हार्डवेयर-इन-द-लूप सिमुलेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Technique used in the development and testing of complex real-time embedded systems}}
{{short description|Technique used in the development and testing of complex real-time embedded systems}}
'''हार्डवेयर-इन-द-लूप (एचआईएल) [[सिमुलेशन]]''', एचडब्ल्यूआईएल, या एचआईटीएल, ऐसी तकनीक है जिसका उपयोग सम्मिश्र वास्तविक समय [[ अंतः स्थापित प्रणालियाँ |अंतः स्थापित]] सिस्टम्स के विकास और परीक्षण में किया जाता है। तथा एचआईएल सिमुलेशन परीक्षण प्लेटफॉर्म में प्लांट (नियंत्रण सिद्धांत) के रूप में जाने जाने वाले प्रोसेस-एक्चुएटर सिस्टम की सम्मिश्रता को जोड़कर प्रभावी परीक्षण [[ प्लेटफ़ॉर्म (कंप्यूटिंग) |प्लेटफ़ॉर्म (कंप्यूटिंग)]] प्रदान करता है। इसमें नियंत्रणाधीन संयंत्र की सम्मिश्रता को सभी संबंधित गतिशील सिस्टम्स का [[प्रतिनिधित्व (गणित)]] जोड़कर परीक्षण और विकास में सम्मिलित किया गया है। इन गणितीय निरूपणों को पादप अनुकरण कहा जाता है। इसी प्रकार परीक्षण किया जाने वाला एम्बेडेड सिस्टम इस प्लांट सिमुलेशन के साथ इंटरैक्ट करता है।                         
'''हार्डवेयर-इन-द-लूप (एचआईएल) [[सिमुलेशन]]''', एचडब्ल्यूआईएल, या एचआईटीएल, ऐसी तकनीक है जिसका उपयोग काम्प्लेक्स वास्तविक समय [[ अंतः स्थापित प्रणालियाँ |एंबेडेड]] सिस्टम सिस्टम के विकास और परीक्षण में किया जाता है। तथा एचआईएल सिमुलेशन परीक्षण प्लेटफॉर्म में प्लांट (नियंत्रण सिद्धांत) के रूप में जाने जाने वाले प्रोसेस-एक्चुएटर सिस्टम की काम्प्लेक्स को जोड़कर प्रभावी परीक्षण [[ प्लेटफ़ॉर्म (कंप्यूटिंग) |प्लेटफ़ॉर्म (कंप्यूटिंग)]] प्रदान करता है। इसमें नियंत्रणाधीन संयंत्र की काम्प्लेक्स को सभी संबंधित गतिशील सिस्टम का [[प्रतिनिधित्व (गणित)]] जोड़कर परीक्षण और विकास में सम्मिलित किया गया है। इन गणितीय निरूपणों को प्लांट सिमुलेशन कहा जाता है। इसी प्रकार परीक्षण किया जाने वाला एम्बेडेड सिस्टम इस प्लांट सिमुलेशन के साथ इंटरैक्ट करता है।                         


