़ाव से प्रतिरक्षित होने के लिए, वस्तु की गति की दिशा जनसंख्या गतिविधि से प्राप्त की जाती है। जब बंदरों को एक जलाए गए लक्ष्य की ओर जॉयस्टिक ले जाने के लिए प्रशिक्षित किया जाता है, तो एक ही न्यूरॉन कई लक्ष्य दिशाओं के लिए फायर करेगा। हालाँकि यह एक दिशा के लिए सबसे तेज़ और अधिक धीमी गति से फायर करता है, यह इस बात पर निर्भर करता है कि लक्ष्य न्यूरॉन की पसंदीदा दिशा के कितना करीब था।<ref>{{Cite web|url=http://homepage.psy.utexas.edu/homepage/class/psy394U/hayhoe/IntroSensoryMotorSystems/week6/Ch38.pdf|title=Intro to Sensory Motor Systems Ch. 38 page 766}}</ref><ref>Science. 1986 Sep 26;233(4771):1416-9</ref> यदि प्रत्येक न्यूरॉन अपनी पसंदीदा दिशा में गति का प्रतिनिधित्व करता है, और सभी न्यूरॉन्स के वेक्टर योग की गणना की जाती है (प्रत्येक न्यूरॉन की फायरिंग रेट और पसंदीदा दिशा होती है), तो योग गति की दिशा को इंगित करता है। इस तरीके से, न्यूरॉन्स की आबादी गति के लिए संकेत को कोड करती है।{{citation needed|date=November 2013}} इस विशेष जनसंख्या कोड को [[जनसंख्या वेक्टर]] कोडिंग कहा जाता है।
उदाहरण के लिए, दृश्य क्षेत्र [[मेडियल टेम्पोरल लोब|मेडियल टेम्पोरल]] (एमटी) में, न्यूरॉन्स चलती दिशा में ट्यून किए जाते हैं।<ref name="Maunsell">{{cite journal |vauthors=Maunsell JH, Van Essen DC |title=मकाक बंदर के मध्य अस्थायी दृश्य क्षेत्र में न्यूरॉन्स के कार्यात्मक गुण। I. उत्तेजना की दिशा, गति और अभिविन्यास के लिए चयनात्मकता|journal=J. Neurophysiol. |volume=49 |issue=5 |pages=1127–47 |date=May 1983 |pmid=6864242 |doi=10.1152/jn.1983.49.5.1127 |s2cid=8708245 |url=https://semanticscholar.org/paper/0bb3df8cfca9f04bc5ad21cd9851603a7a1fb31f }}</ref> एक विशेष दिशा में चलती हुई वस्तु की प्रतिक्रिया में, एमटी में कई न्यूरॉन्स जनसंख्या में रव-दूषित और घंटी के आकार की गतिविधि पैटर्न के साथ आग लगाते हैं। वस्तु की गति की दिशा को जनसंख्या गतिविधि से प्राप्त किया जाता है, ताकि एकल न्यूरॉन के सिग्नल में उपस्थित उतार-चढ़ाव से प्रतिरक्षा हो सके। जब बंदरों को जॉयस्टिक को एक जलाए गए लक्ष्य की ओर ले जाने के लिए प्रशिक्षित किया जाता है, तो एक ही न्यूरॉन कई लक्ष्य दिशाओं के लिए फायर करेगा। हालाँकि, यह एक दिशा के लिए सबसे तेज़ और अधिक धीमी गति से फायर करता है, यह इस पर निर्भर करता है कि लक्ष्य न्यूरॉन की "पसंदीदा" दिशा के कितना करीब था।<ref>{{Cite web|url=http://homepage.psy.utexas.edu/homepage/class/psy394U/hayhoe/IntroSensoryMotorSystems/week6/Ch38.pdf|title=Intro to Sensory Motor Systems Ch. 38 page 766}}</ref><ref>Science. 1986 Sep 26;233(4771):1416-9</ref> यदि प्रत्येक न्यूरॉन अपनी पसंदीदा दिशा में गति का प्रतिनिधित्व करता है, और सभी न्यूरॉन के वेक्टर योग की गणना की जाती है (प्रत्येक न्यूरॉन की फायरिंग दर और एक पसंदीदा दिशा है), तो योग गति की दिशा को इंगित करता है। इस तरीके से, न्यूरॉन्स की जनसंख्या गति के लिए संकेत को कोड करती है। इस विशेष जनसंख्या कोड को जनसंख्या वेक्टर कोडिंग के रूप में जाना जाता है।


स्थान-समय जनसंख्या कोड, जिसे औसत-स्थानीयकृत-सिंक्रोनाइज़्ड-प्रतिक्रिया (एएलएसआर) कोड कहा जाता है, श्रवण ध्वनिक संदीपन के न्यूरल प्रतिनिधित्व के लिए प्राप्त किए गए हैं। यह श्रवण न्यूरल के भीतर स्थान या ट्यूनिंग, साथ ही प्रत्येक न्यूरल फाइबर श्रवण न्यूरल के भीतर चरण-लॉकिंग दोनों का फायदा उठाता है। पहला एएलएसआर प्रतिनिधित्व स्थिर-अवस्था स्वरों के लिए था;<ref>{{cite journal|last1=Sachs|first1=Murray B.|last2=Young|first2=Eric D.|title=श्रवण-तंत्रिका तंतुओं की आबादी के निर्वहन पैटर्न के अस्थायी पहलुओं में स्थिर-अवस्था स्वरों का प्रतिनिधित्व|journal= The Journal of the Acoustical Society of America|date=November 1979|volume=66|issue=5|pages=1381–1403|doi=10.1121/1.383532|pmid=500976|bibcode=1979ASAJ...66.1381Y}}</ref> जटिल, गैर-स्थिर राज्य संदीपन में पिच और फॉर्मेंट आवृत्तियों के एएलएसआर प्रतिनिधित्व को बाद में वॉयस-पिच के लिए प्रदर्शित किया गया,<ref>{{cite journal|last1=Miller|first1=M.I.|last2=Sachs|first2=M.B.|title=श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में आवाज की पिच का प्रतिनिधित्व|journal=Hearing Research|date=June 1984|volume=14|issue=3|pages=257–279|pmid=6480513|doi=10.1016/0378-5955(84)90054-6|s2cid=4704044}}</ref> और व्यंजन-स्वर सिलेबल्स में फॉर्मेंट प्रतिनिधित्व।<ref>{{cite journal|last1=Miller|first1=M.I.|last2=Sachs|first2=M.B.|title=श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में स्टॉप व्यंजन का प्रतिनिधित्व|journal= The Journal of the Acoustical Society of America|date=1983|volume=74|issue=2|pages=502–517|doi=10.1121/1.389816|pmid=6619427|bibcode=1983ASAJ...74..502M}}</ref>
स्थान-समय जनसंख्या कोड, जिसे औसत-स्थानीयकृत-सिंक्रोनाइज़्ड-प्रतिक्रिया (एएलएसआर) कोड कहा जाता है, श्रवण ध्वनिक संदीपन के न्यूरल प्रतिनिधित्व के लिए प्राप्त किए गए हैं। यह श्रवण न्यूरल के भीतर स्थान या ट्यूनिंग, साथ ही प्रत्येक न्यूरल फाइबर श्रवण न्यूरल के भीतर चरण-लॉकिंग दोनों का फायदा उठाता है। पहला एएलएसआर प्रतिनिधित्व स्थिर-अवस्था स्वरों के लिए था;<ref>{{cite journal|last1=Sachs|first1=Murray B.|last2=Young|first2=Eric D.|title=श्रवण-तंत्रिका तंतुओं की आबादी के निर्वहन पैटर्न के अस्थायी पहलुओं में स्थिर-अवस्था स्वरों का प्रतिनिधित्व|journal= The Journal of the Acoustical Society of America|date=November 1979|volume=66|issue=5|pages=1381–1403|doi=10.1121/1.383532|pmid=500976|bibcode=1979ASAJ...66.1381Y}}</ref> जटिल, गैर-स्थिर राज्य संदीपन में पिच और फॉर्मेंट आवृत्तियों के एएलएसआर प्रतिनिधित्व को बाद में वॉयस-पिच के लिए प्रदर्शित किया गया,<ref>{{cite journal|last1=Miller|first1=M.I.|last2=Sachs|first2=M.B.|title=श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में आवाज की पिच का प्रतिनिधित्व|journal=Hearing Research|date=June 1984|volume=14|issue=3|pages=257–279|pmid=6480513|doi=10.1016/0378-5955(84)90054-6|s2cid=4704044}}</ref> और व्यंजन-स्वर सिलेबल्स में फॉर्मेंट प्रतिनिधित्व।<ref>{{cite journal|last1=Miller|first1=M.I.|last2=Sachs|first2=M.B.|title=श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में स्टॉप व्यंजन का प्रतिनिधित्व|journal= The Journal of the Acoustical Society of America|date=1983|volume=74|issue=2|pages=502–517|doi=10.1121/1.389816|pmid=6619427|bibcode=1983ASAJ...74..502M}}</ref> इस तरह के अभ्यावेदन का लाभ यह है कि पिच या फॉर्मेंट ट्रांज़िशन प्रोफाइल जैसी वैश्विक विशेषताओं को रेट और स्थान कोडिंग दोनों के माध्यम से एक साथ संपूर्ण न्यूरल में वैश्विक विशेषताओं के रूप में दर्शाया जा सकता है।
इस तरह के अभ्यावेदन का लाभ यह है कि पिच या फॉर्मेंट ट्रांज़िशन प्रोफाइल जैसी वैश्विक विशेषताओं को रेट और स्थान कोडिंग दोनों के माध्यम से एक साथ संपूर्ण न्यूरल में वैश्विक विशेषताओं के रूप में दर्शाया जा सकता है।


जनसंख्या कोडिंग के कई अन्य फायदे भी हैं, जिनमें न्यूरोनल [[सांख्यिकीय परिवर्तनशीलता]] के कारण अनिश्चितता में कमी और एक साथ कई अलग-अलग संदीपन विशेषताओं का प्रतिनिधित्व करने की क्षमता शामिल है। जनसंख्या कोडिंग रेट कोडिंग की तुलना में बहुत तेज़ है और संदीपन स्थितियों में लगभग तुरंत परिवर्तन को प्रतिबिंबित कर सकती है।<ref name="Hubel">{{cite journal |vauthors=Hubel DH, Wiesel TN |title=बिल्ली के स्ट्रिएट कॉर्टेक्स में एकल न्यूरॉन्स के ग्रहणशील क्षेत्र|journal=J. Physiol. |volume=148 |issue= 3|pages=574–91 |date=October 1959 |pmid=14403679 |pmc=1363130 |url=http://www.jphysiol.org/cgi/pmidlookup?view=long&pmid=14403679 |doi=10.1113/jphysiol.1959.sp006308}}</ref> ऐसी आबादी में अलग-अलग न्यूरॉन्स में आम तौर पर अलग-अलग लेकिन अतिव्यापी चयनात्मकताएं होती हैं, जिससे कई न्यूरॉन्स, लेकिन जरूरी नहीं कि सभी, किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं।
जनसंख्या कोडिंग के कई अन्य फायदे भी हैं, जिनमें न्यूरोनल [[सांख्यिकीय परिवर्तनशीलता]] के कारण अनिश्चितता में कमी और एक साथ कई अलग-अलग संदीपन विशेषताओं का प्रतिनिधित्व करने की क्षमता सम्मिलित है। जनसंख्या कोडिंग रेट कोडिंग की तुलना में बहुत तेज़ है और संदीपन स्थितियों में लगभग तुरंत परिवर्तन को प्रतिबिंबित कर सकती है।<ref name="Hubel">{{cite journal |vauthors=Hubel DH, Wiesel TN |title=बिल्ली के स्ट्रिएट कॉर्टेक्स में एकल न्यूरॉन्स के ग्रहणशील क्षेत्र|journal=J. Physiol. |volume=148 |issue= 3|pages=574–91 |date=October 1959 |pmid=14403679 |pmc=1363130 |url=http://www.jphysiol.org/cgi/pmidlookup?view=long&pmid=14403679 |doi=10.1113/jphysiol.1959.sp006308}}</ref> ऐसी जनसंख्या में अलग-अलग न्यूरॉन्स में सामान्यतः अलग-अलग लेकिन अतिव्यापी चयनात्मकताएं होती हैं, जिससे कई न्यूरॉन्स, लेकिन जरूरी नहीं कि सभी, किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं।


आम तौर पर एक एन्कोडिंग फ़ंक्शन का एक चरम मूल्य होता है, जैसे कि यदि अवधारणात्मक मूल्य चरम मूल्य के करीब है, तो न्यूरॉन की गतिविधि सबसे बड़ी है, और चरम मूल्य के कम करीब के मूल्यों के अनुसार कम हो जाती है। {{citation needed|date=November 2013}} इससे यह निष्कर्ष निकलता है कि वास्तविक अनुमानित मूल्य को न्यूरॉन्स के सेट में गतिविधि के समग्र पैटर्न से पुनर्निर्मित किया जा सकता है। वेक्टर कोडिंग सरल औसत का एक उदाहरण है। इस तरह के पुनर्निर्माण को करने के लिए एक अधिक परिष्कृत गणितीय तकनीक न्यूरोनल प्रतिक्रियाओं के बहुभिन्नरूपी वितरण के आधार पर अधिकतम संभावना की विधि है। ये मॉडल स्वतंत्रता, दूसरे क्रम के सहसंबंध, मान सकते हैं
सामान्यतः एक एन्कोडिंग फ़ंक्शन का एक चरम मूल्य होता है जैसे कि न्यूरॉन की गतिविधि सबसे बड़ी होती है यदि अवधारणात्मक मूल्य चरम मूल्य के करीब है, और चरम मूल्य के कम करीब मूल्यों के अनुसार कम हो जाता है। [उद्धरण वांछित] यह इस प्रकार है कि वास्तविक कथित न्यूरॉन्स के सेट में गतिविधि के समग्र पैटर्न से मूल्य का पुनर्निर्माण किया जा सकता है। वेक्टर कोडिंग साधारण औसत का एक उदाहरण है. इस तरह के पुनर्निर्माण को निष्पादित करने के लिए एक अधिक परिष्कृत गणितीय तकनीक न्यूरोनल प्रतिक्रियाओं के बहुभिन्नरूपी वितरण के आधार पर अधिकतम संभावना की विधि है। ये मॉडल स्वतंत्रता, दूसरे क्रम के सहसंबंध,<ref>{{Citation
<ref>{{Citation
  | author = Schneidman, E
  | author = Schneidman, E
  | author2 = Berry, MJ
  | author2 = Berry, MJ
Line 105: Line 107:
| arxiv=q-bio/0512013
| arxiv=q-bio/0512013
  | bibcode=2006Natur.440.1007S
  | bibcode=2006Natur.440.1007S
  }}</ref> या इससे भी अधिक विस्तृत निर्भरताएँ जैसे उच्च क्रम [[अधिकतम एन्ट्रापी संभाव्यता वितरण]],<ref>{{Citation
  }}</ref> या इससे भी अधिक विस्तृत निर्भरता जैसे उच्च क्रम के अधिकतम एन्ट्रापी मॉडल, <ref>{{Citation
  | author = Amari, SL
  | author = Amari, SL
  | year = 2001
  | year = 2001
Line 115: Line 117:
  | citeseerx = 10.1.1.46.5226
  | citeseerx = 10.1.1.46.5226
  | doi = 10.1109/18.930911
  | doi = 10.1109/18.930911
  }}</ref> या [[कोपुला (सांख्यिकी)]]।<ref>{{Citation
  }}</ref> या कोपुलस ग्रहण कर सकते हैं।<ref>{{Citation
  | author = Onken, A
  | author = Onken, A
  | author2 = Grünewälder, S
  | author2 = Grünewälder, S
Line 126: Line 128:
  | pmid=19956759
  | pmid=19956759
  | pmc=2776173
  | pmc=2776173
| bibcode=2009PLSCB...5E0577O}}</ref>
| bibcode=2009PLSCB...5E0577O}}</ref>  
 
 
====सहसंबंध कोडिंग====
====सहसंबंध कोडिंग====
न्यूरोनल फायरिंग के सहसंबंध कोडिंग मॉडल का दावा है कि स्पाइक ट्रेन के भीतर एक्शन पोटेंशिअल या स्पाइक्स के बीच सहसंबंध स्पाइक्स के सरल समय के ऊपर और परे अतिरिक्त जानकारी ले सकता है। प्रारंभिक कार्य ने सुझाव दिया कि स्पाइक ट्रेनों के बीच सहसंबंध केवल कम हो सकता है, और कभी नहीं बढ़ सकता है, एक प्रोत्साहन सुविधा के बारे में दो स्पाइक ट्रेनों में मौजूद कुल पारस्परिक जानकारी।<ref>{{cite journal | last1 = Johnson | first1 = KO | date = Jun 1980 | title = Sensory discrimination: neural processes preceding discrimination decision | journal = J Neurophysiol | volume = 43 | issue = 6| pages = 1793–815 | pmid=7411183| doi = 10.1152/jn.1980.43.6.1793 }}</ref> हालाँकि, बाद में यह गलत साबित हुआ। यदि शोर और सिग्नल सहसंबंध विपरीत संकेत के हैं तो सहसंबंध संरचना सूचना सामग्री को बढ़ा सकती है।<ref>{{cite journal | last1 = Panzeri | last2 = Schultz | last3 = Treves | last4 = Rolls | year = 1999 | title = तंत्रिका तंत्र में सहसंबंध और सूचना का एन्कोडिंग|pmc=1689940| doi = 10.1098/rspb.1999.0736| journal = Proc Biol Sci | volume = 266 | issue = 1423| pages = 1001–12 | pmid=10610508}}</ref> सहसंबंध ऐसी जानकारी भी ले जा सकते हैं जो न्यूरॉन्स के दो जोड़े की औसत फायरिंग रेट में मौजूद नहीं है। इसका एक अच्छा उदाहरण पेंटोबार्बिटल-एनेस्थेटाइज्ड मार्मोसेट श्रवण प्रांतस्था में मौजूद है, जिसमें शुद्ध स्वर सहसंबंधित स्पाइक्स की संख्या में वृद्धि का कारण बनता है, लेकिन न्यूरॉन्स के जोड़े की औसत फायरिंग रेट में वृद्धि नहीं करता है।<ref>{{cite journal | date = Jun 1996 | title = क्रिया-संभावित समय के समन्वय द्वारा ध्वनियों का प्राथमिक कॉर्टिकल प्रतिनिधित्व| journal = Nature | volume = 381 | issue = 6583| pages = 610–3 | doi=10.1038/381610a0 | pmid=8637597 | last1 = Merzenich | first1 = MM| bibcode =1996Natur.381..610D| s2cid = 4258853}}</ref>
न्यूरोनल फायरिंग के सहसंबंध कोडिंग मॉडल का दावा है कि स्पाइक ट्रेन के भीतर एक्शन पोटेंशिअल या स्पाइक्स के बीच सहसंबंध स्पाइक्स के सरल समय के ऊपर और परे अतिरिक्त जानकारी ले सकता है। प्रारंभिक कार्य ने सुझाव दिया कि स्पाइक ट्रेनों के बीच सहसंबंध केवल कम हो सकता है, और कभी नहीं बढ़ सकता है, एक प्रोत्साहन सुविधा के बारे में दो स्पाइक ट्रेनों में उपस्थित कुल पारस्परिक जानकारी।<ref>{{cite journal | last1 = Johnson | first1 = KO | date = Jun 1980 | title = Sensory discrimination: neural processes preceding discrimination decision | journal = J Neurophysiol | volume = 43 | issue = 6| pages = 1793–815 | pmid=7411183| doi = 10.1152/jn.1980.43.6.1793 }}</ref> हालाँकि, बाद में यह गलत साबित हुआ। यदि रव और सिग्नल सहसंबंध विपरीत संकेत के हैं तो सहसंबंध संरचना सूचना सामग्री को बढ़ा सकती है।<ref>{{cite journal | last1 = Panzeri | last2 = Schultz | last3 = Treves | last4 = Rolls | year = 1999 | title = तंत्रिका तंत्र में सहसंबंध और सूचना का एन्कोडिंग|pmc=1689940| doi = 10.1098/rspb.1999.0736| journal = Proc Biol Sci | volume = 266 | issue = 1423| pages = 1001–12 | pmid=10610508}}</ref> सहसंबंध ऐसी जानकारी भी ले जा सकते हैं जो न्यूरॉन्स के दो युग्म की औसत फायरिंग रेट में उपस्थित नहीं है। इसका एक अच्छा उदाहरण पेंटोबार्बिटल-एनेस्थेटाइज्ड मार्मोसेट श्रवण प्रांतस्था में उपस्थित है, जिसमें शुद्ध स्वर सहसंबंधित स्पाइक्स की संख्या में वृद्धि का कारण बनता है, लेकिन न्यूरॉन्स के युग्म की औसत फायरिंग रेट में वृद्धि नहीं करता है।<ref>{{cite journal | date = Jun 1996 | title = क्रिया-संभावित समय के समन्वय द्वारा ध्वनियों का प्राथमिक कॉर्टिकल प्रतिनिधित्व| journal = Nature | volume = 381 | issue = 6583| pages = 610–3 | doi=10.1038/381610a0 | pmid=8637597 | last1 = Merzenich | first1 = MM| bibcode =1996Natur.381..610D| s2cid = 4258853}}</ref>
 