==एचआईएल कैसे काम करता है==
==एचआईएल कैसे कार्य करता है==


एचआईएल सिमुलेशन में सेंसर और एक्चुएटर्स का विद्युत अनुकरण सम्मिलित होना चाहिए। जहाँ यह विद्युत अनुकरण संयंत्र सिमुलेशन और परीक्षण के अनुसार एम्बेडेड सिस्टम के मध्य इंटरफेस के रूप में कार्य करते हैं। प्रत्येक विद्युत उत्सर्जित सेंसर का मान प्लांट सिमुलेशन द्वारा नियंत्रित किया जाता है और परीक्षण (फीडबैक) के अनुसार एम्बेडेड सिस्टम द्वारा पढ़ा भी जाता है। इसी प्रकार, परीक्षण के अनुसार एम्बेडेड सिस्टम एक्चुएटर नियंत्रण संकेतों को आउटपुट करके अपने नियंत्रण [[एल्गोरिदम]] को कार्यान्वित करता है। तथा नियंत्रण संकेतों में परिवर्तन के परिणामस्वरूप प्लांट सिमुलेशन में परिवर्तनशील मानों में परिवर्तन होता है।
एचआईएल सिमुलेशन में सेंसर और एक्चुएटर्स का विद्युत सिमुलेशन सम्मिलित होना चाहिए। जहाँ यह विद्युत सिमुलेशन संयंत्र सिमुलेशन और परीक्षण के अनुसार एम्बेडेड सिस्टम के मध्य इंटरफेस के रूप में कार्य करते हैं। प्रत्येक विद्युत उत्सर्जित सेंसर का मान प्लांट सिमुलेशन द्वारा नियंत्रित किया जाता है और परीक्षण (फीडबैक) के अनुसार एम्बेडेड सिस्टम द्वारा पढ़ा भी जाता है। इसी प्रकार, परीक्षण के अनुसार एम्बेडेड सिस्टम एक्चुएटर नियंत्रण संकेतों को आउटपुट करके अपने नियंत्रण [[एल्गोरिदम]] को कार्यान्वित करता है। तथा नियंत्रण संकेतों में परिवर्तन के परिणामस्वरूप प्लांट सिमुलेशन में परिवर्तनशील मानों में परिवर्तन होता है।


उदाहरण के लिए, [[एंटी लॉक ब्रेक]] होता हैं | ऑटोमोटिव एंटी-लॉक ब्रेकिंग सिस्टम के विकास के लिए एचआईएल सिमुलेशन प्लेटफॉर्म में प्लांट सिमुलेशन में निम्नलिखित उप-सिस्टम्स में से प्रत्येक के लिए गणितीय प्रतिनिधित्व हो सकता है | <ref name=brake>T. Hwang, J. Rohl, K. Park, J. Hwang, K. H. Lee, K. Lee, S.-J. Lee, and Y.-J. Kim, "Development of HIL Systems for active Brake Control
उदाहरण के लिए, [[एंटी लॉक ब्रेक]] होता हैं | ऑटोमोटिव एंटी-लॉक ब्रेकिंग सिस्टम के विकास के लिए एचआईएल सिमुलेशन प्लेटफॉर्म में प्लांट सिमुलेशन में निम्नलिखित सब-सिस्टम में से प्रत्येक के लिए गणितीय प्रतिनिधित्व हो सकता है | <ref name=brake>T. Hwang, J. Rohl, K. Park, J. Hwang, K. H. Lee, K. Lee, S.-J. Lee, and Y.-J. Kim, "Development of HIL Systems for active Brake Control
Systems", ''SICE-ICASE International Joint Conference'', 2006.</ref>
Systems", ''SICE-ICASE International Joint Conference'', 2006.</ref>
* [[वाहन की गतिशीलता]], जैसे सस्पेंशन, पहिए, टायर, रोल, पिच और यॉ  
* [[वाहन की गतिशीलता]], जैसे सस्पेंशन, पहिए, टायर, रोल, पिच और यॉ  
* ब्रेक सिस्टम के हाइड्रोलिक घटकों की गतिशीलता  
* ब्रेक सिस्टम के हाइड्रोलिक अवयवो की गतिशीलता
* सड़क की विशेषताएं  
* सड़क की विशेषताएं  


Line 25: Line 25:


इस प्रकार एचआईएल का उपयोग परीक्षण के क्षेत्र को बढ़ाकर परीक्षण की गुणवत्ता को बढ़ाता है। तथा जहाँ आदर्श रूप से, एम्बेडेड सिस्टम का परीक्षण वास्तविक संयंत्र के विरुद्ध किया जाता हैं, किन्तु अधिकांश समय वास्तविक संयंत्र स्वयं परीक्षण के क्षेत्र के संदर्भ में सीमाएं लगाता है। उदाहरण के लिए, किसी इंजन नियंत्रण इकाई को वास्तविक संयंत्र के रूप में परीक्षण करने से परीक्षण इंजीनियर के लिए निम्नलिखित हानिकारक स्थितियाँ उत्पन्न हो सकती हैं  
इस प्रकार एचआईएल का उपयोग परीक्षण के क्षेत्र को बढ़ाकर परीक्षण की गुणवत्ता को बढ़ाता है। तथा जहाँ आदर्श रूप से, एम्बेडेड सिस्टम का परीक्षण वास्तविक संयंत्र के विरुद्ध किया जाता हैं, किन्तु अधिकांश समय वास्तविक संयंत्र स्वयं परीक्षण के क्षेत्र के संदर्भ में सीमाएं लगाता है। उदाहरण के लिए, किसी इंजन नियंत्रण इकाई को वास्तविक संयंत्र के रूप में परीक्षण करने से परीक्षण इंजीनियर के लिए निम्नलिखित हानिकारक स्थितियाँ उत्पन्न हो सकती हैं  
* कुछ ईसीयू मापदंडों (जैसे इंजन पैरामीटर आदि) की सीमा पर या उससे भिन्न परीक्षण में उत्पन्न होती है |                                                                
* कुछ ईसीयू मापदंडों (जैसे इंजन मापदंड आदि) की सीमा पर या उससे भिन्न परीक्षण में उत्पन्न होती है |
* कुछ विफलता की स्थिति में सिस्टम का परीक्षण और सत्यापन इसमें उत्पन्न हो सकती है |                                    
* कुछ विफलता की स्थिति में सिस्टम का परीक्षण और सत्यापन इसमें उत्पन्न हो सकती है |
उपर्युक्त परीक्षण परिदृश्यों में, एचआईएल कुशल नियंत्रण और सुरक्षित वातावरण प्रदान करता है जहां परीक्षण या एप्लिकेशन इंजीनियर नियंत्रक की कार्य क्षमता पर ध्यान केंद्रित कर सकते हैं।                                                                                                     
उपर्युक्त परीक्षण परिदृश्यों में, एचआईएल कुशल नियंत्रण और सुरक्षित वातावरण प्रदान करता है जहां परीक्षण या एप्लिकेशन इंजीनियर नियंत्रक की कार्य क्षमता पर ध्यान केंद्रित कर सकते हैं।                                                                                                     


===टाइट डेवलपमेंट शेड्यूल                                                                                                          ===
===टाइट डेवलपमेंट शेड्यूल                                                                                                          ===


अधिकांश नए ऑटोमोटिव, एयरोस्पेस और रक्षा प्रोग्रामों से जुड़े तंग विकास प्रोग्राम एम्बेडेड सिस्टम परीक्षण को प्रोटोटाइप उपलब्ध होने की प्रतीक्षा करने की अनुमति नहीं देते हैं। वास्तव में, अधिकांश नए विकास प्रोग्राम यह मानते हैं कि एचआईएल सिमुलेशन का उपयोग संयंत्र के विकास के समानांतर किया जाता हैं। उदाहरण के लिए, जब तक नया [[आंतरिक दहन इंजन|ऑटोमोबाइल इंजन]] प्रोटोटाइप नियंत्रण प्रणाली परीक्षण के लिए उपलब्ध कराया जाता है, तब तक एचआईएल सिमुलेशन का उपयोग करके इंजन नियंत्रक परीक्षण का 95% पूरा हो चुका होता हैं।
अधिकांश नए ऑटोमोटिव, एयरोस्पेस और रक्षा प्रोग्रामों से जुड़े तंग विकास प्रोग्राम एम्बेडेड सिस्टम परीक्षण को प्रोटोटाइप उपलब्ध होने की प्रतीक्षा करने की अनुमति नहीं देते हैं। वास्तव में, अधिकांश नए विकास प्रोग्राम यह मानते हैं कि एचआईएल सिमुलेशन का उपयोग संयंत्र के विकास के समानांतर किया जाता हैं। उदाहरण के लिए, जब तक नया [[आंतरिक दहन इंजन|ऑटोमोबाइल इंजन]] प्रोटोटाइप नियंत्रण सिस्टम परीक्षण के लिए उपलब्ध कराया जाता है, तब तक एचआईएल सिमुलेशन का उपयोग करके इंजन नियंत्रक परीक्षण का 95% पूरा हो चुका होता हैं।