 
==== स्वतंत्र-स्पाइक कोडिंग ====
==== स्वतंत्र-स्पाइक कोडिंग ====
न्यूरोनल फायरिंग के स्वतंत्र-स्पाइक कोडिंग मॉडल का दावा है कि प्रत्येक व्यक्तिगत एक्शन पोटेंशिअल, या स्पाइक, एक्शन पोटेंशिअल के भीतर एक दूसरे स्पाइक से स्वतंत्र है।<ref>Dayan P & Abbott LF. ''Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems''. Cambridge, Massachusetts: The MIT Press; 2001. {{ISBN|0-262-04199-5}}</ref><ref>Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. ''Spikes: Exploring the Neural Code''. Cambridge, Massachusetts: The MIT Press; 1999. {{ISBN|0-262-68108-0}}</ref>
न्यूरोनल फायरिंग के स्वतंत्र-स्पाइक कोडिंग मॉडल का दावा है कि प्रत्येक व्यक्तिगत एक्शन पोटेंशिअल, या स्पाइक, एक्शन पोटेंशिअल के भीतर एक दूसरे स्पाइक से स्वतंत्र है।<ref>Dayan P & Abbott LF. ''Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems''. Cambridge, Massachusetts: The MIT Press; 2001. {{ISBN|0-262-04199-5}}</ref><ref>Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. ''Spikes: Exploring the Neural Code''. Cambridge, Massachusetts: The MIT Press; 1999. {{ISBN|0-262-68108-0}}</ref>
==== स्थिति कोडिंग ====
==== स्थिति कोडिंग ====
[[File:PopulationCode.svg|thumb|विशिष्ट स्थिति कोडिंग का प्लॉट]]एक विशिष्ट जनसंख्या कोड में गॉसियन ट्यूनिंग वक्र के साथ न्यूरॉन्स शामिल होते हैं, जिसका अर्थ संदीपन की तीव्रता के साथ रैखिक रूप से भिन्न होता है, जिसका अर्थ है कि न्यूरॉन माध्य के निकट संदीपन के लिए सबसे दृढ़ता से (प्रति सेकंड स्पाइक्स के संदर्भ में) प्रतिक्रिया करता है। वास्तविक तीव्रता को सबसे बड़ी प्रतिक्रिया वाले न्यूरॉन के माध्य के अनुरूप संदीपन स्तर के रूप में पुनर्प्राप्त किया जा सकता है। हालाँकि, न्यूरल प्रतिक्रियाओं में निहित शोर का मतलब है कि अधिकतम संभावना अनुमान फ़ंक्शन अधिक सटीक है।
[[File:PopulationCode.svg|thumb|विशिष्ट स्थिति कोडिंग का प्लॉट]]एक विशिष्ट जनसंख्या कोड में गॉसियन ट्यूनिंग वक्र के साथ न्यूरॉन्स सम्मिलित होते हैं, जिसका अर्थ संदीपन की तीव्रता के साथ रैखिक रूप से भिन्न होता है, जिसका अर्थ है कि न्यूरॉन माध्य के निकट संदीपन के लिए सबसे दृढ़ता से (प्रति सेकंड स्पाइक्स के संदर्भ में) प्रतिक्रिया करता है। वास्तविक तीव्रता को सबसे बड़ी प्रतिक्रिया वाले न्यूरॉन के माध्य के अनुरूप संदीपन स्तर के रूप में पुनर्प्राप्त किया जा सकता है। हालाँकि, न्यूरल प्रतिक्रियाओं में निहित रव का मतलब है कि अधिकतम संभावना अनुमान फ़ंक्शन अधिक सटीक है।


[[File:NoisyNeuralResponse.png|thumb|न्यूरल प्रतिक्रियाएँ शोरगुल वाली और अविश्वसनीय होती हैं।]]इस प्रकार के कोड का उपयोग संयुक्त स्थिति, आंख की स्थिति, रंग या ध्वनि आवृत्ति जैसे निरंतर चर को एन्कोड करने के लिए किया जाता है। कोई भी व्यक्तिगत न्यूरॉन रेट कोडिंग का उपयोग करके चर को ईमानदारी से एन्कोड करने के लिए बहुत शोर करता है, लेकिन एक पूरी आबादी अधिक निष्ठा और सटीकता सुनिश्चित करती है। यूनिमॉडल ट्यूनिंग वक्रों की आबादी के लिए, यानी एक ही शिखर के साथ, परिशुद्धता आमतौर पर न्यूरॉन्स की संख्या के साथ रैखिक रूप से मापी जाती है। इसलिए, आधी परिशुद्धता के लिए, आधे से अधिक न्यूरॉन्स की आवश्यकता होती है। इसके विपरीत, जब ट्यूनिंग वक्रों में कई शिखर होते हैं, जैसे कि ग्रिड कोशिकाएं जो अंतरिक्ष का प्रतिनिधित्व करती हैं, तो जनसंख्या की सटीकता न्यूरॉन्स की संख्या के साथ तेजी से बढ़ सकती है। यह समान परिशुद्धता के लिए आवश्यक न्यूरॉन्स की संख्या को बहुत कम कर देता है।<ref name="Mat">{{cite journal |vauthors=Mathis A, Herz AV, Stemmler MB |title=नेस्टेड न्यूरोनल अभ्यावेदन का रिज़ॉल्यूशन न्यूरॉन्स की संख्या में घातीय हो सकता है|journal=Phys. Rev. Lett. |volume=109 |issue=1 |pages=018103 |date=July 2012 |pmid=23031134 |bibcode=2012PhRvL.109a8103M |doi=10.1103/PhysRevLett.109.018103|doi-access=free }}</ref>
[[File:NoisyNeuralResponse.png|thumb|न्यूरल प्रतिक्रियाएँ शोरगुल वाली और अविश्वसनीय होती हैं।]]इस प्रकार के कोड का उपयोग संयुक्त स्थिति, आंख की स्थिति, रंग या ध्वनि आवृत्ति जैसे निरंतर चर को एन्कोड करने के लिए किया जाता है। कोई भी व्यक्तिगत न्यूरॉन रेट कोडिंग का उपयोग करके चर को ईमानदारी से एन्कोड करने के लिए बहुत रव करता है, लेकिन एक पूरी जनसंख्या अधिक निष्ठा और सटीकता सुनिश्चित करती है। यूनिमॉडल ट्यूनिंग वक्रों की जनसंख्या के लिए, यानी एक ही शिखर के साथ, परिशुद्धता सामान्यतः न्यूरॉन्स की संख्या के साथ रैखिक रूप से मापी जाती है। इसलिए, आधी परिशुद्धता के लिए, आधे से अधिक न्यूरॉन्स की आवश्यकता होती है। इसके विपरीत, जब ट्यूनिंग वक्रों में कई शिखर होते हैं, जैसे कि ग्रिड कोशिकाएं जो अंतरिक्ष का प्रतिनिधित्व करती हैं, तो जनसंख्या की सटीकता न्यूरॉन्स की संख्या के साथ तेजी से बढ़ सकती है। यह समान परिशुद्धता के लिए आवश्यक न्यूरॉन्स की संख्या को बहुत कम कर देता है।<ref name="Mat">{{cite journal |vauthors=Mathis A, Herz AV, Stemmler MB |title=नेस्टेड न्यूरोनल अभ्यावेदन का रिज़ॉल्यूशन न्यूरॉन्स की संख्या में घातीय हो सकता है|journal=Phys. Rev. Lett. |volume=109 |issue=1 |pages=018103 |date=July 2012 |pmid=23031134 |bibcode=2012PhRvL.109a8103M |doi=10.1103/PhysRevLett.109.018103|doi-access=free }}</ref>
=== विरल कोडिंग ===
विरल कोड तब होता है जब प्रत्येक आइटम को न्यूरॉन्स के अपेक्षाकृत छोटे सेट के स्थिर सक्रियण द्वारा एन्कोड किया जाता है। प्रत्येक आइटम को एन्कोड करने के लिए, यह सभी उपलब्ध न्यूरॉन्स का एक अलग उपसमूह है। सेंसर-स्पर्स कोडिंग के विपरीत, सेंसर-सघन कोडिंग का तात्पर्य है कि संभावित सेंसर स्थानों से सभी जानकारी ज्ञात है।


परिणामस्वरूप, विरलता अस्थायी विरलता पर केंद्रित हो सकती है ("अपेक्षाकृत कम संख्या में समय अवधि सक्रिय होती है") या न्यूरॉन्स की सक्रिय आबादी में विरलता पर। इस बाद वाले स्थिति में, इसे एक समयावधि में जनसंख्या में न्यूरॉन्स की कुल संख्या के सापेक्ष सक्रिय न्यूरॉन्स की संख्या के रूप में परिभाषित किया जा सकता है। ऐसा लगता है कि यह तंत्रिका संबंधी संगणना की एक पहचान है क्योंकि पारंपरिक कंप्यूटर की तुलना में, जानकारी न्यूरॉन्स में बड़े पैमाने पर वितरित की जाती है। प्राकृतिक छवियों की विरल कोडिंग तरंगिका-जैसे उन्मुख फिल्टर का उत्पादन करती है जो दृश्य कॉर्टेक्स में सरल कोशिकाओं के ग्रहणशील क्षेत्रों से मिलती जुलती है।<ref>{{cite journal | last1 = Olshausen | first1 = Bruno A | last2 = Field | first2 = David J | year = 1996 | title = प्राकृतिक छवियों के लिए विरल कोड सीखकर सरल-कोशिका ग्रहणशील क्षेत्र गुणों का उद्भव| url = http://www.cs.ubc.ca/~little/cpsc425/olshausen_field_nature_1996.pdf | journal = Nature | volume = 381 | issue = 6583 | pages = 607–609 | doi = 10.1038/381607a0 | pmid = 8637596 | bibcode = 1996Natur.381..607O | s2cid = 4358477 | access-date = 2016-03-29 | archive-url = https://web.archive.org/web/20151123113216/http://www.cs.ubc.ca/~little/cpsc425/olshausen_field_nature_1996.pdf | archive-date = 2015-11-23 | url-status = dead }}</ref> अस्थायी कोडिंग के एक साथ उपयोग से विरल कोड की क्षमता बढ़ाई जा सकती है, जैसा कि टिड्डी घ्राण प्रणाली में पाया जाता है।<ref>{{cite journal|last1=Gupta|first1=N|last2=Stopfer|first2=M|title=विरल संवेदी कोडिंग में जानकारी के लिए एक अस्थायी चैनल।|journal=Current Biology|date=6 October 2014|volume=24|issue=19|pages=2247–56|pmid=25264257|doi=10.1016/j.cub.2014.08.021|pmc=4189991}}</ref>


=== विरल कोडिंग ===
इनपुट पैटर्न के संभावित बड़े सेट को देखते हुए, विरल कोडिंग एल्गोरिदम (जैसे विरल ऑटोएनकोडर) स्वचालित रूप से प्रतिनिधि पैटर्न की एक छोटी संख्या को खोजने का प्रयास करते हैं, जो सही अनुपात में संयुक्त होने पर, मूल इनपुट पैटर्न को पुन: उत्पन्न करते हैं। फिर इनपुट के लिए विरल कोडिंग में उन प्रतिनिधि पैटर्न सम्मिलित होते हैं। उदाहरण के लिए, अंग्रेजी वाक्यों के बहुत बड़े सेट को कम संख्या में प्रतीकों (जैसे अक्षर, संख्या, विराम चिह्न,) द्वारा एन्कोड किया जा सकता है और रिक्त स्थान) एक विशेष वाक्य के लिए एक विशेष क्रम में संयुक्त होते हैं, और इसलिए अंग्रेजी के लिए एक विरल कोडिंग वे प्रतीक होंगे।
विरल कोड तब होता है जब प्रत्येक आइटम को न्यूरॉन्स के अपेक्षाकृत छोटे सेट के मजबूत सक्रियण द्वारा एन्कोड किया जाता है। प्रत्येक आइटम को एन्कोड करने के लिए, यह सभी उपलब्ध न्यूरॉन्स का एक अलग उपसमूह है। सेंसर-स्पर्स कोडिंग के विपरीत, सेंसर-सघन कोडिंग का तात्पर्य है कि संभावित सेंसर स्थानों से सभी जानकारी ज्ञात है।
 
परिणामस्वरूप, विरलता अस्थायी विरलता (अपेक्षाकृत कम संख्या में समय अवधि सक्रिय होती है) या न्यूरॉन्स की सक्रिय आबादी में विरलता पर केंद्रित हो सकती है। इस बाद के मामले में, इसे एक समय अवधि में जनसंख्या में न्यूरॉन्स की कुल संख्या के सापेक्ष सक्रिय न्यूरॉन्स की संख्या के रूप में परिभाषित किया जा सकता है। यह न्यूरल संगणना की एक पहचान प्रतीत होती है क्योंकि पारंपरिक कंप्यूटर की तुलना में, जानकारी बड़े पैमाने पर न्यूरॉन्स में वितरित की जाती है। प्राकृतिक छवियों की विरल कोडिंग तरंगिका-जैसे उन्मुख फिल्टर का उत्पादन करती है जो दृश्य प्रांतस्था में सरल कोशिकाओं के [[ग्रहणशील क्षेत्र]]ों से मिलती जुलती है।<ref>{{cite journal | last1 = Olshausen | first1 = Bruno A | last2 = Field | first2 = David J | year = 1996 | title = प्राकृतिक छवियों के लिए विरल कोड सीखकर सरल-कोशिका ग्रहणशील क्षेत्र गुणों का उद्भव| url = http://www.cs.ubc.ca/~little/cpsc425/olshausen_field_nature_1996.pdf | journal = Nature | volume = 381 | issue = 6583 | pages = 607–609 | doi = 10.1038/381607a0 | pmid = 8637596 | bibcode = 1996Natur.381..607O | s2cid = 4358477 | access-date = 2016-03-29 | archive-url = https://web.archive.org/web/20151123113216/http://www.cs.ubc.ca/~little/cpsc425/olshausen_field_nature_1996.pdf | archive-date = 2015-11-23 | url-status = dead }}</ref> अस्थायी कोडिंग के एक साथ उपयोग से विरल कोड की क्षमता बढ़ाई जा सकती है, जैसा कि टिड्डी घ्राण प्रणाली में पाया जाता है।<ref>{{cite journal|last1=Gupta|first1=N|last2=Stopfer|first2=M|title=विरल संवेदी कोडिंग में जानकारी के लिए एक अस्थायी चैनल।|journal=Current Biology|date=6 October 2014|volume=24|issue=19|pages=2247–56|pmid=25264257|doi=10.1016/j.cub.2014.08.021|pmc=4189991}}</ref>
इनपुट पैटर्न के संभावित बड़े सेट को देखते हुए, विरल कोडिंग एल्गोरिदम (उदाहरण के लिए ऑटोएनकोडर # स्पार्स ऑटोएनकोडर (एसएई)) स्वचालित रूप से प्रतिनिधि पैटर्न की एक छोटी संख्या खोजने का प्रयास करते हैं, जो सही अनुपात में संयुक्त होने पर, मूल इनपुट पैटर्न को पुन: उत्पन्न करते हैं। इनपुट के लिए विरल कोडिंग में वे प्रतिनिधि पैटर्न शामिल होते हैं। उदाहरण के लिए, अंग्रेजी वाक्यों के बहुत बड़े सेट को किसी विशेष वाक्य के लिए एक विशेष क्रम में संयुक्त छोटी संख्या में प्रतीकों (यानी अक्षर, संख्या, विराम चिह्न और रिक्त स्थान) द्वारा एन्कोड किया जा सकता है, और इसलिए अंग्रेजी के लिए विरल कोडिंग होगी प्रतीक.


==== रैखिक जनरेटिव मॉडल ====
==== रैखिक जनरेटिव मॉडल ====
Line 153: Line 148:


अधिक औपचारिक रूप से, वास्तविक क्रमांकित इनपुट वैक्टर का एक k-आयामी सेट दिया गया है <math>\vec{\xi }\in \mathbb{R}^{k}</math>विरल कोडिंग का लक्ष्य n k-आयामी [[आधार (रैखिक बीजगणित)]] निर्धारित करना है <math>\vec{b_1}, \ldots, \vec{b_n} \in \mathbb{R}^{k}</math> भार या गुणांक के एक [[विरल वेक्टर]] एन-आयामी वेक्टर के साथ <math>\vec{s} \in \mathbb{R}^{n}</math> प्रत्येक इनपुट वेक्टर के लिए, ताकि गुणांकों द्वारा दिए गए अनुपात के साथ आधार वेक्टर का एक रैखिक संयोजन इनपुट वेक्टर के निकट सन्निकटन में परिणत हो: <math>\vec{\xi} \approx \sum_{j=1}^{n} s_{j}\vec{b}_{j}</math>.<ref name=Lee>{{cite journal|last1=Lee|first1=Honglak|last2=Battle|first2=Alexis|last3=Raina|first3=Rajat|last4=Ng|first4=Andrew Y.|title=कुशल विरल कोडिंग एल्गोरिदम|journal=Advances in Neural Information Processing Systems|year=2006|url=https://ai.stanford.edu/~hllee/nips06-sparsecoding.pdf}}</ref>
अधिक औपचारिक रूप से, वास्तविक क्रमांकित इनपुट वैक्टर का एक k-आयामी सेट दिया गया है <math>\vec{\xi }\in \mathbb{R}^{k}</math>विरल कोडिंग का लक्ष्य n k-आयामी [[आधार (रैखिक बीजगणित)]] निर्धारित करना है <math>\vec{b_1}, \ldots, \vec{b_n} \in \mathbb{R}^{k}</math> भार या गुणांक के एक [[विरल वेक्टर]] एन-आयामी वेक्टर के साथ <math>\vec{s} \in \mathbb{R}^{n}</math> प्रत्येक इनपुट वेक्टर के लिए, ताकि गुणांकों द्वारा दिए गए अनुपात के साथ आधार वेक्टर का एक रैखिक संयोजन इनपुट वेक्टर के निकट सन्निकटन में परिणत हो: <math>\vec{\xi} \approx \sum_{j=1}^{n} s_{j}\vec{b}_{j}</math>.<ref name=Lee>{{cite journal|last1=Lee|first1=Honglak|last2=Battle|first2=Alexis|last3=Raina|first3=Rajat|last4=Ng|first4=Andrew Y.|title=कुशल विरल कोडिंग एल्गोरिदम|journal=Advances in Neural Information Processing Systems|year=2006|url=https://ai.stanford.edu/~hllee/nips06-sparsecoding.pdf}}</ref>
रैखिक जनरेटिव मॉडल को कार्यान्वित करने वाले एल्गोरिदम द्वारा उत्पन्न कोडिंग को नरम विरलता और कठोर विरलता वाले कोडिंग में वर्गीकृत किया जा सकता है।<ref name=Rehn/>ये विशिष्ट इनपुट के लिए आधार वेक्टर गुणांक के वितरण को संदर्भित करते हैं। नरम विरलता के साथ कोडिंग में एक सहज सामान्य वितरण-जैसा वितरण होता है, लेकिन गॉसियन की तुलना में शिखर, कई शून्य मान, कुछ छोटे निरपेक्ष मान, कम बड़े निरपेक्ष मान और बहुत कम बहुत बड़े निरपेक्ष मान होते हैं। इस प्रकार, कई आधार वैक्टर सक्रिय हैं। दूसरी ओर, कठिन विरलता इंगित करती है कि कई शून्य मान हैं, कोई छोटा निरपेक्ष मान नहीं है या शायद ही कोई है, कम बड़े निरपेक्ष मान हैं, और बहुत कम बहुत बड़े निरपेक्ष मान हैं, और इस प्रकार कुछ आधार वैक्टर सक्रिय हैं। यह चयापचय के दृष्टिकोण से आकर्षक है: जब कम न्यूरॉन्स सक्रिय होते हैं तो कम ऊर्जा का उपयोग होता है।<ref name=Rehn/>