एयरोस्पेस और रक्षा उद्योगों पर टाइट डेवलपमेंट शेड्यूल प्रयुक्त करने की और भी अधिक संभावना होती है। जहाँ एयरक्राफ्ट और लैंड व्हीकल डेवलोपमेन्ट प्रोग्राम समानांतर में डिजाइन, परीक्षण और एकीकरण करने के लिए डेस्कटॉप और एचआईएल सिमुलेशन का उपयोग कर रहे हैं।
एयरोस्पेस और रक्षा उद्योगों पर टाइट डेवलपमेंट शेड्यूल प्रयुक्त करने की और भी अधिक संभावना होती है। जहाँ एयरक्राफ्ट और लैंड व्हीकल डेवलोपमेन्ट प्रोग्राम समानांतर में डिजाइन, परीक्षण और एकीकरण करने के लिए डेस्कटॉप और एचआईएल सिमुलेशन का उपयोग कर रहे हैं।


===हाई-बर्डन-रेट-प्लांट                                              ===
===हाई-बर्डन-रेट-प्लांट                                              ===


अनेक स्तिथियों में, संयंत्र उच्च निष्ठा, वास्तविक समय सिम्युलेटर की तुलना में अधिक मूल्यवान होती है और इसलिए इसकी भार दर अधिक होती है। इसलिए, वास्तविक संयंत्र की तुलना में एचआईएल सिम्युलेटर से जुड़े रहते हुए इसे विकसित करना और परीक्षण करना अधिक सस्ता है। जेट इंजन निर्माताओं के लिए, एचआईएल सिमुलेशन इंजन विकास का मूलभूत भाग है। विमान जेट इंजनों के लिए पूर्ण प्राधिकरण डिजिटल इंजन नियंत्रकों (एफएडीईसी) का विकास हाई-बर्डन-रेट-प्लांट का एक्सट्रीम उदाहरण है। जिसमे प्रत्येक जेट इंजन का मूल्य लाखों डॉलर हो सकते है। इसके विपरीत, जेट इंजन निर्माता के इंजनों की पूरी श्रृंखला का परीक्षण करने के लिए डिज़ाइन किया गया था जिससे एचआईएल सिम्युलेटर इंजन की निवेश का केवल दसवां भाग मांग सकता है।
अनेक स्तिथियों में, संयंत्र उच्च निष्ठा, वास्तविक समय सिम्युलेटर की तुलना में अधिक मूल्यवान होती है और इसलिए इसकी भार दर अधिक होती है। इसलिए, वास्तविक संयंत्र की तुलना में एचआईएल सिम्युलेटर से जुड़े रहते हुए इसे विकसित करना और परीक्षण करना अधिक सस्ता है। जेट इंजन निर्माताओं के लिए, एचआईएल सिमुलेशन इंजन विकास का मूलभूत भाग है। विमान जेट इंजनों के लिए पूर्ण प्राधिकरण डिजिटल इंजन कंट्रोलर (एफएडीईसी) का विकास हाई-बर्डन-रेट-प्लांट का एक्सट्रीम उदाहरण है। जिसमे प्रत्येक जेट इंजन का मूल्य लाखों डॉलर हो सकते है। इसके विपरीत, जेट इंजन निर्माता के इंजनों की पूरी श्रृंखला का परीक्षण करने के लिए डिज़ाइन किया गया था जिससे एचआईएल सिम्युलेटर इंजन की निवेश का केवल दसवां भाग मांग सकता है।


===प्रारंभिक प्रक्रिया मानवीय कारक विकास===
===प्रारंभिक प्रक्रिया मानवीय कारक विकास===


एचआईएल सिमुलेशन मानव कारकों को विकसित करने की प्रक्रिया में महत्वपूर्ण कदम है, जो सॉफ्टवेयर एर्गोनॉमिक्स, मानव-कारक अनुसंधान और डिजाइन का उपयोग करके प्रयोज्यता और सिस्टम स्थिरता सुनिश्चित करने की विधि है। वास्तविक समय प्रौद्योगिकी के लिए, मानव-कारक विकास उन घटकों के लिए मैन-इन-द-लूप परीक्षण से प्रयोज्य डेटा एकत्र करने का कार्य है जिनमें मानव इंटरफ़ेस होगा।
एचआईएल सिमुलेशन मानव कारकों को विकसित करने की प्रक्रिया में महत्वपूर्ण कदम है, जो सॉफ्टवेयर एर्गोनॉमिक्स, मानव-कारक अनुसंधान और डिजाइन का उपयोग करके प्रयोज्यता और सिस्टम स्थिरता सुनिश्चित करने की विधि है। वास्तविक समय प्रौद्योगिकी के लिए, मानव-कारक विकास उन अवयवो के लिए मैन-इन-द-लूप परीक्षण से प्रयोज्य डेटा एकत्र करने का कार्य है जिनमें मानव इंटरफ़ेस होता है।


प्रयोज्य परीक्षण का उदाहरण [[विमान उड़ान नियंत्रण प्रणाली|फ्लाई-बाय-वायर फ्लाइट कंट्रोल]] का विकास है। फ्लाई-बाय-वायर उड़ान नियंत्रण, फ्लाइट कंट्रोल और एयरक्राफ्ट कंट्रोल सतहों के मध्य यांत्रिक संबंधों को समाप्त कर देता है। सेंसर मांग की गई उड़ान प्रतिक्रिया को संप्रेषित करते हैं और फिर मोटरों का उपयोग करके फ्लाई-बाय-वायर नियंत्रण पर यथार्थवादी बल प्रतिक्रिया प्रयुक्त करते हैं। तथा फ्लाई-बाय-वायर फ्लाइट कंट्रोल का व्यवहार नियंत्रण एल्गोरिदम द्वारा परिभाषित किया गया है। और एल्गोरिदम मापदंडों में परिवर्तन किसी दिए गए फ्लाइट कंट्रोल इनपुट से अधिक या कम उड़ान प्रतिक्रिया में परिवर्तित हो सकता है। इसी प्रकार, एल्गोरिदम मापदंडों में परिवर्तन भी किसी दिए गए फ्लाइट कंट्रोल इनपुट के लिए अधिक या कम बल प्रतिक्रिया में परिवर्तित हो सकता है। "सही" पैरामीटर मान व्यक्तिपरक माप हैं। इसलिए, इष्टतम पैरामीटर मान प्राप्त करने के लिए अनेक मैन-इन-द-लूप परीक्षणों से इनपुट प्राप्त करना महत्वपूर्ण है।
प्रयोज्य परीक्षण का उदाहरण [[विमान उड़ान नियंत्रण प्रणाली|फ्लाई-बाय-वायर फ्लाइट कंट्रोल]] का विकास है। फ्लाई-बाय-वायर उड़ान नियंत्रण, फ्लाइट कंट्रोल और एयरक्राफ्ट कंट्रोल सतहों के मध्य यांत्रिक संबंधों को समाप्त कर देता है। सेंसर मांग की गई उड़ान प्रतिक्रिया को संप्रेषित करते हैं और फिर मोटरों का उपयोग करके फ्लाई-बाय-वायर नियंत्रण पर यथार्थवादी बल प्रतिक्रिया प्रयुक्त करते हैं। तथा फ्लाई-बाय-वायर फ्लाइट कंट्रोल का व्यवहार नियंत्रण एल्गोरिदम द्वारा परिभाषित किया गया है। और एल्गोरिदम मापदंडों में परिवर्तन किसी दिए गए फ्लाइट कंट्रोल इनपुट से अधिक या कम उड़ान प्रतिक्रिया में परिवर्तित हो सकता है। इसी प्रकार, एल्गोरिदम मापदंडों में परिवर्तन भी किसी दिए गए फ्लाइट कंट्रोल इनपुट के लिए अधिक या कम बल प्रतिक्रिया में परिवर्तित हो सकता है। "सही" मापदंड मान व्यक्तिपरक माप हैं। इसलिए, इष्टतम मापदंड मान प्राप्त करने के लिए अनेक मैन-इन-द-लूप परीक्षणों से इनपुट प्राप्त करना महत्वपूर्ण है।