कोडिंग का एक अन्य माप यह है कि क्या यह गंभीर रूप से पूर्ण है या अतिपूर्ण है। यदि आधार वैक्टर n की संख्या इनपुट सेट की आयामीता k के बराबर है, तो कोडिंग को गंभीर रूप से पूर्ण कहा जाता है। इस मामले में, इनपुट वेक्टर में सुचारू परिवर्तन के परिणामस्वरूप गुणांक में अचानक परिवर्तन होता है, और कोडिंग इनपुट में छोटे स्केलिंग, छोटे अनुवाद या शोर को खूबसूरती से संभालने में सक्षम नहीं है। यदि, हालांकि, आधार वैक्टर की संख्या इनपुट सेट की आयामीता से बड़ी है, तो कोडिंग पूरी हो गई है। ओवरकंप्लीट कोडिंग इनपुट वैक्टर के बीच आसानी से इंटरपोल हो जाती है और इनपुट शोर के तहत मजबूत होती है।<ref name=Olshausen>{{cite journal|first1=Bruno A.|last1=Olshausen|first2=David J.|last2=Field|title=Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?|journal=Vision Research|year=1997|volume=37|number=23|pages=3311–3325|url=http://www.chaos.gwdg.de/~michael/CNS_course_2004/papers_max/OlshausenField1997.pdf|doi=10.1016/s0042-6989(97)00169-7|pmid=9425546|doi-access=free}}</ref> अनुमान है कि मानव प्राथमिक दृश्य प्रांतस्था 500 के कारक से अधिक पूर्ण हो जाती है, उदाहरण के लिए, इनपुट का एक 14 x 14 पैच (एक 196-आयामी स्थान) लगभग 100,000 न्यूरॉन्स द्वारा कोडित होता है।<ref name=Rehn/>
रैखिक जनरेटिव मॉडल को कार्यान्वित करने वाले एल्गोरिदम द्वारा उत्पन्न कोडिंग को नरम विरलता और कठोर विरलता वाले कोडिंग में वर्गीकृत किया जा सकता है।<ref name="Rehn" /> ये विशिष्ट इनपुट के लिए आधार वेक्टर गुणांक के वितरण को संदर्भित करते हैं। नरम विरलता के साथ कोडिंग में एक सहज सामान्य वितरण-जैसा वितरण होता है, लेकिन गॉसियन की तुलना में शिखर, कई शून्य मान, कुछ छोटे निरपेक्ष मान, कम बड़े निरपेक्ष मान और बहुत कम बहुत बड़े निरपेक्ष मान होते हैं। इस प्रकार, कई आधार वैक्टर सक्रिय हैं। दूसरी ओर, कठिन विरलता इंगित करती है कि कई शून्य मान हैं, कोई छोटा निरपेक्ष मान नहीं है या शायद ही कोई है, कम बड़े निरपेक्ष मान हैं, और बहुत कम बहुत बड़े निरपेक्ष मान हैं, और इस प्रकार कुछ आधार वैक्टर सक्रिय हैं। यह चयापचय के दृष्टिकोण से आकर्षक है: जब कम न्यूरॉन्स सक्रिय होते हैं तो कम ऊर्जा का उपयोग होता है।<ref name="Rehn" />
 
कोडिंग का एक अन्य माप यह है कि क्या यह गंभीर रूप से पूर्ण है या अतिपूर्ण है। यदि आधार वैक्टर n की संख्या इनपुट सेट की आयामीता k के बराबर है, तो कोडिंग को गंभीर रूप से पूर्ण कहा जाता है। इस स्थिति में, इनपुट वेक्टर में सुचारू परिवर्तन के परिणामस्वरूप गुणांक में अचानक परिवर्तन होता है, और कोडिंग इनपुट में छोटे स्केलिंग, छोटे अनुवाद या रव को खूबसूरती से संभालने में सक्षम नहीं है। यदि, हालांकि, आधार वैक्टर की संख्या इनपुट सेट की आयामीता से बड़ी है, तो कोडिंग पूरी हो गई है। ओवरकंप्लीट कोडिंग इनपुट वैक्टर के बीच आसानी से इंटरपोल हो जाती है और इनपुट रव के तहत स्थिर होती है।<ref name=Olshausen>{{cite journal|first1=Bruno A.|last1=Olshausen|first2=David J.|last2=Field|title=Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?|journal=Vision Research|year=1997|volume=37|number=23|pages=3311–3325|url=http://www.chaos.gwdg.de/~michael/CNS_course_2004/papers_max/OlshausenField1997.pdf|doi=10.1016/s0042-6989(97)00169-7|pmid=9425546|doi-access=free}}</ref> अनुमान है कि मानव प्राथमिक दृश्य प्रांतस्था 500 के कारक से अधिक पूर्ण हो जाती है, उदाहरण के लिए, इनपुट का एक 14 x 14 पैच (एक 196-आयामी स्थान) लगभग 100,000 न्यूरॉन्स द्वारा कोडित होता है।<ref name=Rehn/>


अन्य मॉडल मिलान खोज पर आधारित हैं, एक [[विरल सन्निकटन]] एल्गोरिथ्म जो बहुआयामी डेटा के सबसे अच्छे मिलान वाले अनुमानों को ढूंढता है, और विरल शब्दकोश शिक्षण, एक प्रतिनिधित्व सीखने की विधि जिसका उद्देश्य एक रैखिक संयोजन के रूप में इनपुट डेटा के [[विरल मैट्रिक्स]] प्रतिनिधित्व को ढूंढना है। मूल तत्वों के साथ-साथ उन मूल तत्वों का भी।<ref>{{Cite journal|last1=Zhang|first1=Zhifeng|last2=Mallat|first2=Stephane G.|last3=Davis|first3=Geoffrey M.|date=July 1994|title=अनुकूली समय-आवृत्ति अपघटन|journal=Optical Engineering|volume=33|issue=7|pages=2183–2192|doi=10.1117/12.173207|issn=1560-2303|bibcode=1994OptEn..33.2183D}}</ref><ref>{{Cite book|last1=Pati|first1=Y. C.|last2=Rezaiifar|first2=R.|last3=Krishnaprasad|first3=P. S.|title=Proceedings of 27th Asilomar Conference on Signals, Systems and Computers |chapter=Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition |date=November 1993|pages=40–44 vol.1|doi=10.1109/ACSSC.1993.342465|isbn=978-0-8186-4120-6|citeseerx=10.1.1.348.5735|s2cid=16513805}}</ref><ref>{{Cite journal|date=2009-05-01|title=CoSaMP: Iterative signal recovery from incomplete and inaccurate samples|journal=Applied and Computational Harmonic Analysis|volume=26|issue=3|pages=301–321|doi=10.1016/j.acha.2008.07.002|issn=1063-5203|last1=Needell|first1=D.|last2=Tropp|first2=J.A.|arxiv=0803.2392}}</ref>
अन्य मॉडल मिलान खोज पर आधारित हैं, एक [[विरल सन्निकटन]] एल्गोरिथ्म जो बहुआयामी डेटा के सबसे अच्छे मिलान वाले अनुमानों को ढूंढता है, और विरल शब्दकोश शिक्षण, एक प्रतिनिधित्व सीखने की विधि जिसका उद्देश्य एक रैखिक संयोजन के रूप में इनपुट डेटा के [[विरल मैट्रिक्स]] प्रतिनिधित्व को ढूंढना है। मूल तत्वों के साथ-साथ उन मूल तत्वों का भी।<ref>{{Cite journal|last1=Zhang|first1=Zhifeng|last2=Mallat|first2=Stephane G.|last3=Davis|first3=Geoffrey M.|date=July 1994|title=अनुकूली समय-आवृत्ति अपघटन|journal=Optical Engineering|volume=33|issue=7|pages=2183–2192|doi=10.1117/12.173207|issn=1560-2303|bibcode=1994OptEn..33.2183D}}</ref><ref>{{Cite book|last1=Pati|first1=Y. C.|last2=Rezaiifar|first2=R.|last3=Krishnaprasad|first3=P. S.|title=Proceedings of 27th Asilomar Conference on Signals, Systems and Computers |chapter=Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition |date=November 1993|pages=40–44 vol.1|doi=10.1109/ACSSC.1993.342465|isbn=978-0-8186-4120-6|citeseerx=10.1.1.348.5735|s2cid=16513805}}</ref><ref>{{Cite journal|date=2009-05-01|title=CoSaMP: Iterative signal recovery from incomplete and inaccurate samples|journal=Applied and Computational Harmonic Analysis|volume=26|issue=3|pages=301–321|doi=10.1016/j.acha.2008.07.002|issn=1063-5203|last1=Needell|first1=D.|last2=Tropp|first2=J.A.|arxiv=0803.2392}}</ref>
==== जैविक साक्ष्य ====
==== जैविक साक्ष्य ====
स्मृति क्षमता बढ़ाने के लिए विरल कोडिंग न्यूरल तंत्र की एक सामान्य रणनीति हो सकती है। अपने वातावरण के अनुकूल ढलने के लिए, जानवरों को सीखना चाहिए कि कौन सी उत्तेजनाएँ पुरस्कार या दंड से जुड़ी हैं और इन प्रबलित संदीपन को समान लेकिन अप्रासंगिक संदीपन से अलग करना चाहिए। ऐसे कार्यों के लिए संदीपन-विशिष्ट [[साहचर्य स्मृति (मनोविज्ञान)]] को लागू करने की आवश्यकता होती है जिसमें न्यूरल समूह में से केवल कुछ न्यूरॉन्स किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं और प्रत्येक न्यूरॉन सभी संभावित संदीपन में से केवल कुछ संदीपन पर प्रतिक्रिया करता है।
स्मृति क्षमता बढ़ाने के लिए विरल कोडिंग न्यूरल तंत्र की एक सामान्य रणनीति हो सकती है। अपने वातावरण के अनुकूल ढलने के लिए, जानवरों को सीखना चाहिए कि कौन सी संदीपन पुरस्कार या दंड से जुड़ी हैं और इन प्रबलित संदीपन को समान लेकिन अप्रासंगिक संदीपन से अलग करना चाहिए। ऐसे कार्यों के लिए संदीपन-विशिष्ट [[साहचर्य स्मृति (मनोविज्ञान)]] को लागू करने की आवश्यकता होती है जिसमें न्यूरल समूह में से केवल कुछ न्यूरॉन्स किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं और प्रत्येक न्यूरॉन सभी संभावित संदीपन में से केवल कुछ संदीपन पर प्रतिक्रिया करता है।


विरल वितरित मेमोरी पर सैद्धांतिक कार्य ने सुझाव दिया है कि विरल कोडिंग प्रतिनिधित्व के बीच ओवरलैप को कम करके सहयोगी मेमोरी की क्षमता को बढ़ाती है।<ref>Kanerva, Pentti. Sparse distributed memory. MIT press, 1988</ref> प्रायोगिक तौर पर, दृष्टि सहित कई प्रणालियों में संवेदी जानकारी का विरल प्रतिनिधित्व देखा गया है।<ref>{{cite journal | last1 = Vinje | first1 = WE | last2 = Gallant | first2 = JL | year = 2000 | title = प्राकृतिक दृष्टि के दौरान प्राथमिक दृश्य प्रांतस्था में विरल कोडिंग और सजावट| journal = Science | volume = 287 | issue = 5456| pages = 1273–1276 | pmid = 10678835 | doi=10.1126/science.287.5456.1273| bibcode = 2000Sci...287.1273V | citeseerx = 10.1.1.456.2467 }}</ref> ऑडिशन,<ref>{{cite journal | last1 = Hromádka | first1 = T | last2 = Deweese | first2 = MR | last3 = Zador | first3 = AM | year = 2008 | title = असंवेदनशील श्रवण प्रांतस्था में ध्वनियों का विरल प्रतिनिधित्व| journal = PLOS Biol | volume = 6 | issue = 1| page = e16 | pmid = 18232737 | doi=10.1371/journal.pbio.0060016 | pmc=2214813}}</ref> छूना,<ref>{{cite journal | last1 = Crochet | first1 = S | last2 = Poulet | first2 = JFA | last3 = Kremer | first3 = Y | last4 = Petersen | first4 = CCH | year = 2011 | title = सक्रिय स्पर्श की विरल कोडिंग में अंतर्निहित सिनैप्टिक तंत्र| journal = Neuron | volume = 69 | issue = 6| pages = 1160–1175 | pmid = 21435560 | doi=10.1016/j.neuron.2011.02.022| doi-access = free }}</ref> और गंध.<ref>{{cite journal | last1 = Ito | first1 = I | last2 = Ong | first2 = RCY | last3 = Raman | first3 = B | last4 = Stopfer | first4 = M | year = 2008 | title = विरल गंध प्रतिनिधित्व और घ्राण शिक्षा| journal = Nat Neurosci | volume = 11 | issue = 10| pages = 1177–1184 | pmid = 18794840 | doi=10.1038/nn.2192 | pmc=3124899}}</ref> हालाँकि, व्यापक विरल कोडिंग और इसके महत्व के लिए सैद्धांतिक तर्कों के लिए साक्ष्य जमा होने के बावजूद, एक प्रदर्शन कि विरल कोडिंग साहचर्य स्मृति की संदीपन-विशिष्टता में सुधार करती है, प्राप्त करना मुश्किल हो गया है।
विरल वितरित मेमोरी पर सैद्धांतिक कार्य ने सुझाव दिया है कि विरल कोडिंग प्रतिनिधित्व के बीच ओवरलैप को कम करके सहयोगी मेमोरी की क्षमता को बढ़ाती है।<ref>Kanerva, Pentti. Sparse distributed memory. MIT press, 1988</ref> प्रायोगिक तौर पर, दृष्टि सहित कई प्रणालियों में संवेदी जानकारी का विरल प्रतिनिधित्व देखा गया है।<ref>{{cite journal | last1 = Vinje | first1 = WE | last2 = Gallant | first2 = JL | year = 2000 | title = प्राकृतिक दृष्टि के दौरान प्राथमिक दृश्य प्रांतस्था में विरल कोडिंग और सजावट| journal = Science | volume = 287 | issue = 5456| pages = 1273–1276 | pmid = 10678835 | doi=10.1126/science.287.5456.1273| bibcode = 2000Sci...287.1273V | citeseerx = 10.1.1.456.2467 }}</ref> ऑडिशन,<ref>{{cite journal | last1 = Hromádka | first1 = T | last2 = Deweese | first2 = MR | last3 = Zador | first3 = AM | year = 2008 | title = असंवेदनशील श्रवण प्रांतस्था में ध्वनियों का विरल प्रतिनिधित्व| journal = PLOS Biol | volume = 6 | issue = 1| page = e16 | pmid = 18232737 | doi=10.1371/journal.pbio.0060016 | pmc=2214813}}</ref> छूना,<ref>{{cite journal | last1 = Crochet | first1 = S | last2 = Poulet | first2 = JFA | last3 = Kremer | first3 = Y | last4 = Petersen | first4 = CCH | year = 2011 | title = सक्रिय स्पर्श की विरल कोडिंग में अंतर्निहित सिनैप्टिक तंत्र| journal = Neuron | volume = 69 | issue = 6| pages = 1160–1175 | pmid = 21435560 | doi=10.1016/j.neuron.2011.02.022| doi-access = free }}</ref> और गंध.<ref>{{cite journal | last1 = Ito | first1 = I | last2 = Ong | first2 = RCY | last3 = Raman | first3 = B | last4 = Stopfer | first4 = M | year = 2008 | title = विरल गंध प्रतिनिधित्व और घ्राण शिक्षा| journal = Nat Neurosci | volume = 11 | issue = 10| pages = 1177–1184 | pmid = 18794840 | doi=10.1038/nn.2192 | pmc=3124899}}</ref> हालाँकि, व्यापक विरल कोडिंग और इसके महत्व के लिए सैद्धांतिक तर्कों के लिए साक्ष्य जमा होने के अतिरिक्त, एक प्रदर्शन कि विरल कोडिंग साहचर्य स्मृति की संदीपन-विशिष्टता में सुधार करती है, प्राप्त करना मुश्किल हो गया है।
 
[[ड्रोसोफिला]] घ्राण प्रणाली में, [[मशरूम निकाय]]ों की केनियन कोशिकाओं द्वारा विरल गंध कोडिंग गंध-विशिष्ट यादों के भंडारण के लिए बड़ी संख्या में सटीक पता योग्य स्थानों को उत्पन्न करने के लिए सोचा जाता है।<ref>A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014. http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory</ref> विरलता को केन्योन कोशिकाओं और [[GABAergic]] पूर्वकाल युग्मित पार्श्व (APL) न्यूरॉन्स के बीच एक नकारात्मक प्रतिक्रिया सर्किट द्वारा नियंत्रित किया जाता है। इस फीडबैक सर्किट के प्रत्येक चरण के व्यवस्थित सक्रियण और नाकाबंदी से पता चलता है कि केनियन कोशिकाएं एपीएल न्यूरॉन्स को सक्रिय करती हैं और एपीएल न्यूरॉन्स केनियन कोशिकाओं को रोकते हैं। केन्योन सेल-एपीएल फीडबैक लूप को बाधित करने से केन्योन सेल गंध प्रतिक्रियाओं की विरलता कम हो जाती है, अंतर-गंध सहसंबंध बढ़ जाता है, और मक्खियों को समान, लेकिन असमान नहीं, गंधों में भेदभाव करना सीखने से रोकता है। इन परिणामों से पता चलता है कि फीडबैक निषेध विरल, सजावटी गंध कोडिंग और इस प्रकार यादों की गंध-विशिष्टता को बनाए रखने के लिए केन्योन सेल गतिविधि को दबा देता है।<ref>Lin, Andrew C., et al. "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000970/ Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination]." Nature Neuroscience 17.4 (2014): 559-568.</ref>


ऐसा माना जाता है कि ''ड्रोसोफिला'' घ्राण प्रणाली में, मशरूम शरीर की केन्योन कोशिकाओं द्वारा विरल गंध कोडिंग गंध-विशिष्ट यादों के भंडारण के लिए बड़ी संख्या में सटीक पता योग्य स्थान उत्पन्न करती है।<ref>A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014. http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory</ref> स्पार्सनेस को केन्योन कोशिकाओं और [[GABAergic]] पूर्वकाल युग्मित पार्श्व (APL) न्यूरॉन्स के बीच एक नकारात्मक प्रतिक्रिया सर्किट द्वारा नियंत्रित किया जाता है। इस फीडबैक सर्किट के प्रत्येक चरण के व्यवस्थित सक्रियण और नाकाबंदी से पता चलता है कि केन्योन कोशिकाएं एपीएल न्यूरॉन्स को सक्रिय करती हैं और एपीएल न्यूरॉन्स केन्योन कोशिकाओं को बाधित करती हैं। केनियन सेल-एपीएल फीडबैक लूप को बाधित करने से केनियन सेल गंध प्रतिक्रियाओं की विरलता कम हो जाती है, अंतर-गंध सहसंबंध बढ़ जाता है, और मक्खियों को समान, लेकिन असमान नहीं, गंधों में भेदभाव करने से रोकता है। इन परिणामों से पता चलता है कि फीडबैक निषेध विरल, सजावट संबंधी गंध कोडिंग और इस प्रकार यादों की गंध-विशिष्टता को बनाए रखने के लिए केनियन सेल गतिविधि को दबा देता है।<ref>Lin, Andrew C., et al. "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000970/ Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination]." Nature Neuroscience 17.4 (2014): 559-568.</ref>