फ्लाई-बाय-वायर फ्लाइट कंट्रोल विकास की स्तिथि में, मानव कारकों का अनुकरण करने के लिए एचआईएल सिमुलेशन का उपयोग किया जाता है। उड़ान सिम्युलेटर में वायुगतिकी, इंजन जोर, पर्यावरण की स्थिति, फ्लाइट कंट्रोल गतिशीलता और बहुत कुछ के संयंत्र सिमुलेशन सम्मिलित हैं। प्रोटोटाइप फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिम्युलेटर से जुड़े होते हैं और परीक्षण पायलट विभिन्न एल्गोरिदम मापदंडों को देखते हुए उड़ान प्रदर्शन का मूल्यांकन करते हैं।
फ्लाई-बाय-वायर फ्लाइट कंट्रोल विकास की स्तिथि में, मानव कारकों का सिमुलेशन करने के लिए एचआईएल सिमुलेशन का उपयोग किया जाता है। उड़ान सिम्युलेटर में वायुगतिकी, इंजन जोर, पर्यावरण की स्थिति, फ्लाइट कंट्रोल गतिशीलता और बहुत कुछ के संयंत्र सिमुलेशन सम्मिलित हैं। प्रोटोटाइप फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिम्युलेटर से जुड़े होते हैं और परीक्षण पायलट विभिन्न एल्गोरिदम मापदंडों को देखते हुए उड़ान प्रदर्शन का मूल्यांकन करते हैं।