===नॉन-स्पाइक अल्ट्रामाइक्रो-कोडिंग (उन्नत इंटेलिजेंस के लिए)===
===नॉन-स्पाइक अल्ट्रामाइक्रो-कोडिंग (उन्नत इंटेलिजेंस के लिए)===
{{expert|talk=Farfetched theories stated as fact|date=June 2023}}
{{tone|date=June 2023}}
एक्शन-पोटेंशियल/सिनैप्टिक ("स्पाइक") सिग्नलिंग और इसकी कोडिंग की जो भी खूबियाँ और सर्वव्यापकता है, यह मानव अमूर्त विचार जैसी उच्च-बुद्धिमत्ता का कोई भी प्रशंसनीय विवरण प्रस्तुत करने में असमर्थ प्रतीत होता है; जैसे देखना <ref>Rose, S.P.R.(2015 Feb 14) 50 years of neuroscience. ''Lancet'', '''385'''(9968), 598-9. https://doi.org/10.1016/S0140-6736(15)60224-0</ref><ref>
एक्शन-पोटेंशियल/सिनैप्टिक ("स्पाइक") सिग्नलिंग और इसकी कोडिंग की जो भी खूबियाँ और सर्वव्यापकता है, यह मानव अमूर्त विचार जैसी उच्च-बुद्धिमत्ता का कोई भी प्रशंसनीय विवरण प्रस्तुत करने में असमर्थ प्रतीत होता है; जैसे देखना <ref>Rose, S.P.R.(2015 Feb 14) 50 years of neuroscience. ''Lancet'', '''385'''(9968), 598-9. https://doi.org/10.1016/S0140-6736(15)60224-0</ref><ref>
Trettenbrein PC (2016) The demise of the synapse as the locus of memory: a looming paradigm shift?  ''Frontiers in Systems Neuroscience'', '''10''': 88.      https://doi.org/10.3389/fnsys.2016.00088</ref> इसलिए विश्वसनीय डिजिटल प्रदर्शन में सक्षम विकल्प की खोज की गई, लेकिन एकमात्र संभावित उम्मीदवार 'अतिरिक्त' आरएनए ('प्रोटीन-'कोडिंग में शामिल नहीं है, इसलिए "[[एनसीआरएनए]]") का उपयोग प्रतीत होता है। वह एनसीआरएनए "लिखित-डाउन" 'स्थैतिक कोडिंग' की पेशकश करेगा। ऐसी अल्ट्रामाइक्रो साइटें क्रिया-क्षमताओं का उपयोग करके नियमित रूप से अंतर-संचार नहीं कर सकती हैं, लेकिन उन्हें लगभग निश्चित रूप से [[ इन्फ़रा रेड ]] या आस-पास के ऑप्टिकल तरंग दैर्ध्य का उपयोग करना होगा। इस तरह की तरंग दैर्ध्य आसानी से माइलिनेटेड न्यूरल तंतुओं के व्यास के साथ फिट हो जाएंगी - यहां [[समाक्षीय केबल]] के रूप में देखा जाता है - इस प्रकार जब भी उपयुक्त हो, समान अक्षतंतु पर पारंपरिक प्रणाली के साथ एक साथ काम करने वाली दूसरी तेज़ सिग्नलिंग प्रणाली (काफी भिन्न गुणों के साथ) की पेशकश की जाती है।
Trettenbrein PC (2016) The demise of the synapse as the locus of memory: a looming paradigm shift?  ''Frontiers in Systems Neuroscience'', '''10''': 88.      https://doi.org/10.3389/fnsys.2016.00088</ref> इसलिए विश्वसनीय डिजिटल प्रदर्शन में सक्षम विकल्प की खोज की गई, लेकिन एकमात्र संभावित उम्मीदवार 'अतिरिक्त' आरएनए ('प्रोटीन-'कोडिंग में सम्मिलित नहीं है, इसलिए "[[एनसीआरएनए]]") का उपयोग प्रतीत होता है। वह एनसीआरएनए "लिखित-डाउन" 'स्थैतिक कोडिंग' की पेशकश करेगा। ऐसी अल्ट्रामाइक्रो साइटें क्रिया-क्षमताओं का उपयोग करके नियमित रूप से अंतर-संचार नहीं कर सकती हैं, लेकिन उन्हें लगभग निश्चित रूप से [[ इन्फ़रा रेड ]] या आस-पास के ऑप्टिकल तरंग दैर्ध्य का उपयोग करना होगा। इस तरह की तरंग दैर्ध्य आसानी से माइलिनेटेड न्यूरल तंतुओं के व्यास के साथ फिट हो जाएंगी - यहां [[समाक्षीय केबल]] के रूप में देखा जाता है - इस प्रकार जब भी उपयुक्त हो, समान अक्षतंतु पर पारंपरिक प्रणाली के साथ एक साथ काम करने वाली दूसरी तेज़ सिग्नलिंग प्रणाली (काफी भिन्न गुणों के साथ) की पेशकश की जाती है।<ref>Traill, R.R. (2008/2005b). Thinking by Molecule, Synapse, or both? — From Piaget’s schema, to the Selecting/Editing of ncRNA. ''Gen.Sci.J.'',      https://www.gsjournal.net/Science-Journals/Research%20Papers/View/891</ref><ref name="doi.org">Traill R.R. (2022) Coding for the Brain: RNA, its Photons, and Piagetian Higher-Intelligence through Action. ''Journal of Psychiatry and Psychiatric Disorders'', '''6''', 276-297. https://doi.org/10.26502/jppd.2572-519X0175</ref><ref>Traill, R.R. (1988). The case that mammalian intelligence is based on sub-molecular memory coding and fibre-optic capabilities of myelinated nerve axons. ''Speculations in Science and Technology'', '''11'''(3), 173-181. https://www.ondwelle.com/OSM10en.pdf</ref>
<ref>Traill, R.R. (2008/2005b). Thinking by Molecule, Synapse, or both? — From Piaget’s schema, to the Selecting/Editing of ncRNA. ''Gen.Sci.J.'',      https://www.gsjournal.net/Science-Journals/Research%20Papers/View/891</ref><ref name="doi.org">Traill R.R. (2022) Coding for the Brain: RNA, its Photons, and Piagetian Higher-Intelligence through Action. ''Journal of Psychiatry and Psychiatric Disorders'', '''6''', 276-297. https://doi.org/10.26502/jppd.2572-519X0175</ref><ref>Traill, R.R. (1988). The case that mammalian intelligence is based on sub-molecular memory coding and fibre-optic capabilities of myelinated nerve axons. ''Speculations in Science and Technology'', '''11'''(3), 173-181. https://www.ondwelle.com/OSM10en.pdf</ref>
 
भले ही हम इसे सच मान लें, ऐसी गतिविधि ज्यादातर अप्राप्य है - व्यावहारिक कारणों से सीधे तौर पर देखने योग्य नहीं है - इसलिए किसी को इस मॉडल को किस हद तक स्वीकार करना चाहिए यह उसके विज्ञान के दर्शन पर निर्भर करता है। यह मॉडल काफी मात्रा में परस्पर-समर्थक अंतःविषय साक्ष्यों पर आधारित है, इसलिए [[वैज्ञानिक यथार्थवाद]] को संभवतः इसे स्वीकार करना चाहिए (जैसा कि यह अदृश्य [[ब्लैक होल्स]] या [[न्युट्रीनो]] के लिए होता है), कम से कम जब तक कि कुछ देखे गए खंडन उत्पन्न न हो जाएं - जबकि वाद्ययंत्रवाद के मिश्रण की उम्मीद की जा सकती है मॉडल को व्यावहारिक रूप से उपयोगी के रूप में उपयोग करने की इच्छा के साथ अविश्वास, यह देखते हुए कि यह कई रहस्यों का उत्तर देता है।
भले ही हम इसे सच मान लें, ऐसी गतिविधि ज्यादातर अप्राप्य है - व्यावहारिक कारणों से सीधे तौर पर देखने योग्य नहीं है - इसलिए किसी को इस मॉडल को किस हद तक स्वीकार करना चाहिए यह उसके विज्ञान के दर्शन पर निर्भर करता है। यह मॉडल काफी मात्रा में परस्पर-समर्थक अंतःविषय साक्ष्यों पर आधारित है, इसलिए [[वैज्ञानिक यथार्थवाद]] को संभवतः इसे स्वीकार करना चाहिए (जैसा कि यह अदृश्य [[ब्लैक होल्स]] या [[न्युट्रीनो]] के लिए होता है), कम से कम जब तक कि कुछ देखे गए खंडन उत्पन्न न हो जाएं - जबकि वाद्ययंत्रवाद के मिश्रण की उम्मीद की जा सकती है मॉडल को व्यावहारिक रूप से उपयोगी के रूप में उपयोग करने की इच्छा के साथ अविश्वास, यह देखते हुए कि यह कई रहस्यों का उत्तर देता है।


लेकिन इसके अलावा पूर्ण भविष्यवाणियों के रूप में प्रत्यक्ष साक्ष्य के दो छोटे आइटम भी हैं: (i) (भविष्यवाणी से अधिक आशा) कि पर्याप्त अतिरिक्त आरएनए उपलब्ध होगा - एक संदेह जो मैटिक के समय दूर हो गया था<ref>
लेकिन इसके अतिरिक्त पूरी की गई भविष्यवाणियों के रूप में प्रत्यक्ष साक्ष्य के दो छोटे आइटम भी हैं: (i) (भविष्यवाणी से अधिक एक आशा) कि पर्याप्त अतिरिक्त आरएनए उपलब्ध होगा - एक संदेह जो तब दूर हो गया जब मैटिक ने खुलासा किया कि (मनुष्यों में) आरएनए का लगभग 3% ही प्रोटीन बनाने के लिए उपयोग किया जाता था, इसलिए 97% ''अन्य कार्यों के लिए उपलब्ध था''।<ref>
Mattick, J.S. (2001). Noncoding RNAs: the architects of eukaryotic complexity. ''EMBO Reports'', '''2'''(11), 986-991. http://emboreports.npgjournals.com/cgi/content/full/2/11/986</ref> खुलासा किया कि (मनुष्यों में) केवल 3% आरएनए का उपयोग प्रोटीन बनाने के लिए किया गया था, इसलिए 97% अन्य कार्यों के लिए उपलब्ध था। (ii) समाक्षीय-केबल उप-परिकल्पना की व्यवहार्यता को प्रयोगों द्वारा उचित ठहराया गया था जिसमें दिखाया गया था कि इन्फ्रा-रेड और अन्य प्रकाश-आवृत्तियों को अक्षतंतु के माध्यम से प्रसारित किया जा सकता है।<ref>Sun Y[an], Chao Wang, & Jiapei Dai (2010, Jan). "Bio-photons as neural communication signals demonstrated by in situ biophoton autography". ''Photochem. Photobiol. Sci.'', '''9''', 315-322. https://doi.org/10.1039/b9pp00125e</ref><ref>Zangari A., D.Micheli, R.Galeazzi & A.Tozzi, V.Balzano, G.Bellavia & M.E.Caristo (2021) "Photons detected in the active nerve by photographic technique" ''Scientific Reports'', '''11''', 3022. https://doi.org/10.1038/s41598-021-82622-5</ref> इस गैर-स्पाइक मोड की परिकल्पना मस्तिष्क के भीतर विशेष रूप से संचालित होने के रूप में की गई है - उन्नत-विचार तंत्र (उच्च कशेरुकियों में) के रूप में - बाहरी दुनिया के साथ सभी अंतर-संचार करने और अन्य नियमित कार्य करने के लिए पारंपरिक "स्पाइक" संकेतों को छोड़कर हेब्बियन रखरखाव।
Mattick, J.S. (2001). Noncoding RNAs: the architects of eukaryotic complexity. ''EMBO Reports'', '''2'''(11), 986-991. http://emboreports.npgjournals.com/cgi/content/full/2/11/986</ref> (ii) समाक्षीय-केबल उप-परिकल्पना की व्यवहार्यता को प्रयोगों द्वारा उचित ठहराया गया था जिसमें दिखाया गया था कि इन्फ्रा-रेड और अन्य प्रकाश-आवृत्तियों को अक्षतंतु के माध्यम से प्रेषित किया जा सकता है।<ref>Sun Y[an], Chao Wang, & Jiapei Dai (2010, Jan). "Bio-photons as neural communication signals demonstrated by in situ biophoton autography". ''Photochem. Photobiol. Sci.'', '''9''', 315-322. https://doi.org/10.1039/b9pp00125e</ref><ref>Zangari A., D.Micheli, R.Galeazzi & A.Tozzi, V.Balzano, G.Bellavia & M.E.Caristo (2021) "Photons detected in the active nerve by photographic technique" ''Scientific Reports'', '''11''', 3022. https://doi.org/10.1038/s41598-021-82622-5</ref> इस गैर-स्पाइक मोड की परिकल्पना विशेष रूप से मस्तिष्क के भीतर - ''उन्नत-विचार तंत्र'' (उच्च कशेरुकियों में) के रूप में संचालित करने के रूप में की गई है - जो बाहरी दुनिया के साथ सभी अंतर-संचार करने के लिए पारंपरिक "स्पाइक" संकेतों को छोड़ देता है, और हेब्बियन रखरखाव सहित अन्य नियमित कार्य करते हैं।


हालाँकि, आश्चर्यजनक रूप से, कुछ सुझाव दिए गए हैं कि एक समान विधा 'कीड़ों' में स्वतंत्र रूप से विकसित हुई होगी (इस प्रकार उनके छोटे मस्तिष्क के बावजूद उनकी असाधारण प्रदर्शन-क्षमताओं को ध्यान में रखते हुए)। दरअसल, ऐसा मामला है कि पतंगों आदि की रीढ़ और एंटेना को पर्यावरण से सीधे इन्फ्रा-रेड सिग्नल प्राप्त हो सकते हैं,<ref>
हालाँकि, आश्चर्यजनक रूप से, कुछ सुझाव दिए गए हैं कि एक समान विधा '''इन्सेक्ट''' में स्वतंत्र रूप से विकसित हुई होगी (इस प्रकार उनके छोटे मस्तिष्क के अतिरिक्त उनकी असाधारण प्रदर्शन-क्षमताओं को ध्यान में रखते हुए)। दरअसल, ऐसा स्थिति है कि पतंगों आदि की रीढ़ और एंटेना को पर्यावरण से सीधे इन्फ्रा-रेड सिग्नल प्राप्त हो सकते हैं,<ref>
Callahan, P.S. (1977) Tuning in to Nature.  Routledge & Kegan Paul: London.</ref> (समीक्षा की गई <ref>Traill, R.R. (2005c). How Popperian positivism killed a good-but-poorly-presented theory — Insect Communication by Infrared. ''Gen.Sci.J.'', https://www.gsjournal.net/Science-Journals/Research%20Papers/View/897</ref>), इस प्रकार एक और संभावना है कि कभी-कभी इन संकेतों का एक समर्पित फीड-इन सीधे कीट के न्यूरल तंत्र में हो सकता है (आमतौर पर अपेक्षित 'स्पाइक' संवेदी तंत्र के बिना)। इस स्तर पर यह केवल अनुमान है, लेकिन यह कुछ आसान और किफायती प्रयोग की गुंजाइश प्रदान कर सकता है।
Callahan, P.S. (1977) Tuning in to Nature.  Routledge & Kegan Paul: London.</ref> (समीक्षा की गई <ref>Traill, R.R. (2005c). How Popperian positivism killed a good-but-poorly-presented theory — Insect Communication by Infrared. ''Gen.Sci.J.'', https://www.gsjournal.net/Science-Journals/Research%20Papers/View/897</ref>), इस प्रकार एक और संभावना है कि कभी-कभी इन संकेतों का एक समर्पित फीड-इन सीधे कीट के न्यूरल तंत्र में हो सकता है (सामान्यतः अपेक्षित 'स्पाइक' संवेदी तंत्र के बिना)। इस स्तर पर यह केवल अनुमान है, लेकिन यह कुछ आसान और किफायती प्रयोग की गुंजाइश प्रदान कर सकता है।


फिर भी एक और गैर-स्पाइक सिग्नल-मोड: अक्षतंतु के लिए ''तीसरे'' सिग्नल-मोड का अप्रत्यक्ष प्रमाण भी है! यह मोड ''बहुत धीमा'' है लेकिन उपर्युक्त स्थैतिक कोडिंग के पहले से ही स्वरूपित एनसीआरएनए-स्कीमा के रूप में ''बहुत बड़े दस्तावेज़'''' ले जाने में सक्षम है - एक्सोन के भीतर [[किनेसिन]] द्वारा एक्सोनल परिवहन के रूप में किया जाता है<ref name="doi.org"/>(बिल्कुल [[एमआरएनए]] के ज्ञात परिवहन की तरह, जिसके साथ प्रयोगशाला अध्ययनों में इसे भ्रमित किया गया होगा)।
'''फिर भी एक और गैर-स्पाइक सिग्नल-मोड:''' अक्षतंतु के लिए ''तीसरे'' सिग्नल-मोड का अप्रत्यक्ष प्रमाण भी है! यह मोड बहुत धीमा है, लेकिन उपर्युक्त स्थैतिक कोडिंग के पहले से ही स्वरूपित ncRNA-स्कीमा के रूप में ''"बहुत बड़े डॉक्यूमेंट"'' ले जाने में सक्षम है - एक्सॉन के भीतर काइन्सिन द्वारा एक्सोनल परिवहन के रूप में किया जाता है<ref name="doi.org" /> (बिल्कुल ज्ञात की तरह) [[एमआरएनए|mRNA]] का परिवहन, जिसके साथ प्रयोगशाला अध्ययन में इसे भ्रमित किया गया होगा)।


== यह भी देखें ==
== यह भी देखें ==
Line 193: Line 184:
* [[ध्यान लगा के पढ़ना या सीखना]]
* [[ध्यान लगा के पढ़ना या सीखना]]
* [[फ़ीचर एकीकरण सिद्धांत]]
* [[फ़ीचर एकीकरण सिद्धांत]]
*दादी सेल
*ग्रैंडमदर सेल
* [[तंत्रिका गणना के मॉडल]]
* [[तंत्रिका गणना के मॉडल]]
* [[तंत्रिका सहसंबंध]]
* [[तंत्रिका सहसंबंध]]
Line 213: Line 204:
* {{cite journal | last1 = Olshausen | first1 = B. A. | last2 = Field | first2 = D. J. | year = 1996| title = Emergence of simple-cell receptive field properties by learning a sparse code for natural images | journal = Nature | volume = 381 | issue = 6583| pages = 607–9 | doi=10.1038/381607a0 | pmid=8637596| bibcode = 1996Natur.381..607O| s2cid = 4358477 }}
* {{cite journal | last1 = Olshausen | first1 = B. A. | last2 = Field | first2 = D. J. | year = 1996| title = Emergence of simple-cell receptive field properties by learning a sparse code for natural images | journal = Nature | volume = 381 | issue = 6583| pages = 607–9 | doi=10.1038/381607a0 | pmid=8637596| bibcode = 1996Natur.381..607O| s2cid = 4358477 }}
*{{cite journal | last1 = Tsien | first1 = JZ. | display-authors = etal  | year = 2014 | title = On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus | journal = Neurobiology of Learning and Memory | volume = 105 | pages = 200–210 | doi=10.1016/j.nlm.2013.06.019| pmid = 23838072 | pmc = 3769419 }}
*{{cite journal | last1 = Tsien | first1 = JZ. | display-authors = etal  | year = 2014 | title = On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus | journal = Neurobiology of Learning and Memory | volume = 105 | pages = 200–210 | doi=10.1016/j.nlm.2013.06.019| pmid = 23838072 | pmc = 3769419 }}
[[Category: तंत्रिका कोडिंग| तंत्रिका कोडिंग]] [[Category: कम्प्यूटेशनल तंत्रिका विज्ञान]] [[Category: तंत्रिका सर्किट]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 09/08/2023]]
[[Category:Created On 09/08/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:कम्प्यूटेशनल तंत्रिका विज्ञान]]
[[Category:तंत्रिका कोडिंग| तंत्रिका कोडिंग]]
[[Category:तंत्रिका सर्किट]]

Latest revision as of 10:57, 22 August 2023

न्यूरल कोडिंग (या न्यूरल प्रतिनिधित्व) एक न्यूरल विज्ञान क्षेत्र है जो संदीपन और व्यक्तिगत या समूह न्यूरोनल प्रतिक्रियाओं और समूह में न्यूरॉन्स की विद्युत गतिविधि के बीच संबंध के बीच काल्पनिक संबंध को चित्रित करने से संबंधित है।[1][2] इस सिद्धांत के आधार पर कि संवेदी और अन्य जानकारी मस्तिष्क में न्यूरॉन्स के नेटवर्क द्वारा दर्शायी जाती है, यह माना जाता है कि न्यूरॉन्स डिजिटल और एनालॉग दोनों सूचनाओं को एनकोड कर सकते हैं।[3]

सिंहावलोकन

शरीर की कोशिकाओं में न्यूरॉन्स बड़ी दूरी पर संकेतों को तेजी से फैलाने की अपनी क्षमता में उल्लेखनीय हैं। वे क्रिया सामर्थ्य कहे जाने वाले विशिष्ट विद्युत स्पंदों को उत्पन्न करके ऐसा करते हैं: वोल्टेज स्पाइक्स जो अक्षतंतु तक नीचे जा सकते हैं। संवेदी न्यूरॉन्स बाहरी संवेदी संदीपन, जैसे प्रकाश, ध्वनि, स्वाद, गंध और स्पर्श की उपस्थिति के साथ, विभिन्न टेम्पोरल पैटर्न में कार्य क्षमता के अनुक्रमों को सक्रिय करके अपनी गतिविधियों को बदलते हैं। यह ज्ञात है कि संदीपन के बारे में जानकारी कार्य क्षमता के इस पैटर्न में एन्कोड की गई है और मस्तिष्क में और उसके आसपास प्रसारित की जाती है, लेकिन यह एकमात्र तरीका नहीं है। विशिष्ट न्यूरॉन्स, जैसे कि रेटिना, श्रेणीबद्ध क्षमताओं के माध्यम से अधिक जानकारी संप्रेषित कर सकते हैं। यह क्रिया क्षमता से भिन्न है क्योंकि संदीपन की ताकत के बारे में जानकारी सीधे न्यूरॉन के आउटपुट की ताकत से संबंधित होती है। श्रेणीबद्ध क्षमता के लिए सिग्नल बहुत तेजी से क्षीण होता है, जिसके लिए कम अंतर-न्यूरॉन दूरी और उच्च न्यूरोनल घनत्व की आवश्यकता होती है। वर्गीकृत क्षमता का लाभ उच्च सूचना रेट है जो स्पाइकिंग न्यूरॉन्स की तुलना में अधिक राज्यों (यानी उच्च निष्ठा) को एन्कोड करने में सक्षम है।[4]

हालाँकि क्रिया सामर्थ्य अवधि, आयाम और आकार में कुछ हद तक भिन्न हो सकते हैं, लेकिन उन्हें सामान्यतः न्यूरल कोडिंग अध्ययनों में समान रूढ़िबद्ध घटनाओं के रूप में माना जाता है। यदि किसी एक्शन पोटेंशिअल की संक्षिप्त अवधि (लगभग 1 एमएस) को नजरअंदाज कर दिया जाता है, तो एक्शन पोटेंशिअल अनुक्रम, या स्पाइक ट्रेन, को समय में सभी या किसी भी बिंदु की घटनाओं की श्रृंखला द्वारा चित्रित किया जा सकता है।[5] स्पाइक ट्रेन में दो लगातार स्पाइक्स के बीच इंटरस्पाइक अंतराल (आईएसआई) की लंबाई प्रायः स्पष्ट रूप से यादृच्छिक रूप से भिन्न होती है।[6] न्यूरल कोडिंग के अध्ययन में यह मापना और वर्णन करना सम्मिलित है कि संदीपन गुण, जैसे कि प्रकाश या ध्वनि की तीव्रता, या मोटर क्रियाएं, जैसे कि हाथ की गति की दिशा, न्यूरॉन कार्रवाई क्षमता या स्पाइक्स द्वारा कैसे दर्शायी जाती हैं। न्यूरोनल फायरिंग का वर्णन और विश्लेषण करने के लिए, सांख्यिकीय विधियों और संभाव्यता सिद्धांत और स्टोकेस्टिक बिंदु प्रक्रियाओं के तरीकों को व्यापक रूप से लागू किया गया है।

बड़े पैमाने पर न्यूरल रिकॉर्डिंग और डिकोडिंग प्रौद्योगिकियों के विकास के साथ, शोधकर्ताओं ने न्यूरल कोड को क्रैक करना प्रारम्भ कर दिया है और पहले से ही वास्तविक समय न्यूरल कोड में पहली झलक प्रदान की है क्योंकि स्मृति हिप्पोकैम्पस में बनती है और याद की जाती है, मस्तिष्क क्षेत्र जिसे जाना जाता है मेमोरी निर्माण के लिए केंद्रीय बनें।[7][8][9] न्यूरल विज्ञानियों ने कई बड़े पैमाने पर मस्तिष्क डिकोडिंग परियोजनाएँ प्रारम्भ की हैं।[10][11]

एन्कोडिंग और डिकोडिंग

उद्दीपन और प्रतिक्रिया के बीच संबंध का अध्ययन दो विपरीत दृष्टिकोणों से किया जा सकता है। न्यूरल एन्कोडिंग संदीपन से प्रतिक्रिया तक के मानचित्र को संदर्भित करता है। मुख्य फोकस यह समझना है कि न्यूरॉन्स विभिन्न प्रकार की संदीपन पर कैसे प्रतिक्रिया करते हैं, और ऐसे मॉडल का निर्माण करना है जो अन्य संदीपन की प्रतिक्रियाओं की भविष्यवाणी करने का प्रयास करते हैं। न्यूरल डिकोडिंग, संदीपन की प्रतिक्रिया से लेकर रिवर्स मैप को संदर्भित करता है, और चुनौती संदीपन, या उस संदीपन के कुछ पहलुओं को स्पाइक अनुक्रमों से फिर से बनाना है जो इसे उद्घाटित करती है।

परिकल्पित कोडिंग योजनाएं

स्पाइक्स के अनुक्रम, या 'ट्रेन' में विभिन्न कोडिंग योजनाओं पर आधारित जानकारी हो सकती है। कुछ न्यूरॉन्स में पोस्टसिनेप्टिक पार्टनर जिस ताकत के साथ प्रतिक्रिया करता है वह पूरी तरह से 'फायरिंग रेट', प्रति यूनिट समय में स्पाइक्स की औसत संख्या ('रेट कोड') पर निर्भर हो सकती है। दूसरी ओर, जटिल 'टेम्पोरल कोड' एकल स्पाइक्स के सटीक समय पर आधारित है। वे दृश्य[12] और श्रवण प्रणाली जैसे किसी बाहरी संदीपन से बंधे हो सकते हैं या तंत्रिका सर्किट्री द्वारा आंतरिक रूप से उत्पन्न हो सकते हैं।[13]

क्या न्यूरॉन्स रेट कोडिंग या टेम्पोरल कोडिंग का उपयोग करते हैं, यह तंत्रिका विज्ञान समुदाय के भीतर गहन बहस का विषय है, हालांकि इन शब्दों का क्या अर्थ है इसकी कोई स्पष्ट परिभाषा नहीं है।[14]

रेट कोडिंग

न्यूरोनल फायरिंग संचार के रेट कोडिंग मॉडल में कहा गया है कि जैसे-जैसे संदीपन की तीव्रता बढ़ती है, कार्रवाई क्षमता की आवृत्ति या रेट, या "स्पाइक फायरिंग" बढ़ जाती है। रेट कोडिंग को कभी-कभी आवृत्ति कोडिंग भी कहा जाता है।

रेट कोडिंग एक पारंपरिक कोडिंग योजना है, यह मानते हुए कि संदीपन के बारे में अधिकांश, यदि सभी नहीं, तो जानकारी न्यूरॉन की फायरिंग रेट में निहित होती है। क्योंकि किसी दिए गए प्रोत्साहन द्वारा उत्पन्न कार्य क्षमता का क्रम परीक्षण से परीक्षण में भिन्न होता है, न्यूरोनल प्रतिक्रियाओं को सामान्यतः सांख्यिकीय या संभाव्य रूप से व्यवहार किया जाता है। उन्हें विशिष्ट स्पाइक अनुक्रमों के बजाय फायरिंग दरों के आधार पर पहचाना जा सकता है। अधिकांश संवेदी प्रणालियों में, संदीपन की तीव्रता बढ़ने के साथ, फायरिंग रेट सामान्यतः गैर-रैखिक रूप से बढ़ जाती है।[15] रेट कोडिंग धारणा के तहत, स्पाइक ट्रेन की टेम्पोरल संरचना में संभवतः एन्कोड की गई किसी भी जानकारी को अनदेखा कर दिया जाता है। परिणामस्वरूप, आईएसआई 'रव' के संबंध में रेट कोडिंग अक्षम है लेकिन अत्यधिक स्थिर है।[6]

रेट कोडिंग के दौरान फायरिंग रेट की सटीक गणना करना बहुत महत्वपूर्ण है। वास्तव में, शब्द "फायरिंग रेट" की कुछ अलग-अलग परिभाषाएँ हैं, जो विभिन्न औसत प्रक्रियाओं को संदर्भित करती हैं, जैसे समय के साथ औसत ओवर टाइम (एकल-न्यूरॉन स्पाइक गणना के रूप में रेट) या प्रयोग के कई दोहराव (पीएसटीएच की रेट) का औसत हैl

रेट कोडिंग में, सीखना गतिविधि-निर्भर सिनैप्टिक वजन संशोधनों पर आधारित होता है।

रेट कोडिंग मूल रूप से 1926 में एडगर एड्रियन और यंगवे ज़ोटरमैन द्वारा दिखाई गई थी।[16] इस सरल प्रयोग में मांसपेशी पर अलग-अलग वजन लटकाए गए। जैसे-जैसे संदीपन का वजन बढ़ता गया, मांसपेशियों को संक्रमित करने वाली संवेदी तंत्रिकाओं से दर्ज की गई स्पाइक्स की संख्या भी बढ़ गई। इन मूल प्रयोगों से, एड्रियन और ज़ोटरमैन ने निष्कर्ष निकाला कि क्रिया क्षमताएँ एकात्मक घटनाएँ थीं, और घटनाओं की आवृत्ति, न कि व्यक्तिगत घटना परिमाण, अधिकांश अंतर-न्यूरोनल संचार का आधार थी।

बाद के दशकों में, फायरिंग दरों का मापन सभी प्रकार के संवेदी या कॉर्टिकल न्यूरॉन्स के गुणों का वर्णन करने के लिए मानक उपकरण बन गया, आंशिक रूप से प्रयोगात्मक रूप से दरों को मापने में सापेक्ष आसानी के कारण। हालाँकि, यह दृष्टिकोण स्पाइक्स के सटीक समय में निहित संभवतः सभी सूचनाओं की उपेक्षा करता है। हाल के वर्षों के दौरान, अधिक से अधिक प्रयोगात्मक साक्ष्यों ने सुझाव दिया है कि टेम्पोरल औसत पर आधारित सीधी फायरिंग रेट अवधारणा मस्तिष्क गतिविधि का वर्णन करने के लिए बहुत सरल हो सकती है।[6]

स्पाइक-काउंट रेट (समय के साथ औसत)

स्पाइक-काउंट रेट, जिसे टेम्पोरल औसत भी कहा जाता है, परीक्षण के दौरान दिखाई देने वाले स्पाइक्स की संख्या की गणना करके और परीक्षण की अवधि से विभाजित करके प्राप्त की जाती है।[14] समय विंडो की लंबाई टी प्रयोगकर्ता द्वारा निर्धारित की जाती है और यह संदीपन से और तक दर्ज न्यूरॉन के प्रकार पर निर्भर करती है। व्यावहारिक रूप से, समझदार औसत प्राप्त करने के लिए, समय विंडो के भीतर कई स्पाइक्स होने चाहिए। विशिष्ट मान T = 100 ms या T = 500 ms हैं, लेकिन अवधि लंबी या छोटी भी हो सकती है (पाठ्यपुस्तक 'स्पाइकिंग न्यूरॉन मॉडल्स[14] में अध्याय 1.5)।

स्पाइक-काउंट रेट को एक ही परीक्षण से निर्धारित किया जा सकता है, लेकिन परीक्षण के दौरान तंत्रिका प्रतिक्रिया में बदलाव के बारे में सभी टेम्पोरल समाधान खोने की कीमत पर। टेम्पोरल एवरेजिंग उन स्थितियों में अच्छी तरह से काम कर सकती है जहां संदीपन स्थिर है या धीरे-धीरे बदल रही है और जीव की तेज प्रतिक्रिया की आवश्यकता नहीं है - और यह स्थिति सामान्यतः प्रायोगिक प्रोटोकॉल में सामने आती है। हालाँकि, वास्तविक दुनिया का इनपुट शायद ही स्थिर होता है, लेकिन प्रायः तेजी से समय के पैमाने पर बदलता रहता है। उदाहरण के लिए, स्थिर छवि देखते समय भी, मनुष्य टकटकी की दिशा में तेजी से परिवर्तन करते हैं। इसलिए, रेटिनल फोटोरिसेप्टर पर प्रक्षेपित छवि हर कुछ सौ मिलीसेकेंड में बदल जाती है (अध्याय 1.5 [14])

इसकी कमियों के अतिरिक्त, स्पाइक-काउंट रेट कोड की अवधारणा का न केवल प्रयोगों में बल्कि तंत्रिका नेटवर्क के मॉडल में भी व्यापक रूप से उपयोग किया जाता है। इसने इस विचार को जन्म दिया है कि न्यूरॉन एकल इनपुट चर (संदीपन शक्ति) के बारे में जानकारी को सतत आउटपुट चर (फायरिंग रेट) में बदल देता है।

इस बात के सबूत बढ़ रहे हैं कि कम से कम पुर्किंजे न्यूरॉन्स में, जानकारी केवल फायरिंग में ही एन्कोड नहीं की जाती है, बल्कि गैर-फायरिंग, शांत अवधि के समय और अवधि में भी एन्कोड की जाती है।[17][18] रेटिना कोशिकाओं से यह भी सबूत मिला है कि जानकारी न केवल फायरिंग रेट में बल्कि स्पाइक टाइमिंग में भी एन्कोड की गई है।[19] सामान्यतः, जब भी किसी जीव की तीव्र प्रतिक्रिया की आवश्यकता होती है तो कुछ सौ मिलीसेकंड से अधिक की स्पाइक-काउंट के रूप में परिभाषित फायरिंग रेट बहुत धीमी होती है।[14]

समय-निर्भर फायरिंग रेट (कई परीक्षणों का औसत)

समय-निर्भर फायरिंग रेट को समय t और t+Δt के बीच छोटे अंतराल के दौरान दिखाई देने वाली स्पाइक्स की औसत संख्या (परीक्षणों पर औसत) के रूप में परिभाषित किया गया है, जिसे अंतराल की अवधि से विभाजित किया गया है।[14] यह स्थिर और समय-निर्भर संदीपन के लिए काम करता है। प्रयोगात्मक रूप से समय-निर्भर फायरिंग रेट को मापने के लिए, प्रयोगकर्ता कुछ इनपुट अनुक्रम के साथ संदीप्त करते हुए न्यूरॉन से रिकॉर्ड करता है। एक ही संदीपन क्रम को कई बार दोहराया जाता है और पेरी-स्टिमुलस-टाइम हिस्टोग्राम (पीएसटीएच) में न्यूरोनल प्रतिक्रिया की सूचना दी जाती है। समय टी को संदीपन क्रम के प्रारम्भ के संबंध में मापा जाता है। Δt काफी बड़ा होना चाहिए (सामान्यतः या कुछ मिलीसेकंड की सीमा में) ताकि औसत का विश्वसनीय अनुमान प्राप्त करने के लिए अंतराल के भीतर पर्याप्त संख्या में स्पाइक्स हों। प्रयोग की सभी पुनरावृत्तियों में स्पाइक्स nK(t;t+Δt) की घटनाओं की संख्या को पुनरावृत्ति की संख्या K से विभाजित करके समय t और t+Δt के बीच न्यूरॉन की विशिष्ट गतिविधि का माप है। अंतराल की लंबाई Δt द्वारा एक और विभाजन न्यूरॉन की समय-निर्भर फायरिंग रेट r(t) उत्पन्न करता है, जो PSTH के स्पाइक घनत्व के बराबर है (अध्याय 1.5 में [14])।

पर्याप्त रूप से छोटे Δt के लिए, r(t)Δt कई परीक्षणों के दौरान t और t+Δt के बीच होने वाली स्पाइक्स की औसत संख्या है। यदि Δt छोटा है, तो किसी भी परीक्षण पर t और t+Δt के बीच के अंतराल में एक से अधिक स्पाइक कभी नहीं होंगे। इसका मतलब यह है कि r(t)Δt उन परीक्षणों का अंश भी है जिन पर उन समयों के बीच स्पाइक हुआ था। समान रूप से, r(t)Δt संभावना है कि इस समय अंतराल के दौरान स्पाइक घटित होती है।

प्रयोगात्मक प्रक्रिया के रूप में, समय-निर्भर फायरिंग रेट माप, विशेष रूप से समय-निर्भर संदीपन के स्थिति में, न्यूरोनल गतिविधि का मूल्यांकन करने के लिए उपयोगी तरीका है। इस दृष्टिकोण के साथ स्पष्ट समस्या यह है कि यह मस्तिष्क में न्यूरॉन्स द्वारा प्रयुक्त कोडिंग योजना नहीं हो सकती है। न्यूरॉन्स प्रतिक्रिया उत्पन्न करने से पहले संदीपन के बिल्कुल उसी तरीके से बार-बार उपस्थित होने की प्रतीक्षा नहीं कर सकते।[14]

फिर भी, प्रायोगिक समय-निर्भर फायरिंग रेट माप समझ में आ सकता है, अगर स्वतंत्र न्यूरॉन्स की बड़ी जनसंख्या है जो समान संदीपन प्राप्त करती है। एक ही बार में एन न्यूरॉन्स की जनसंख्या से रिकॉर्डिंग करने के बजाय, एक ही न्यूरॉन से रिकॉर्ड करना और एन बार-बार किए गए रनों का औसत बनाना प्रयोगात्मक रूप से आसान है। इस प्रकार, समय-निर्भर फायरिंग रेट कोडिंग इस निहित धारणा पर निर्भर करती है कि हमेशा न्यूरॉन्स की जनसंख्या होती है।

टेम्पोरल कोडिंग

जब जानकारी ले जाने के लिए सटीक स्पाइक टाइमिंग या उच्च-आवृत्ति फायरिंग-रेट में उतार-चढ़ाव पाया जाता है, तो तंत्रिका कोड को प्रायः टेम्पोरल कोड के रूप में पहचाना जाता है।[14][20] कई अध्ययनों में पाया गया है कि तंत्रिका कोड का टेम्पोरल रिज़ॉल्यूशन मिलीसेकंड समय पैमाने पर होता है, जो दर्शाता है कि सटीक स्पाइक टाइमिंग तंत्रिका कोडिंग में एक महत्वपूर्ण तत्व है।[3][21][19] ऐसे कोड, जो स्पाइक्स के बीच समय के माध्यम से संचार करते हैं, उन्हें इंटरपल्स इंटरवल कोड भी कहा जाता है, और हाल के अध्ययनों द्वारा समर्थित किया गया है।[22]

न्यूरॉन्स फायरिंग रेट में उच्च आवृत्ति के उतार-चढ़ाव का प्रदर्शन करते हैं जो रव हो सकता है या जानकारी ले जा सकता है। रेट कोडिंग मॉडल सुझाव देते हैं कि ये अनियमितताएं रव हैं, जबकि टेम्पोरल कोडिंग मॉडल सुझाव देते हैं कि वे जानकारी को एनकोड करते हैं। यदि तंत्रिका तंत्र केवल सूचना देने के लिए रेट कोड का उपयोग करता है, तो एक अधिक सुसंगत, नियमित फायरिंग रेट विकासात्मक रूप से लाभप्रद होती, और न्यूरॉन्स अन्य कम स्थिर विकल्पों की तुलना में इस कोड का उपयोग करते।[23] टेम्पोरल कोडिंग "रव" के लिए एक वैकल्पिक स्पष्टीकरण प्रदान करती है, यह सुझाव देती है कि यह वास्तव में जानकारी को एनकोड करती है और तंत्रिका प्रसंस्करण को प्रभावित करती है। इस विचार को मॉडल करने के लिए, स्पाइक्स को चिह्नित करने के लिए बाइनरी प्रतीकों का उपयोग किया जा सकता है: स्पाइक के लिए 1, बिना स्पाइक के 0 टेम्पोरल कोडिंग अनुक्रम 000111000111 को 001100110011 से कुछ अलग अर्थ देने की अनुमति देती है, भले ही औसत फायरिंग रेट दोनों अनुक्रमों के लिए 6 स्पाइक्स/10 एमएस पर समान है।[24] कुछ समय पहले तक, वैज्ञानिकों ने पोस्ट-सिनैप्टिक संभावित पैटर्न के स्पष्टीकरण के रूप में रेट एन्कोडिंग पर सबसे अधिक जोर दिया था। हालाँकि, मस्तिष्क के कार्य केवल रेट एन्कोडिंग के उपयोग की तुलना में टेम्पोरल रूप से अधिक सटीक होते हैं।[19] दूसरे शब्दों में, स्पाइक ट्रेन की सभी उपलब्ध सूचनाओं को पकड़ने में रेट कोड की असमर्थता के कारण आवश्यक जानकारी खो सकती है। इसके अलावा, समान (लेकिन समान नहीं) संदीपन के बीच प्रतिक्रियाएं काफी भिन्न होती हैं, जिससे यह पता चलता है कि स्पाइक्स के अलग-अलग पैटर्न में रेट कोड में सम्मिलित करने की तुलना में अधिक मात्रा में जानकारी होती है।[25]

टेम्पोरल कोड (जिन्हें स्पाइक कोड [14] भी कहा जाता है), स्पाइकिंग गतिविधि की उन विशेषताओं को नियोजित करते हैं जिन्हें फायरिंग रेट द्वारा वर्णित नहीं किया जा सकता है। उदाहरण के लिए, संदीपन के प्रारम्भ के बाद टाइम-टू-फर्स्ट-स्पाइक, पृष्ठभूमि दोलनों के संबंध में फायरिंग का चरण, आईएसआई संभाव्यता वितरण के दूसरे और उच्च सांख्यिकीय क्षणों पर आधारित विशेषताएँ, स्पाइक यादृच्छिकता, या स्पाइक्स के सटीक समयबद्ध समूह (टेम्पोरल पैटर्न) टेम्पोरल कोड के लिए उम्मीदवार हैं।[26] चूंकि तंत्रिका तंत्र में कोई पूर्ण समय संदर्भ नहीं है, इसलिए जानकारी या तो न्यूरॉन्स की जनसंख्या (टेम्पोरल पैटर्न) में स्पाइक्स के सापेक्ष समय के संदर्भ में या चल रहे मस्तिष्क दोलन (फायरिंग के चरण) के संबंध में ली जाती है।[3][6] तंत्रिका दोलनों की उपस्थिति में टेम्पोरल कोड को डिकोड करने का एक तरीका यह है कि दोलन चक्र के विशिष्ट चरणों में होने वाली स्पाइक्स पोस्ट-सिनैप्टिक न्यूरॉन को विध्रुवित करने में अधिक प्रभावी होती हैं।[27]

किसी संदीपन द्वारा उत्पन्न स्पाइक ट्रेन या फायरिंग रेट की टेम्पोरल संरचना संदीपन की गतिशीलता और न्यूरल एन्कोडिंग प्रक्रिया की प्रकृति दोनों द्वारा निर्धारित की जाती है। संदीपन जो तेजी से बदलती हैं, सटीक समय पर स्पाइक्स उत्पन्न करती हैं[28] (और पीएसटीएच में तेजी से बदलती फायरिंग रेट) इससे कोई फर्क नहीं पड़ता कि किस न्यूरल कोडिंग रणनीति का उपयोग किया जा रहा है। संकीर्ण अर्थ में टेम्पोरल कोडिंग प्रतिक्रिया में टेम्पोरल सटीकता को संदर्भित करती है जो केवल संदीपन की गतिशीलता से उत्पन्न नहीं होती है, लेकिन फिर भी संदीपन के गुणों से संबंधित होती है। संदीपन और एन्कोडिंग गतिशीलता के बीच परस्पर क्रिया टेम्पोरल कोड की पहचान को कठिन बना देती है।

टेम्पोरल कोडिंग में, सीखने को गतिविधि-निर्भर सिनैप्टिक विलंब संशोधनों द्वारा समझाया जा सकता है।[29] संशोधन स्वयं न केवल स्पाइक दरों (रेट कोडिंग) पर निर्भर हो सकते हैं, बल्कि स्पाइक टाइमिंग पैटर्न (टेम्पोरल कोडिंग) पर भी निर्भर हो सकते हैं, यानी, स्पाइक-टाइमिंग-निर्भर प्लास्टिसिटी का एक विशेष स्थिति हो सकता है।[30]