मानवीय कारकों और प्रयोज्य विकास के लिए एचआईएल सिमुलेशन का विकल्प प्रारंभिक विमान प्रोटोटाइप में प्रोटोटाइप फ्लाइट कंट्रोल रखना और [[उड़ान परीक्षण]] के समय प्रयोज्यता के लिए परीक्षण करना है। ऊपर सूचीबद्ध चार स्थितियों को मापते समय यह दृष्टिकोण विफल हो जाता है। निवेश: उड़ान परीक्षण अत्यधिक मूल्यवान है और इसलिए लक्ष्य उड़ान परीक्षण के साथ होने वाले किसी भी विकास को कम करना है। अवधि: उड़ान परीक्षण के साथ फ्लाइट कंट्रोल विकसित करने से विमान विकास प्रोग्राम की अवधि बढ़ जाएगी। एचआईएल सिमुलेशन का उपयोग करके, वास्तविक विमान उपलब्ध होने से पहले फ्लाइट कंट्रोल विकसित किया जा सकता है।
मानवीय कारकों और प्रयोज्य विकास के लिए एचआईएल सिमुलेशन का विकल्प प्रारंभिक विमान प्रोटोटाइप में प्रोटोटाइप फ्लाइट कंट्रोल रखना और [[उड़ान परीक्षण|फ्लाइट कण्ट्रोल]] के समय प्रयोज्यता के लिए परीक्षण करना है। ऊपर सूचीबद्ध चार स्थितियों को मापते समय यह दृष्टिकोण विफल हो जाता है। निवेश: फ्लाइट कण्ट्रोल अत्यधिक मूल्यवान है और इसलिए लक्ष्य फ्लाइट कण्ट्रोल के साथ होने वाले किसी भी विकास को कम करना है। अवधि: फ्लाइट कण्ट्रोल के साथ फ्लाइट कंट्रोल विकसित करने से विमान विकास प्रोग्राम की अवधि बढ़ जाएगी। एचआईएल सिमुलेशन का उपयोग करके, वास्तविक विमान उपलब्ध होने से पहले फ्लाइट कंट्रोल विकसित किया जा सकता है।
सुरक्षा: फ्लाइट कंट्रोल जैसे महत्वपूर्ण घटकों के विकास के लिए उड़ान परीक्षण का उपयोग करना प्रमुख सुरक्षा निहितार्थ है। यदि प्रोटोटाइप फ्लाइट कंट्रोल के डिज़ाइन में त्रुटियाँ उपस्तिथ हों, तब परिणाम क्रैश लैंडिंग हो सकता है। व्यवहार्यता: किसी संयंत्र का संचालन करने वाले वास्तविक उपयोगकर्ताओं के साथ कुछ महत्वपूर्ण समय (उदाहरण के लिए मिलीसेकंड परिशुद्धता के साथ उपयोगकर्ता कार्यों के अनुक्रम) का पता लगाना संभव नहीं हो सकता है। इसी प्रकार पैरामीटर स्पेस में समस्याग्रस्त बिंदुओं के लिए जो वास्तविक संयंत्र के साथ आसानी से उपलब्ध नहीं हो सकते हैं किन्तु प्रश्न में हार्डवेयर के खिलाफ परीक्षण किया जाना चाहिए।
 
सुरक्षा: फ्लाइट कंट्रोल जैसे महत्वपूर्ण अवयवो के विकास के लिए फ्लाइट कण्ट्रोल का उपयोग करना प्रमुख सुरक्षा निहितार्थ है। यदि प्रोटोटाइप फ्लाइट कंट्रोल के डिज़ाइन में त्रुटियाँ उपस्तिथ हों, तब परिणाम क्रैश लैंडिंग हो सकता है। व्यवहार्यता: किसी संयंत्र का संचालन करने वाले वास्तविक उपयोगकर्ताओं के साथ कुछ महत्वपूर्ण समय (उदाहरण के लिए मिलीसेकंड परिशुद्धता के साथ उपयोगकर्ता कार्यों के अनुक्रम) का पता लगाना संभव नहीं हो सकता है। इसी प्रकार मापदंड स्पेस में समस्याग्रस्त बिंदुओं के लिए जो वास्तविक संयंत्र के साथ आसानी से उपलब्ध नहीं हो सकते हैं किन्तु प्रश्न में हार्डवेयर के विरुद्ध परीक्षण किया जाना चाहिए।


==विभिन्न विषयों में उपयोग                                                                              ==
==विभिन्न विषयों में उपयोग                                                                              ==