टेम्पोरल कोडिंग का मुद्दा स्वतंत्र-स्पाइक कोडिंग के मुद्दे से भिन्न और स्वतंत्र है। यदि प्रत्येक स्पाइक ट्रेन में अन्य सभी स्पाइक्स से स्वतंत्र है, तो तंत्रिका कोड का टेम्पोरल चरित्र समय-निर्भर फायरिंग दर आर (t) के व्यवहार द्वारा निर्धारित किया जाता है। यदि r(t) समय के साथ धीरे-धीरे बदलता है, तो कोड को सामान्यतः रेट कोड कहा जाता है, और यदि यह तेजी से बदलता है, तो कोड को टेम्पोरल कहा जाता है।

संवेदी प्रणालियों में टेम्पोरल कोडिंग

बहुत ही संक्षिप्त संदीपन के लिए, न्यूरॉन की अधिकतम फायरिंग दर इतनी तेज़ नहीं हो सकती कि एक से अधिक स्पाइक उत्पन्न कर सके। इस एकल स्पाइक में निहित संक्षिप्त संदीपन के बारे में जानकारी की सघनता के कारण, ऐसा प्रतीत होता है कि स्पाइक के समय में किसी निश्चित समयावधि में कार्रवाई क्षमता की औसत आवृत्ति की तुलना में अधिक जानकारी देनी होगी। यह मॉडल विशेष रूप से ध्वनि स्थानीयकरण के लिए महत्वपूर्ण है, जो मस्तिष्क के भीतर मिलीसेकंड के क्रम पर होता है। मस्तिष्क को अपेक्षाकृत छोटी तंत्रिका प्रतिक्रिया के आधार पर बड़ी मात्रा में जानकारी प्राप्त करनी होगी। इसके अतिरिक्त, यदि प्रति सेकंड दस स्पाइक्स के क्रम पर कम फायरिंग दरों को अलग-अलग संदीपन के लिए मनमाने ढंग से बंद दर कोडिंग से अलग किया जाना चाहिए, तो इन दो संदीपन में भेदभाव करने की कोशिश करने वाले न्यूरॉन को पर्याप्त जानकारी जमा करने के लिए एक सेकंड या उससे अधिक तक इंतजार करने की आवश्यकता हो सकती है। यह कई जीवों के अनुरूप नहीं है जो मिलीसेकेंड की समय सीमा में संदीपन के बीच भेदभाव करने में सक्षम हैं, यह सुझाव देते हुए कि दर कोड काम करने वाला एकमात्र मॉडल नहीं है।[24]

दृश्य संदीपन के तेजी से एन्कोडिंग के लिए, यह सुझाव दिया गया है कि रेटिना के न्यूरॉन्स संदीपन के प्रारम्भ और पहली कार्रवाई क्षमता के बीच विलंबता समय में दृश्य जानकारी को एनकोड करते हैं, जिसे पहली स्पाइक या टाइम-टू-फर्स्ट-स्पाइक के लिए विलंबता भी कहा जाता है।[31] इस प्रकार की टेम्पोरल कोडिंग को श्रवण और सोमाटो-संवेदी प्रणाली में भी दिखाया गया है। ऐसी कोडिंग योजना का मुख्य दोष इसकी आंतरिक न्यूरोनल उतार-चढ़ाव के प्रति संवेदनशीलता है।[32] मकाक के प्राथमिक दृश्य प्रांतस्था में, संदीपन के प्रारम्भ के सापेक्ष पहले स्पाइक का समय स्पाइक्स के बीच के अंतराल की तुलना में अधिक जानकारी प्रदान करता पाया गया। हालाँकि, इंटरस्पाइक अंतराल का उपयोग अतिरिक्त जानकारी को एनकोड करने के लिए किया जा सकता है, जो विशेष रूप से तब महत्वपूर्ण होता है जब स्पाइक दर अपनी सीमा तक पहुंच जाती है, जैसा कि उच्च-विपरीत स्थितियों में होता है। इस कारण से, टेम्पोरल कोडिंग क्रमिक बदलावों के बजाय परिभाषित किनारों को कोड करने में भूमिका निभा सकती है।[33]

स्तनधारी स्वाद प्रणाली अपनी विशिष्ट संदीपन और जीव की आसानी से समझी जाने वाली प्रतिक्रियाओं के कारण टेम्पोरल कोडिंग का अध्ययन करने के लिए उपयोगी है।[34] टेम्पोरल रूप से एन्कोड की गई जानकारी एक जीव को एक ही श्रेणी (मीठा, कड़वा, खट्टा, नमकीन, उमामी) के विभिन्न टेस्टैंट के बीच भेदभाव करने में मदद कर सकती है जो स्पाइक गिनती के संदर्भ में बहुत समान प्रतिक्रियाएं उत्पन्न करती हैं। प्रत्येक स्वादक द्वारा प्राप्त पैटर्न के टेम्पोरल घटक का उपयोग इसकी पहचान निर्धारित करने के लिए किया जा सकता है (उदाहरण के लिए, दो कड़वे स्वादक, जैसे कि कुनैन और डेनाटोनियम के बीच का अंतर)। इस तरह, रेट कोडिंग और टेम्पोरल कोडिंग दोनों का उपयोग स्वाद प्रणाली में किया जा सकता है - बुनियादी स्वाद प्रकार के लिए दर, अधिक विशिष्ट भेदभाव के लिए टेम्पोरल।[35] स्तनधारी स्वाद प्रणाली पर शोध से पता चला है कि न्यूरॉन्स की जनसंख्या में टेम्पोरल पैटर्न में प्रचुर मात्रा में जानकारी उपस्थित है, और यह जानकारी दर कोडिंग योजनाओं द्वारा निर्धारित जानकारी से भिन्न है। किसी संदीपन की प्रतिक्रिया में न्यूरॉन्स के समूह समकालिक हो सकते हैं। प्राइमेट्स में मस्तिष्क के सामने के कॉर्टिकल हिस्से से संबंधित अध्ययनों में, न्यूरॉन्स की छोटी जनसंख्या में केवल कुछ मिलीसेकंड की लंबाई के एक छोटे समय के पैमाने के साथ सटीक पैटर्न पाए गए, जो कुछ सूचना-प्रसंस्करण व्यवहारों से संबंधित थे। हालाँकि, पैटर्न से बहुत कम जानकारी निर्धारित की जा सकती है; संभावित सिद्धांत यह है कि वे मस्तिष्क में होने वाले उच्च-क्रम प्रसंस्करण का प्रतिनिधित्व करते हैं।[25]

दृश्य प्रणाली की तरह, चूहों के घ्राण बल्ब में माइट्रल/टुफ्टेड कोशिकाओं में, सूंघने की क्रिया के प्रारम्भ के सापेक्ष पहली-स्पाइक विलंबता गंध के बारे में अधिकांश जानकारी को एन्कोड करती प्रतीत होती है। स्पाइक विलंबता का उपयोग करने की यह रणनीति किसी गंधक की त्वरित पहचान और प्रतिक्रिया की अनुमति देती है। इसके अतिरिक्त, कुछ माइट्रल/टुफ्टेड कोशिकाओं में दिए गए गंधकों के लिए विशिष्ट फायरिंग पैटर्न होते हैं। इस प्रकार की अतिरिक्त जानकारी एक निश्चित गंध को पहचानने में मदद कर सकती है, लेकिन यह पूरी तरह से आवश्यक नहीं है, क्योंकि जानवर की सूँघने की प्रक्रिया में औसत स्पाइक गिनती भी एक अच्छा पहचानकर्ता थी।[36] उसी तर्ज पर, खरगोशों की घ्राण प्रणाली के साथ किए गए प्रयोगों ने अलग-अलग पैटर्न दिखाए जो गंधकों के विभिन्न उपसमूहों के साथ सहसंबद्ध थे, और टिड्डे की घ्राण प्रणाली के साथ प्रयोगों में समान परिणाम प्राप्त हुआ।[24]

टेम्पोरल कोडिंग अनुप्रयोग

टेम्पोरल कोडिंग की विशिष्टता के लिए सूचनात्मक, विश्वसनीय, प्रायोगिक डेटा को मापने के लिए अत्यधिक परिष्कृत तकनीक की आवश्यकता होती है। ऑप्टोजेनेटिक्स में हुई प्रगति से न्यूरोलॉजिस्ट को व्यक्तिगत न्यूरॉन्स में स्पाइक्स को नियंत्रित करने की अनुमति मिलती है, जो विद्युत और स्थानिक एकल-कोशिका रिज़ॉल्यूशन की पेशकश करता है। उदाहरण के लिए, नीली रोशनी प्रकाश-गेटेड आयन चैनल चैनलरोडोप्सिन को खोलने का कारण बनती है, कोशिका को विध्रुवित करती है और स्पाइक उत्पन्न करती है। जब कोशिका नीली रोशनी को महसूस नहीं कर पाती है, तो चैनल बंद हो जाता है और न्यूरॉन स्पाइक करना बंद कर देता है। स्पाइक्स का पैटर्न नीले प्रकाश उत्तेजनाओं के पैटर्न से मेल खाता है। माउस डीएनए में चैनलरोडोप्सिन जीन अनुक्रम डालकर, शोधकर्ता स्पाइक्स और इसलिए माउस के कुछ व्यवहारों को नियंत्रित कर सकते हैं (उदाहरण के लिए, माउस को बाईं ओर मोड़ना)।[37] ऑप्टोजेनेटिक्स के माध्यम से शोधकर्ताओं के पास समान माध्य फायरिंग दर को बनाए रखते हुए न्यूरॉन में विभिन्न टेम्पोरल कोड को प्रभावित करने के लिए उपकरण हैं, और इस तरह यह परीक्षण कर सकते हैं कि विशिष्ट न्यूरल सर्किट में टेम्पोरल कोडिंग होती है या नहीं।[38]

ऑप्टोजेनेटिक तकनीक में कई न्यूरोलॉजिकल और मनोवैज्ञानिक विकारों की जड़ में स्पाइक असामान्यताओं के सुधार को सक्षम करने की भी क्षमता है।[38] यदि न्यूरॉन्स व्यक्तिगत स्पाइक टाइमिंग पैटर्न में जानकारी को एनकोड करते हैं, तो केवल औसत फायरिंग दर को देखते हुए कोड को क्रैक करने का प्रयास करने से मुख्य सिग्नल छूट सकते हैं।[24] तंत्रिका कोड के किसी भी अस्थायी रूप से एन्कोडेड पहलू को समझना और न्यूरॉन्स में इन अनुक्रमों को दोहराने से अवसाद, सिज़ोफ्रेनिया और पार्किंसंस रोग जैसे तंत्रिका संबंधी विकारों के अधिक नियंत्रण और उपचार की अनुमति मिल सकती है। एकल कोशिकाओं में स्पाइक अंतराल का विनियमन औषधीय एजेंटों को अंतःशिरा रूप से जोड़ने की तुलना में अधिक सटीक रूप से मस्तिष्क गतिविधि को नियंत्रित करता है।[37]

फेज-ऑफ-फायरिंग कोड

फ़ेज़-ऑफ़-फ़ायरिंग कोड तंत्रिका कोडिंग योजना है जो दोलनों के आधार पर स्पाइक काउंट कोड को समय संदर्भ के साथ जोड़ती है। इस प्रकार का कोड निम्न[39] या उच्च आवृत्तियों पर स्थानीय चल रहे दोलनों के चरण के आधार पर समय संदर्भ के अनुसार प्रत्येक स्पाइक के लिए एक समय लेबल को ध्यान में रखता है।[40]

यह दिखाया गया है कि कुछ कॉर्टिकल संवेदी क्षेत्रों में न्यूरॉन्स समृद्ध प्राकृतिक उत्तेजनाओं को केवल उनकी स्पाइक गिनती के बजाय, चल रहे नेटवर्क ऑसिलेटरी उतार-चढ़ाव के चरण के सापेक्ष उनके स्पाइक समय के संदर्भ में कूटबद्ध करते हैं।[39][41] स्थानीय क्षेत्र संभावित संकेत जनसंख्या (नेटवर्क) दोलनों को प्रतिबिंबित करते हैं। फायरिंग के चरण कोड को प्रायः अस्थायी कोड के रूप में वर्गीकृत किया जाता है, हालांकि स्पाइक्स (यानी नेटवर्क दोलन चरण) के लिए उपयोग किया जाने वाला समय लेबल समय के लिए एक कम-रिज़ॉल्यूशन (मोटे-दानेदार) संदर्भ है। नतीजतन, प्रायः चरण के लिए केवल चार अलग-अलग मान कम आवृत्तियों में दोलनों के चरण के संबंध में इस प्रकार के कोड में सभी सूचना सामग्री का प्रतिनिधित्व करने के लिए पर्याप्त होते हैं। फ़ेज़-ऑफ़-फायरिंग कोड हिप्पोकैम्पस की स्थान कोशिकाओं में देखी गई चरण पूर्वता घटना पर आधारित है। इस कोड की एक अन्य विशेषता यह है कि न्यूरॉन्स संवेदी न्यूरॉन्स के एक समूह के बीच स्पाइकिंग के पसंदीदा क्रम का पालन करते हैं, जिसके परिणामस्वरूप फायरिंग अनुक्रम होता है।[42]

दृश्य कॉर्टेक्स में चरण कोड को उच्च-आवृत्ति दोलनों को भी सम्मिलित करते हुए दिखाया गया है।[42] गामा दोलन के एक चक्र के भीतर, प्रत्येक न्यूरॉन का अपना पसंदीदा रिश्तेदार फायरिंग समय होता है। परिणामस्वरूप, न्यूरॉन्स की एक पूरी जनसंख्या एक फायरिंग अनुक्रम उत्पन्न करती है जिसकी अवधि लगभग 15 एमएस तक होती है।[42]

जनसंख्या कोडिंग

जनसंख्या कोडिंग कई न्यूरॉन्स की संयुक्त गतिविधियों का उपयोग करके उत्तेजनाओं को दर्शाने की एक विधि है। जनसंख्या कोडिंग में, प्रत्येक न्यूरॉन के पास इनपुट के कुछ सेट पर प्रतिक्रियाओं का वितरण होता है, और इनपुट के बारे में कुछ मूल्य निर्धारित करने के लिए कई न्यूरॉन्स की प्रतिक्रियाओं को जोड़ा जा सकता है। सैद्धांतिक दृष्टिकोण से, जनसंख्या कोडिंग तंत्रिका विज्ञान में गणितीय रूप से अच्छी तरह से तैयार की गई कुछ समस्याओं में से एक है। यह तंत्रिका कोडिंग की आवश्यक विशेषताओं को समझता है और फिर भी सैद्धांतिक विश्लेषण के लिए काफी सरल है।[43] प्रायोगिक अध्ययनों से पता चला है कि इस कोडिंग प्रतिमान का व्यापक रूप से मस्तिष्क के सेंसर और मोटर क्षेत्रों में उपयोग किया जाता है।

उदाहरण के लिए, दृश्य क्षेत्र मेडियल टेम्पोरल (एमटी) में, न्यूरॉन्स चलती दिशा में ट्यून किए जाते हैं।[44] एक विशेष दिशा में चलती हुई वस्तु की प्रतिक्रिया में, एमटी में कई न्यूरॉन्स जनसंख्या में रव-दूषित और घंटी के आकार की गतिविधि पैटर्न के साथ आग लगाते हैं। वस्तु की गति की दिशा को जनसंख्या गतिविधि से प्राप्त किया जाता है, ताकि एकल न्यूरॉन के सिग्नल में उपस्थित उतार-चढ़ाव से प्रतिरक्षा हो सके। जब बंदरों को जॉयस्टिक को एक जलाए गए लक्ष्य की ओर ले जाने के लिए प्रशिक्षित किया जाता है, तो एक ही न्यूरॉन कई लक्ष्य दिशाओं के लिए फायर करेगा। हालाँकि, यह एक दिशा के लिए सबसे तेज़ और अधिक धीमी गति से फायर करता है, यह इस पर निर्भर करता है कि लक्ष्य न्यूरॉन की "पसंदीदा" दिशा के कितना करीब था।[45][46] यदि प्रत्येक न्यूरॉन अपनी पसंदीदा दिशा में गति का प्रतिनिधित्व करता है, और सभी न्यूरॉन के वेक्टर योग की गणना की जाती है (प्रत्येक न्यूरॉन की फायरिंग दर और एक पसंदीदा दिशा है), तो योग गति की दिशा को इंगित करता है। इस तरीके से, न्यूरॉन्स की जनसंख्या गति के लिए संकेत को कोड करती है। इस विशेष जनसंख्या कोड को जनसंख्या वेक्टर कोडिंग के रूप में जाना जाता है।

स्थान-समय जनसंख्या कोड, जिसे औसत-स्थानीयकृत-सिंक्रोनाइज़्ड-प्रतिक्रिया (एएलएसआर) कोड कहा जाता है, श्रवण ध्वनिक संदीपन के न्यूरल प्रतिनिधित्व के लिए प्राप्त किए गए हैं। यह श्रवण न्यूरल के भीतर स्थान या ट्यूनिंग, साथ ही प्रत्येक न्यूरल फाइबर श्रवण न्यूरल के भीतर चरण-लॉकिंग दोनों का फायदा उठाता है। पहला एएलएसआर प्रतिनिधित्व स्थिर-अवस्था स्वरों के लिए था;[47] जटिल, गैर-स्थिर राज्य संदीपन में पिच और फॉर्मेंट आवृत्तियों के एएलएसआर प्रतिनिधित्व को बाद में वॉयस-पिच के लिए प्रदर्शित किया गया,[48] और व्यंजन-स्वर सिलेबल्स में फॉर्मेंट प्रतिनिधित्व।[49] इस तरह के अभ्यावेदन का लाभ यह है कि पिच या फॉर्मेंट ट्रांज़िशन प्रोफाइल जैसी वैश्विक विशेषताओं को रेट और स्थान कोडिंग दोनों के माध्यम से एक साथ संपूर्ण न्यूरल में वैश्विक विशेषताओं के रूप में दर्शाया जा सकता है।

जनसंख्या कोडिंग के कई अन्य फायदे भी हैं, जिनमें न्यूरोनल सांख्यिकीय परिवर्तनशीलता के कारण अनिश्चितता में कमी और एक साथ कई अलग-अलग संदीपन विशेषताओं का प्रतिनिधित्व करने की क्षमता सम्मिलित है। जनसंख्या कोडिंग रेट कोडिंग की तुलना में बहुत तेज़ है और संदीपन स्थितियों में लगभग तुरंत परिवर्तन को प्रतिबिंबित कर सकती है।[50] ऐसी जनसंख्या में अलग-अलग न्यूरॉन्स में सामान्यतः अलग-अलग लेकिन अतिव्यापी चयनात्मकताएं होती हैं, जिससे कई न्यूरॉन्स, लेकिन जरूरी नहीं कि सभी, किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं।

सामान्यतः एक एन्कोडिंग फ़ंक्शन का एक चरम मूल्य होता है जैसे कि न्यूरॉन की गतिविधि सबसे बड़ी होती है यदि अवधारणात्मक मूल्य चरम मूल्य के करीब है, और चरम मूल्य के कम करीब मूल्यों के अनुसार कम हो जाता है। [उद्धरण वांछित] यह इस प्रकार है कि वास्तविक कथित न्यूरॉन्स के सेट में गतिविधि के समग्र पैटर्न से मूल्य का पुनर्निर्माण किया जा सकता है। वेक्टर कोडिंग साधारण औसत का एक उदाहरण है. इस तरह के पुनर्निर्माण को निष्पादित करने के लिए एक अधिक परिष्कृत गणितीय तकनीक न्यूरोनल प्रतिक्रियाओं के बहुभिन्नरूपी वितरण के आधार पर अधिकतम संभावना की विधि है। ये मॉडल स्वतंत्रता, दूसरे क्रम के सहसंबंध,[51] या इससे भी अधिक विस्तृत निर्भरता जैसे उच्च क्रम के अधिकतम एन्ट्रापी मॉडल, [52] या कोपुलस ग्रहण कर सकते हैं।[53]

सहसंबंध कोडिंग

न्यूरोनल फायरिंग के सहसंबंध कोडिंग मॉडल का दावा है कि स्पाइक ट्रेन के भीतर एक्शन पोटेंशिअल या स्पाइक्स के बीच सहसंबंध स्पाइक्स के सरल समय के ऊपर और परे अतिरिक्त जानकारी ले सकता है। प्रारंभिक कार्य ने सुझाव दिया कि स्पाइक ट्रेनों के बीच सहसंबंध केवल कम हो सकता है, और कभी नहीं बढ़ सकता है, एक प्रोत्साहन सुविधा के बारे में दो स्पाइक ट्रेनों में उपस्थित कुल पारस्परिक जानकारी।[54] हालाँकि, बाद में यह गलत साबित हुआ। यदि रव और सिग्नल सहसंबंध विपरीत संकेत के हैं तो सहसंबंध संरचना सूचना सामग्री को बढ़ा सकती है।[55] सहसंबंध ऐसी जानकारी भी ले जा सकते हैं जो न्यूरॉन्स के दो युग्म की औसत फायरिंग रेट में उपस्थित नहीं है। इसका एक अच्छा उदाहरण पेंटोबार्बिटल-एनेस्थेटाइज्ड मार्मोसेट श्रवण प्रांतस्था में उपस्थित है, जिसमें शुद्ध स्वर सहसंबंधित स्पाइक्स की संख्या में वृद्धि का कारण बनता है, लेकिन न्यूरॉन्स के युग्म की औसत फायरिंग रेट में वृद्धि नहीं करता है।[56]

स्वतंत्र-स्पाइक कोडिंग

न्यूरोनल फायरिंग के स्वतंत्र-स्पाइक कोडिंग मॉडल का दावा है कि प्रत्येक व्यक्तिगत एक्शन पोटेंशिअल, या स्पाइक, एक्शन पोटेंशिअल के भीतर एक दूसरे स्पाइक से स्वतंत्र है।[57][58]

स्थिति कोडिंग

विशिष्ट स्थिति कोडिंग का प्लॉट

एक विशिष्ट जनसंख्या कोड में गॉसियन ट्यूनिंग वक्र के साथ न्यूरॉन्स सम्मिलित होते हैं, जिसका अर्थ संदीपन की तीव्रता के साथ रैखिक रूप से भिन्न होता है, जिसका अर्थ है कि न्यूरॉन माध्य के निकट संदीपन के लिए सबसे दृढ़ता से (प्रति सेकंड स्पाइक्स के संदर्भ में) प्रतिक्रिया करता है। वास्तविक तीव्रता को सबसे बड़ी प्रतिक्रिया वाले न्यूरॉन के माध्य के अनुरूप संदीपन स्तर के रूप में पुनर्प्राप्त किया जा सकता है। हालाँकि, न्यूरल प्रतिक्रियाओं में निहित रव का मतलब है कि अधिकतम संभावना अनुमान फ़ंक्शन अधिक सटीक है।

न्यूरल प्रतिक्रियाएँ शोरगुल वाली और अविश्वसनीय होती हैं।

इस प्रकार के कोड का उपयोग संयुक्त स्थिति, आंख की स्थिति, रंग या ध्वनि आवृत्ति जैसे निरंतर चर को एन्कोड करने के लिए किया जाता है। कोई भी व्यक्तिगत न्यूरॉन रेट कोडिंग का उपयोग करके चर को ईमानदारी से एन्कोड करने के लिए बहुत रव करता है, लेकिन एक पूरी जनसंख्या अधिक निष्ठा और सटीकता सुनिश्चित करती है। यूनिमॉडल ट्यूनिंग वक्रों की जनसंख्या के लिए, यानी एक ही शिखर के साथ, परिशुद्धता सामान्यतः न्यूरॉन्स की संख्या के साथ रैखिक रूप से मापी जाती है। इसलिए, आधी परिशुद्धता के लिए, आधे से अधिक न्यूरॉन्स की आवश्यकता होती है। इसके विपरीत, जब ट्यूनिंग वक्रों में कई शिखर होते हैं, जैसे कि ग्रिड कोशिकाएं जो अंतरिक्ष का प्रतिनिधित्व करती हैं, तो जनसंख्या की सटीकता न्यूरॉन्स की संख्या के साथ तेजी से बढ़ सकती है। यह समान परिशुद्धता के लिए आवश्यक न्यूरॉन्स की संख्या को बहुत कम कर देता है।[59]

विरल कोडिंग

विरल कोड तब होता है जब प्रत्येक आइटम को न्यूरॉन्स के अपेक्षाकृत छोटे सेट के स्थिर सक्रियण द्वारा एन्कोड किया जाता है। प्रत्येक आइटम को एन्कोड करने के लिए, यह सभी उपलब्ध न्यूरॉन्स का एक अलग उपसमूह है। सेंसर-स्पर्स कोडिंग के विपरीत, सेंसर-सघन कोडिंग का तात्पर्य है कि संभावित सेंसर स्थानों से सभी जानकारी ज्ञात है।

परिणामस्वरूप, विरलता अस्थायी विरलता पर केंद्रित हो सकती है ("अपेक्षाकृत कम संख्या में समय अवधि सक्रिय होती है") या न्यूरॉन्स की सक्रिय आबादी में विरलता पर। इस बाद वाले स्थिति में, इसे एक समयावधि में जनसंख्या में न्यूरॉन्स की कुल संख्या के सापेक्ष सक्रिय न्यूरॉन्स की संख्या के रूप में परिभाषित किया जा सकता है। ऐसा लगता है कि यह तंत्रिका संबंधी संगणना की एक पहचान है क्योंकि पारंपरिक कंप्यूटर की तुलना में, जानकारी न्यूरॉन्स में बड़े पैमाने पर वितरित की जाती है। प्राकृतिक छवियों की विरल कोडिंग तरंगिका-जैसे उन्मुख फिल्टर का उत्पादन करती है जो दृश्य कॉर्टेक्स में सरल कोशिकाओं के ग्रहणशील क्षेत्रों से मिलती जुलती है।[60] अस्थायी कोडिंग के एक साथ उपयोग से विरल कोड की क्षमता बढ़ाई जा सकती है, जैसा कि टिड्डी घ्राण प्रणाली में पाया जाता है।[61]

इनपुट पैटर्न के संभावित बड़े सेट को देखते हुए, विरल कोडिंग एल्गोरिदम (जैसे विरल ऑटोएनकोडर) स्वचालित रूप से प्रतिनिधि पैटर्न की एक छोटी संख्या को खोजने का प्रयास करते हैं, जो सही अनुपात में संयुक्त होने पर, मूल इनपुट पैटर्न को पुन: उत्पन्न करते हैं। फिर इनपुट के लिए विरल कोडिंग में उन प्रतिनिधि पैटर्न सम्मिलित होते हैं। उदाहरण के लिए, अंग्रेजी वाक्यों के बहुत बड़े सेट को कम संख्या में प्रतीकों (जैसे अक्षर, संख्या, विराम चिह्न,) द्वारा एन्कोड किया जा सकता है और रिक्त स्थान) एक विशेष वाक्य के लिए एक विशेष क्रम में संयुक्त होते हैं, और इसलिए अंग्रेजी के लिए एक विरल कोडिंग वे प्रतीक होंगे।

रैखिक जनरेटिव मॉडल

विरल कोडिंग के अधिकांश मॉडल रैखिक जनरेटिव मॉडल पर आधारित होते हैं।[62] इस मॉडल में, इनपुट को अनुमानित करने के लिए प्रतीकों को एक रैखिक संयोजन में जोड़ा जाता है।

अधिक औपचारिक रूप से, वास्तविक क्रमांकित इनपुट वैक्टर का एक k-आयामी सेट दिया गया है विरल कोडिंग का लक्ष्य n k-आयामी आधार (रैखिक बीजगणित) निर्धारित करना है भार या गुणांक के एक विरल वेक्टर एन-आयामी वेक्टर के साथ प्रत्येक इनपुट वेक्टर के लिए, ताकि गुणांकों द्वारा दिए गए अनुपात के साथ आधार वेक्टर का एक रैखिक संयोजन इनपुट वेक्टर के निकट सन्निकटन में परिणत हो: .[63]

रैखिक जनरेटिव मॉडल को कार्यान्वित करने वाले एल्गोरिदम द्वारा उत्पन्न कोडिंग को नरम विरलता और कठोर विरलता वाले कोडिंग में वर्गीकृत किया जा सकता है।[62] ये विशिष्ट इनपुट के लिए आधार वेक्टर गुणांक के वितरण को संदर्भित करते हैं। नरम विरलता के साथ कोडिंग में एक सहज सामान्य वितरण-जैसा वितरण होता है, लेकिन गॉसियन की तुलना में शिखर, कई शून्य मान, कुछ छोटे निरपेक्ष मान, कम बड़े निरपेक्ष मान और बहुत कम बहुत बड़े निरपेक्ष मान होते हैं। इस प्रकार, कई आधार वैक्टर सक्रिय हैं। दूसरी ओर, कठिन विरलता इंगित करती है कि कई शून्य मान हैं, कोई छोटा निरपेक्ष मान नहीं है या शायद ही कोई है, कम बड़े निरपेक्ष मान हैं, और बहुत कम बहुत बड़े निरपेक्ष मान हैं, और इस प्रकार कुछ आधार वैक्टर सक्रिय हैं। यह चयापचय के दृष्टिकोण से आकर्षक है: जब कम न्यूरॉन्स सक्रिय होते हैं तो कम ऊर्जा का उपयोग होता है।[62]

कोडिंग का एक अन्य माप यह है कि क्या यह गंभीर रूप से पूर्ण है या अतिपूर्ण है। यदि आधार वैक्टर n की संख्या इनपुट सेट की आयामीता k के बराबर है, तो कोडिंग को गंभीर रूप से पूर्ण कहा जाता है। इस स्थिति में, इनपुट वेक्टर में सुचारू परिवर्तन के परिणामस्वरूप गुणांक में अचानक परिवर्तन होता है, और कोडिंग इनपुट में छोटे स्केलिंग, छोटे अनुवाद या रव को खूबसूरती से संभालने में सक्षम नहीं है। यदि, हालांकि, आधार वैक्टर की संख्या इनपुट सेट की आयामीता से बड़ी है, तो कोडिंग पूरी हो गई है। ओवरकंप्लीट कोडिंग इनपुट वैक्टर के बीच आसानी से इंटरपोल हो जाती है और इनपुट रव के तहत स्थिर होती है।[64] अनुमान है कि मानव प्राथमिक दृश्य प्रांतस्था 500 के कारक से अधिक पूर्ण हो जाती है, उदाहरण के लिए, इनपुट का एक 14 x 14 पैच (एक 196-आयामी स्थान) लगभग 100,000 न्यूरॉन्स द्वारा कोडित होता है।[62]

अन्य मॉडल मिलान खोज पर आधारित हैं, एक विरल सन्निकटन एल्गोरिथ्म जो बहुआयामी डेटा के सबसे अच्छे मिलान वाले अनुमानों को ढूंढता है, और विरल शब्दकोश शिक्षण, एक प्रतिनिधित्व सीखने की विधि जिसका उद्देश्य एक रैखिक संयोजन के रूप में इनपुट डेटा के विरल मैट्रिक्स प्रतिनिधित्व को ढूंढना है। मूल तत्वों के साथ-साथ उन मूल तत्वों का भी।[65][66][67]

जैविक साक्ष्य

स्मृति क्षमता बढ़ाने के लिए विरल कोडिंग न्यूरल तंत्र की एक सामान्य रणनीति हो सकती है। अपने वातावरण के अनुकूल ढलने के लिए, जानवरों को सीखना चाहिए कि कौन सी संदीपन पुरस्कार या दंड से जुड़ी हैं और इन प्रबलित संदीपन को समान लेकिन अप्रासंगिक संदीपन से अलग करना चाहिए। ऐसे कार्यों के लिए संदीपन-विशिष्ट साहचर्य स्मृति (मनोविज्ञान) को लागू करने की आवश्यकता होती है जिसमें न्यूरल समूह में से केवल कुछ न्यूरॉन्स किसी दिए गए संदीपन पर प्रतिक्रिया करते हैं और प्रत्येक न्यूरॉन सभी संभावित संदीपन में से केवल कुछ संदीपन पर प्रतिक्रिया करता है।

विरल वितरित मेमोरी पर सैद्धांतिक कार्य ने सुझाव दिया है कि विरल कोडिंग प्रतिनिधित्व के बीच ओवरलैप को कम करके सहयोगी मेमोरी की क्षमता को बढ़ाती है।[68] प्रायोगिक तौर पर, दृष्टि सहित कई प्रणालियों में संवेदी जानकारी का विरल प्रतिनिधित्व देखा गया है।[69] ऑडिशन,[70] छूना,[71] और गंध.[72] हालाँकि, व्यापक विरल कोडिंग और इसके महत्व के लिए सैद्धांतिक तर्कों के लिए साक्ष्य जमा होने के अतिरिक्त, एक प्रदर्शन कि विरल कोडिंग साहचर्य स्मृति की संदीपन-विशिष्टता में सुधार करती है, प्राप्त करना मुश्किल हो गया है।

ऐसा माना जाता है कि ड्रोसोफिला घ्राण प्रणाली में, मशरूम शरीर की केन्योन कोशिकाओं द्वारा विरल गंध कोडिंग गंध-विशिष्ट यादों के भंडारण के लिए बड़ी संख्या में सटीक पता योग्य स्थान उत्पन्न करती है।[73] स्पार्सनेस को केन्योन कोशिकाओं और GABAergic पूर्वकाल युग्मित पार्श्व (APL) न्यूरॉन्स के बीच एक नकारात्मक प्रतिक्रिया सर्किट द्वारा नियंत्रित किया जाता है। इस फीडबैक सर्किट के प्रत्येक चरण के व्यवस्थित सक्रियण और नाकाबंदी से पता चलता है कि केन्योन कोशिकाएं एपीएल न्यूरॉन्स को सक्रिय करती हैं और एपीएल न्यूरॉन्स केन्योन कोशिकाओं को बाधित करती हैं। केनियन सेल-एपीएल फीडबैक लूप को बाधित करने से केनियन सेल गंध प्रतिक्रियाओं की विरलता कम हो जाती है, अंतर-गंध सहसंबंध बढ़ जाता है, और मक्खियों को समान, लेकिन असमान नहीं, गंधों में भेदभाव करने से रोकता है। इन परिणामों से पता चलता है कि फीडबैक निषेध विरल, सजावट संबंधी गंध कोडिंग और इस प्रकार यादों की गंध-विशिष्टता को बनाए रखने के लिए केनियन सेल गतिविधि को दबा देता है।[74]

नॉन-स्पाइक अल्ट्रामाइक्रो-कोडिंग (उन्नत इंटेलिजेंस के लिए)

एक्शन-पोटेंशियल/सिनैप्टिक ("स्पाइक") सिग्नलिंग और इसकी कोडिंग की जो भी खूबियाँ और सर्वव्यापकता है, यह मानव अमूर्त विचार जैसी उच्च-बुद्धिमत्ता का कोई भी प्रशंसनीय विवरण प्रस्तुत करने में असमर्थ प्रतीत होता है; जैसे देखना [75][76] इसलिए विश्वसनीय डिजिटल प्रदर्शन में सक्षम विकल्प की खोज की गई, लेकिन एकमात्र संभावित उम्मीदवार 'अतिरिक्त' आरएनए ('प्रोटीन-'कोडिंग में सम्मिलित नहीं है, इसलिए "एनसीआरएनए") का उपयोग प्रतीत होता है। वह एनसीआरएनए "लिखित-डाउन" 'स्थैतिक कोडिंग' की पेशकश करेगा। ऐसी अल्ट्रामाइक्रो साइटें क्रिया-क्षमताओं का उपयोग करके नियमित रूप से अंतर-संचार नहीं कर सकती हैं, लेकिन उन्हें लगभग निश्चित रूप से इन्फ़रा रेड या आस-पास के ऑप्टिकल तरंग दैर्ध्य का उपयोग करना होगा। इस तरह की तरंग दैर्ध्य आसानी से माइलिनेटेड न्यूरल तंतुओं के व्यास के साथ फिट हो जाएंगी - यहां समाक्षीय केबल के रूप में देखा जाता है - इस प्रकार जब भी उपयुक्त हो, समान अक्षतंतु पर पारंपरिक प्रणाली के साथ एक साथ काम करने वाली दूसरी तेज़ सिग्नलिंग प्रणाली (काफी भिन्न गुणों के साथ) की पेशकश की जाती है।[77][78][79]

भले ही हम इसे सच मान लें, ऐसी गतिविधि ज्यादातर अप्राप्य है - व्यावहारिक कारणों से सीधे तौर पर देखने योग्य नहीं है - इसलिए किसी को इस मॉडल को किस हद तक स्वीकार करना चाहिए यह उसके विज्ञान के दर्शन पर निर्भर करता है। यह मॉडल काफी मात्रा में परस्पर-समर्थक अंतःविषय साक्ष्यों पर आधारित है, इसलिए वैज्ञानिक यथार्थवाद को संभवतः इसे स्वीकार करना चाहिए (जैसा कि यह अदृश्य ब्लैक होल्स या न्युट्रीनो के लिए होता है), कम से कम जब तक कि कुछ देखे गए खंडन उत्पन्न न हो जाएं - जबकि वाद्ययंत्रवाद के मिश्रण की उम्मीद की जा सकती है मॉडल को व्यावहारिक रूप से उपयोगी के रूप में उपयोग करने की इच्छा के साथ अविश्वास, यह देखते हुए कि यह कई रहस्यों का उत्तर देता है।

लेकिन इसके अतिरिक्त पूरी की गई भविष्यवाणियों के रूप में प्रत्यक्ष साक्ष्य के दो छोटे आइटम भी हैं: (i) (भविष्यवाणी से अधिक एक आशा) कि पर्याप्त अतिरिक्त आरएनए उपलब्ध होगा - एक संदेह जो तब दूर हो गया जब मैटिक ने खुलासा किया कि (मनुष्यों में) आरएनए का लगभग 3% ही प्रोटीन बनाने के लिए उपयोग किया जाता था, इसलिए 97% अन्य कार्यों के लिए उपलब्ध था[80] (ii) समाक्षीय-केबल उप-परिकल्पना की व्यवहार्यता को प्रयोगों द्वारा उचित ठहराया गया था जिसमें दिखाया गया था कि इन्फ्रा-रेड और अन्य प्रकाश-आवृत्तियों को अक्षतंतु के माध्यम से प्रेषित किया जा सकता है।[81][82] इस गैर-स्पाइक मोड की परिकल्पना विशेष रूप से मस्तिष्क के भीतर - उन्नत-विचार तंत्र (उच्च कशेरुकियों में) के रूप में संचालित करने के रूप में की गई है - जो बाहरी दुनिया के साथ सभी अंतर-संचार करने के लिए पारंपरिक "स्पाइक" संकेतों को छोड़ देता है, और हेब्बियन रखरखाव सहित अन्य नियमित कार्य करते हैं।

हालाँकि, आश्चर्यजनक रूप से, कुछ सुझाव दिए गए हैं कि एक समान विधा इन्सेक्ट में स्वतंत्र रूप से विकसित हुई होगी (इस प्रकार उनके छोटे मस्तिष्क के अतिरिक्त उनकी असाधारण प्रदर्शन-क्षमताओं को ध्यान में रखते हुए)। दरअसल, ऐसा स्थिति है कि पतंगों आदि की रीढ़ और एंटेना को पर्यावरण से सीधे इन्फ्रा-रेड सिग्नल प्राप्त हो सकते हैं,[83] (समीक्षा की गई [84]), इस प्रकार एक और संभावना है कि कभी-कभी इन संकेतों का एक समर्पित फीड-इन सीधे कीट के न्यूरल तंत्र में हो सकता है (सामान्यतः अपेक्षित 'स्पाइक' संवेदी तंत्र के बिना)। इस स्तर पर यह केवल अनुमान है, लेकिन यह कुछ आसान और किफायती प्रयोग की गुंजाइश प्रदान कर सकता है।

फिर भी एक और गैर-स्पाइक सिग्नल-मोड: अक्षतंतु के लिए तीसरे सिग्नल-मोड का अप्रत्यक्ष प्रमाण भी है! यह मोड बहुत धीमा है, लेकिन उपर्युक्त स्थैतिक कोडिंग के पहले से ही स्वरूपित ncRNA-स्कीमा के रूप में "बहुत बड़े डॉक्यूमेंट" ले जाने में सक्षम है - एक्सॉन के भीतर काइन्सिन द्वारा एक्सोनल परिवहन के रूप में किया जाता है[78] (बिल्कुल ज्ञात की तरह) mRNA का परिवहन, जिसके साथ प्रयोगशाला अध्ययन में इसे भ्रमित किया गया होगा)।

यह भी देखें

संदर्भ

  1. Brown EN, Kass RE, Mitra PP (May 2004). "Multiple neural spike train data analysis: state-of-the-art and future challenges". Nat. Neurosci. 7 (5): 456–61. doi:10.1038/nn1228. PMID 15114358. S2CID 562815.
  2. Johnson, K. O. (June 2000). "तंत्रिका कोडिंग". Neuron. 26 (3): 563–566. doi:10.1016/S0896-6273(00)81193-9. ISSN 0896-6273. PMID 10896153.
  3. 3.0 3.1 3.2 Thorpe, S.J. (1990). "Spike arrival times: A highly efficient coding scheme for neural networks". In Eckmiller, R.; Hartmann, G.; Hauske, G. (eds.). तंत्रिका तंत्र और कंप्यूटर में समानांतर प्रसंस्करण (PDF). North-Holland. pp. 91–94. ISBN 978-0-444-88390-2.
  4. Sengupta B, Laughlin SB, Niven JE (2014) Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency. PLOS Computational Biology 10(1): e1003439. https://doi.org/10.1371/journal.pcbi.1003439
  5. Gerstner, Wulfram; Kistler, Werner M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press. ISBN 978-0-521-89079-3.
  6. 6.0 6.1 6.2 6.3 Stein RB, Gossen ER, Jones KE (May 2005). "Neuronal variability: noise or part of the signal?". Nat. Rev. Neurosci. 6 (5): 389–97. doi:10.1038/nrn1668. PMID 15861181. S2CID 205500218.
  7. The Memory Code. http://www.scientificamerican.com/article/the-memory-code/
  8. Chen, G; Wang, LP; Tsien, JZ (2009). "माउस हिप्पोकैम्पस में तंत्रिका जनसंख्या-स्तरीय स्मृति निशान". PLOS ONE. 4 (12): e8256. Bibcode:2009PLoSO...4.8256C. doi:10.1371/journal.pone.0008256. PMC 2788416. PMID 20016843.
  9. Zhang, H; Chen, G; Kuang, H; Tsien, JZ (Nov 2013). "हिप्पोकैम्पस में एनएमडीए रिसेप्टर-निर्भर भय स्मृति एन्ग्राम के तंत्रिका कोड का मानचित्रण और व्याख्या करना". PLOS ONE. 8 (11): e79454. Bibcode:2013PLoSO...879454Z. doi:10.1371/journal.pone.0079454. PMC 3841182. PMID 24302990.
  10. Brain Decoding Project. http://braindecodingproject.org/
  11. The Simons Collaboration on the Global Brain. https://www.simonsfoundation.org/life-sciences/simons-collaboration-global-brain/
  12. Burcas G.T & Albright T.D. Gauging sensory representations in the brain. http://www.vcl.salk.edu/Publications/PDF/Buracas_Albright_1999_TINS.pdf
  13. Gerstner W, Kreiter AK, Markram H, Herz AV (November 1997). "Neural codes: firing rates and beyond". Proc. Natl. Acad. Sci. U.S.A. 94 (24): 12740–1. Bibcode:1997PNAS...9412740G. doi:10.1073/pnas.94.24.12740. PMC 34168. PMID 9398065.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 Gerstner, Wulfram. (2002). Spiking neuron models : single neurons, populations, plasticity. Kistler, Werner M., 1969-. Cambridge, U.K.: Cambridge University Press. ISBN 0-511-07817-X. OCLC 57417395.
  15. Kandel, E.; Schwartz, J.; Jessel, T.M. (1991). तंत्रिका विज्ञान के सिद्धांत (3rd ed.). Elsevier. ISBN 978-0444015624.
  16. Adrian ED, Zotterman Y (1926). "The impulses produced by sensory nerve endings: Part II: The response of a single end organ". J Physiol. 61 (2): 151–171. doi:10.1113/jphysiol.1926.sp002281. PMC 1514782. PMID 16993780.
  17. Forrest MD (2014). "इंट्रासेल्युलर कैल्शियम डायनेमिक्स एक पर्किनजे न्यूरॉन मॉडल को अपने इनपुट पर टॉगल करने और गणना प्राप्त करने की अनुमति देता है।". Frontiers in Computational Neuroscience. 8: 86. doi:10.3389/fncom.2014.00086. PMC 4138505. PMID 25191262.
  18. Forrest MD (December 2014). "सोडियम-पोटेशियम पंप मस्तिष्क गणना में एक सूचना प्रसंस्करण तत्व है". Frontiers in Physiology. 5 (472): 472. doi:10.3389/fphys.2014.00472. PMC 4274886. PMID 25566080.
  19. 19.0 19.1 19.2 Gollisch, T.; Meister, M. (2008-02-22). "सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग". Science (in English). 319 (5866): 1108–1111. Bibcode:2008Sci...319.1108G. doi:10.1126/science.1149639. ISSN 0036-8075. PMID 18292344. S2CID 1032537.
  20. Dayan, Peter; Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Massachusetts Institute of Technology Press. ISBN 978-0-262-04199-7.
  21. Butts DA, Weng C, Jin J, et al. (September 2007). "तंत्रिका कोड और प्राकृतिक दृष्टि के समयमान में अस्थायी परिशुद्धता". Nature. 449 (7158): 92–5. Bibcode:2007Natur.449...92B. doi:10.1038/nature06105. PMID 17805296. S2CID 4402057.
  22. Singh & Levy, "A consensus layer V pyramidal neuron can sustain interpulse-interval coding ", PLoS ONE, 2017
  23. J. Leo van Hemmen, TJ Sejnowski. 23 Problems in Systems Neuroscience. Oxford Univ. Press, 2006. p.143-158.
  24. 24.0 24.1 24.2 24.3 Theunissen, F; Miller, JP (1995). "Temporal Encoding in Nervous Systems: A Rigorous Definition". Journal of Computational Neuroscience. 2 (2): 149–162. doi:10.1007/bf00961885. PMID 8521284. S2CID 206786736.
  25. 25.0 25.1 Zador, Stevens, Charles, Anthony. "मस्तिष्क की पहेली". © Current Biology 1995, Vol 5 No 12. Retrieved August 4, 2012.{{cite web}}: CS1 maint: multiple names: authors list (link)
  26. Kostal L, Lansky P, Rospars JP (November 2007). "न्यूरोनल कोडिंग और स्पाइकिंग यादृच्छिकता". Eur. J. Neurosci. 26 (10): 2693–701. doi:10.1111/j.1460-9568.2007.05880.x. PMID 18001270. S2CID 15367988.
  27. Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark (2016-12-15). "न्यूरॉन्स में ऑसिलेटरी इंटीग्रेशन विंडो". Nature Communications. 7: 13808. Bibcode:2016NatCo...713808G. doi:10.1038/ncomms13808. ISSN 2041-1723. PMC 5171764. PMID 27976720.
  28. Jolivet, Renaud; Rauch, Alexander; Lüscher, Hans-Rudolf; Gerstner, Wulfram (2006-08-01). "सरल थ्रेशोल्ड मॉडल द्वारा नियोकॉर्टिकल पिरामिडल न्यूरॉन्स के स्पाइक टाइमिंग की भविष्यवाणी करना". Journal of Computational Neuroscience (in English). 21 (1): 35–49. doi:10.1007/s10827-006-7074-5. ISSN 1573-6873. PMID 16633938. S2CID 8911457.
  29. Geoffrois, E.; Edeline, J.M.; Vibert, J.F. (1994). "Learning by Delay Modifications". In Eeckman, Frank H. (ed.). न्यूरॉन्स और तंत्रिका तंत्र में गणना. Springer. pp. 133–8. ISBN 978-0-7923-9465-5.
  30. Sjöström, Jesper, and Wulfram Gerstner. "Spike-timing dependent plasticity." Spike-timing dependent plasticity 35 (2010).
  31. Gollisch, T.; Meister, M. (22 February 2008). "सापेक्ष स्पाइक विलंबता के साथ रेटिना में तीव्र तंत्रिका कोडिंग". Science. 319 (5866): 1108–1111. Bibcode:2008Sci...319.1108G. doi:10.1126/science.1149639. PMID 18292344. S2CID 1032537.
  32. Wainrib, Gilles; Michèle, Thieullen; Khashayar, Pakdaman (7 April 2010). "प्रथम-स्पाइक में विलंबता की आंतरिक परिवर्तनशीलता". Biological Cybernetics. 103 (1): 43–56. doi:10.1007/s00422-010-0384-8. PMID 20372920. S2CID 7121609.
  33. Victor, Johnathan D (2005). "स्पाइक ट्रेन मेट्रिक्स". Current Opinion in Neurobiology. 15 (5): 585–592. doi:10.1016/j.conb.2005.08.002. PMC 2713191. PMID 16140522.
  34. Hallock, Robert M.; Di Lorenzo, Patricia M. (2006). "स्वाद प्रणाली में टेम्पोरल कोडिंग". Neuroscience & Biobehavioral Reviews. 30 (8): 1145–1160. doi:10.1016/j.neubiorev.2006.07.005. PMID 16979239. S2CID 14739301.
  35. Carleton, Alan; Accolla, Riccardo; Simon, Sidney A. (2010). "स्तनधारी स्वाद प्रणाली में कोडिंग". Trends in Neurosciences. 33 (7): 326–334. doi:10.1016/j.tins.2010.04.002. PMC 2902637. PMID 20493563.
  36. Wilson, Rachel I (2008). "घ्राण धारणा के तंत्रिका और व्यवहारिक तंत्र". Current Opinion in Neurobiology. 18 (4): 408–412. doi:10.1016/j.conb.2008.08.015. PMC 2596880. PMID 18809492.
  37. 37.0 37.1 Karl Diesseroth, Lecture. "Personal Growth Series: Karl Diesseroth on Cracking the Neural Code." Google Tech Talks. November 21, 2008. https://www.youtube.com/watch?v=5SLdSbp6VjM
  38. 38.0 38.1 Han X, Qian X, Stern P, Chuong AS, Boyden ES. "Informational lesions: optical perturbations of spike timing and neural synchrony via microbial opsin gene fusions." Cambridge, Massachusetts: MIT Media Lad, 2009.
  39. 39.0 39.1 Montemurro, Marcelo A.; Rasch, Malte J.; Murayama, Yusuke; Logothetis, Nikos K.; Panzeri, Stefano (2008). "प्राथमिक दृश्य कॉर्टेक्स में प्राकृतिक दृश्य उत्तेजनाओं की चरण-ऑफ-फायरिंग कोडिंग". Current Biology. 18 (5): 375–380. doi:10.1016/j.cub.2008.02.023. PMID 18328702.
  40. Fries P, Nikolić D, Singer W (July 2007). "गामा चक्र". Trends Neurosci. 30 (7): 309–16. doi:10.1016/j.tins.2007.05.005. PMID 17555828. S2CID 3070167.
  41. Spike arrival times: A highly efficient coding scheme for neural networks Archived 2012-02-15 at the Wayback Machine, SJ Thorpe - Parallel processing in neural systems, 1990
  42. 42.0 42.1 Havenith MN, Yu S, Biederlack J, Chen NH, Singer W, Nikolić D (June 2011). "सिंक्रोनाइज़ेशन न्यूरॉन्स को क्रम में सक्रिय बनाता है, और उत्तेजना गुण निर्धारित करते हैं कि आगे कौन है". J. Neurosci. 31 (23): 8570–84. doi:10.1523/JNEUROSCI.2817-10.2011. PMC 6623348. PMID 21653861.
  43. Wu S, Amari S, Nakahara H (May 2002). "Population coding and decoding in a neural field: a computational study". Neural Comput. 14 (5): 999–1026. doi:10.1162/089976602753633367. PMID 11972905. S2CID 1122223.
  44. Maunsell JH, Van Essen DC (May 1983). "मकाक बंदर के मध्य अस्थायी दृश्य क्षेत्र में न्यूरॉन्स के कार्यात्मक गुण। I. उत्तेजना की दिशा, गति और अभिविन्यास के लिए चयनात्मकता". J. Neurophysiol. 49 (5): 1127–47. doi:10.1152/jn.1983.49.5.1127. PMID 6864242. S2CID 8708245.
  45. "Intro to Sensory Motor Systems Ch. 38 page 766" (PDF).
  46. Science. 1986 Sep 26;233(4771):1416-9
  47. Sachs, Murray B.; Young, Eric D. (November 1979). "श्रवण-तंत्रिका तंतुओं की आबादी के निर्वहन पैटर्न के अस्थायी पहलुओं में स्थिर-अवस्था स्वरों का प्रतिनिधित्व". The Journal of the Acoustical Society of America. 66 (5): 1381–1403. Bibcode:1979ASAJ...66.1381Y. doi:10.1121/1.383532. PMID 500976.
  48. Miller, M.I.; Sachs, M.B. (June 1984). "श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में आवाज की पिच का प्रतिनिधित्व". Hearing Research. 14 (3): 257–279. doi:10.1016/0378-5955(84)90054-6. PMID 6480513. S2CID 4704044.
  49. Miller, M.I.; Sachs, M.B. (1983). "श्रवण-तंत्रिका तंतुओं के निर्वहन पैटर्न में स्टॉप व्यंजन का प्रतिनिधित्व". The Journal of the Acoustical Society of America. 74 (2): 502–517. Bibcode:1983ASAJ...74..502M. doi:10.1121/1.389816. PMID 6619427.
  50. Hubel DH, Wiesel TN (October 1959). "बिल्ली के स्ट्रिएट कॉर्टेक्स में एकल न्यूरॉन्स के ग्रहणशील क्षेत्र". J. Physiol. 148 (3): 574–91. doi:10.1113/jphysiol.1959.sp006308. PMC 1363130. PMID 14403679.
  51. Schneidman, E; Berry, MJ; Segev, R; Bialek, W (2006), "Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population", Nature, 440 (7087): 1007–1012, arXiv:q-bio/0512013, Bibcode:2006Natur.440.1007S, doi:10.1038/nature04701, PMC 1785327, PMID 16625187
  52. Amari, SL (2001), "Information Geometry on Hierarchy of Probability Distributions", IEEE Transactions on Information Theory, 47 (5): 1701–1711, CiteSeerX 10.1.1.46.5226, doi:10.1109/18.930911
  53. Onken, A; Grünewälder, S; Munk, MHJ; Obermayer, K (2009), "Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation", PLOS Comput Biol, 5 (11): e1000577, Bibcode:2009PLSCB...5E0577O, doi:10.1371/journal.pcbi.1000577, PMC 2776173, PMID 19956759
  54. Johnson, KO (Jun 1980). "Sensory discrimination: neural processes preceding discrimination decision". J Neurophysiol. 43 (6): 1793–815. doi:10.1152/jn.1980.43.6.1793. PMID 7411183.
  55. Panzeri; Schultz; Treves; Rolls (1999). "तंत्रिका तंत्र में सहसंबंध और सूचना का एन्कोडिंग". Proc Biol Sci. 266 (1423): 1001–12. doi:10.1098/rspb.1999.0736. PMC 1689940. PMID 10610508.
  56. Merzenich, MM (Jun 1996). "क्रिया-संभावित समय के समन्वय द्वारा ध्वनियों का प्राथमिक कॉर्टिकल प्रतिनिधित्व". Nature. 381 (6583): 610–3. Bibcode:1996Natur.381..610D. doi:10.1038/381610a0. PMID 8637597. S2CID 4258853.
  57. Dayan P & Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, Massachusetts: The MIT Press; 2001. ISBN 0-262-04199-5
  58. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. Spikes: Exploring the Neural Code. Cambridge, Massachusetts: The MIT Press; 1999. ISBN 0-262-68108-0
  59. Mathis A, Herz AV, Stemmler MB (July 2012). "नेस्टेड न्यूरोनल अभ्यावेदन का रिज़ॉल्यूशन न्यूरॉन्स की संख्या में घातीय हो सकता है". Phys. Rev. Lett. 109 (1): 018103. Bibcode:2012PhRvL.109a8103M. doi:10.1103/PhysRevLett.109.018103. PMID 23031134.
  60. Olshausen, Bruno A; Field, David J (1996). "प्राकृतिक छवियों के लिए विरल कोड सीखकर सरल-कोशिका ग्रहणशील क्षेत्र गुणों का उद्भव" (PDF). Nature. 381 (6583): 607–609. Bibcode:1996Natur.381..607O. doi:10.1038/381607a0. PMID 8637596. S2CID 4358477. Archived from the original (PDF) on 2015-11-23. Retrieved 2016-03-29.
  61. Gupta, N; Stopfer, M (6 October 2014). "विरल संवेदी कोडिंग में जानकारी के लिए एक अस्थायी चैनल।". Current Biology. 24 (19): 2247–56. doi:10.1016/j.cub.2014.08.021. PMC 4189991. PMID 25264257.
  62. 62.0 62.1 62.2 62.3 Rehn, Martin; Sommer, Friedrich T. (2007). "एक नेटवर्क जो दृश्य इनपुट को कोड करने के लिए कुछ सक्रिय न्यूरॉन्स का उपयोग करता है, कॉर्टिकल ग्रहणशील क्षेत्रों के विविध आकार की भविष्यवाणी करता है" (PDF). Journal of Computational Neuroscience. 22 (2): 135–146. doi:10.1007/s10827-006-0003-9. PMID 17053994. S2CID 294586.
  63. Lee, Honglak; Battle, Alexis; Raina, Rajat; Ng, Andrew Y. (2006). "कुशल विरल कोडिंग एल्गोरिदम" (PDF). Advances in Neural Information Processing Systems.
  64. Olshausen, Bruno A.; Field, David J. (1997). "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?" (PDF). Vision Research. 37 (23): 3311–3325. doi:10.1016/s0042-6989(97)00169-7. PMID 9425546.
  65. Zhang, Zhifeng; Mallat, Stephane G.; Davis, Geoffrey M. (July 1994). "अनुकूली समय-आवृत्ति अपघटन". Optical Engineering. 33 (7): 2183–2192. Bibcode:1994OptEn..33.2183D. doi:10.1117/12.173207. ISSN 1560-2303.
  66. Pati, Y. C.; Rezaiifar, R.; Krishnaprasad, P. S. (November 1993). "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition". Proceedings of 27th Asilomar Conference on Signals, Systems and Computers. pp. 40–44 vol.1. CiteSeerX 10.1.1.348.5735. doi:10.1109/ACSSC.1993.342465. ISBN 978-0-8186-4120-6. S2CID 16513805.
  67. Needell, D.; Tropp, J.A. (2009-05-01). "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples". Applied and Computational Harmonic Analysis. 26 (3): 301–321. arXiv:0803.2392. doi:10.1016/j.acha.2008.07.002. ISSN 1063-5203.
  68. Kanerva, Pentti. Sparse distributed memory. MIT press, 1988
  69. Vinje, WE; Gallant, JL (2000). "प्राकृतिक दृष्टि के दौरान प्राथमिक दृश्य प्रांतस्था में विरल कोडिंग और सजावट". Science. 287 (5456): 1273–1276. Bibcode:2000Sci...287.1273V. CiteSeerX 10.1.1.456.2467. doi:10.1126/science.287.5456.1273. PMID 10678835.
  70. Hromádka, T; Deweese, MR; Zador, AM (2008). "असंवेदनशील श्रवण प्रांतस्था में ध्वनियों का विरल प्रतिनिधित्व". PLOS Biol. 6 (1): e16. doi:10.1371/journal.pbio.0060016. PMC 2214813. PMID 18232737.
  71. Crochet, S; Poulet, JFA; Kremer, Y; Petersen, CCH (2011). "सक्रिय स्पर्श की विरल कोडिंग में अंतर्निहित सिनैप्टिक तंत्र". Neuron. 69 (6): 1160–1175. doi:10.1016/j.neuron.2011.02.022. PMID 21435560.
  72. Ito, I; Ong, RCY; Raman, B; Stopfer, M (2008). "विरल गंध प्रतिनिधित्व और घ्राण शिक्षा". Nat Neurosci. 11 (10): 1177–1184. doi:10.1038/nn.2192. PMC 3124899. PMID 18794840.
  73. A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014. http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory
  74. Lin, Andrew C., et al. "Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination." Nature Neuroscience 17.4 (2014): 559-568.
  75. Rose, S.P.R.(2015 Feb 14) 50 years of neuroscience. Lancet, 385(9968), 598-9. https://doi.org/10.1016/S0140-6736(15)60224-0
  76. Trettenbrein PC (2016) The demise of the synapse as the locus of memory: a looming paradigm shift? Frontiers in Systems Neuroscience, 10: 88. https://doi.org/10.3389/fnsys.2016.00088
  77. Traill, R.R. (2008/2005b). Thinking by Molecule, Synapse, or both? — From Piaget’s schema, to the Selecting/Editing of ncRNA. Gen.Sci.J., https://www.gsjournal.net/Science-Journals/Research%20Papers/View/891
  78. 78.0 78.1 Traill R.R. (2022) Coding for the Brain: RNA, its Photons, and Piagetian Higher-Intelligence through Action. Journal of Psychiatry and Psychiatric Disorders, 6, 276-297. https://doi.org/10.26502/jppd.2572-519X0175
  79. Traill, R.R. (1988). The case that mammalian intelligence is based on sub-molecular memory coding and fibre-optic capabilities of myelinated nerve axons. Speculations in Science and Technology, 11(3), 173-181. https://www.ondwelle.com/OSM10en.pdf
  80. Mattick, J.S. (2001). Noncoding RNAs: the architects of eukaryotic complexity. EMBO Reports, 2(11), 986-991. http://emboreports.npgjournals.com/cgi/content/full/2/11/986
  81. Sun Y[an], Chao Wang, & Jiapei Dai (2010, Jan). "Bio-photons as neural communication signals demonstrated by in situ biophoton autography". Photochem. Photobiol. Sci., 9, 315-322. https://doi.org/10.1039/b9pp00125e
  82. Zangari A., D.Micheli, R.Galeazzi & A.Tozzi, V.Balzano, G.Bellavia & M.E.Caristo (2021) "Photons detected in the active nerve by photographic technique" Scientific Reports, 11, 3022. https://doi.org/10.1038/s41598-021-82622-5
  83. Callahan, P.S. (1977) Tuning in to Nature. Routledge & Kegan Paul: London.
  84. Traill, R.R. (2005c). How Popperian positivism killed a good-but-poorly-presented theory — Insect Communication by Infrared. Gen.Sci.J., https://www.gsjournal.net/Science-Journals/Research%20Papers/View/897


अग्रिम पठन