=== ऑटोमोटिव सिस्टम                                                                                                                              ===
=== ऑटोमोटिव सिस्टम                                                                                                                              ===
ऑटोमोटिव अनुप्रयोगों के संदर्भ में हार्डवेयर-इन-द-लूप सिमुलेशन सिस्टम सिस्टम सत्यापन और सत्यापन के लिए ऐसा आभासी वाहन प्रदान करता है।<ref name=powertrain>S.Raman, N. Sivashankar, W. Milam, W. Stuart, and S. Nabi, "Design and Implementation of HIL Simulators for Powertrain Control System Software Development", ''Proceedings of the American Control Conference'',1999.</ref> चूंकि [[इंजन नियंत्रण इकाई]] के प्रदर्शन और नैदानिक ​​कार्यप्रणाली के मूल्यांकन के लिए वाहन में ड्राइविंग परीक्षण अधिकांशतः समय लेने वाले, मूल्यवान और प्रतिलिपि प्रस्तुत करने योग्य नहीं होते हैं, एचआईएल सिमुलेटर डेवलपर्स को गुणवत्ता आवश्यकताओं और समय-समय पर मार्केट प्रतिबंधों का सम्मान करते हुए नए हार्डवेयर और सॉफ्टवेयर ऑटोमोटिव समाधानों को मान्य करने की अनुमति देते हैं।. विशिष्ट एचआईएल सिम्युलेटर में, समर्पित वास्तविक समय प्रोसेसर गणितीय मॉडल निष्पादित करता है जो कि इंजन गतिशीलता का अनुकरण करता है। इसके अतिरिक्त, I/O इकाई वाहन [[सेंसर]] और [[एक्चुएटर|एक्चुएटर्स]] (जो सामान्यतः उच्च स्तर की गैर-रैखिकता प्रस्तुत करते हैं) के कनेक्शन की अनुमति देती है। अंत में, परीक्षण के अनुसार इलेक्ट्रॉनिक नियंत्रण इकाई (ईसीयू) को सिस्टम से जोड़ा जाता है और सिम्युलेटर द्वारा निष्पादित वाहन युद्धाभ्यास के समूह द्वारा उत्तेजित किया जाता है। इस बिंदु पर, एचआईएल सिमुलेशन परीक्षण चरण के समय उच्च स्तर की पुनरावृत्ति भी प्रदान करता है।
ऑटोमोटिव अनुप्रयोगों के संदर्भ में हार्डवेयर-इन-द-लूप सिमुलेशन सिस्टम सिस्टम सत्यापन और सत्यापन के लिए ऐसा आभासी वाहन प्रदान करता है।<ref name=powertrain>S.Raman, N. Sivashankar, W. Milam, W. Stuart, and S. Nabi, "Design and Implementation of HIL Simulators for Powertrain Control System Software Development", ''Proceedings of the American Control Conference'',1999.</ref> चूंकि [[इंजन नियंत्रण इकाई]] के प्रदर्शन और नैदानिक ​​कार्यसिस्टम के मूल्यांकन के लिए वाहन में ड्राइविंग परीक्षण अधिकांशतः समय लेने वाले, मूल्यवान और प्रतिलिपि प्रस्तुत करने योग्य नहीं होते हैं, एचआईएल सिमुलेटर डेवलपर्स को गुणवत्ता आवश्यकताओं और समय-समय पर मार्केट प्रतिबंधों का सम्मान करते हुए नए हार्डवेयर और सॉफ्टवेयर ऑटोमोटिव समाधानों को मान्य करने की अनुमति देते हैं।. विशिष्ट एचआईएल सिम्युलेटर में, समर्पित वास्तविक समय प्रोसेसर गणितीय मॉडल निष्पादित करता है जो कि इंजन गतिशीलता का सिमुलेशन करता है। इसके अतिरिक्त, I/O इकाई वाहन [[सेंसर]] और [[एक्चुएटर|एक्चुएटर्स]] (जो सामान्यतः उच्च स्तर की गैर-रैखिकता प्रस्तुत करते हैं) के कनेक्शन की अनुमति देती है। अंत में, परीक्षण के अनुसार इलेक्ट्रॉनिक नियंत्रण इकाई (ईसीयू) को सिस्टम से जोड़ा जाता है और सिम्युलेटर द्वारा निष्पादित वाहन युद्धाभ्यास के समूह द्वारा उत्तेजित किया जाता है। इस बिंदु पर, एचआईएल सिमुलेशन परीक्षण चरण के समय उच्च स्तर की पुनरावृत्ति भी प्रदान करता है।


साहित्य में, अनेक एचआईएल विशिष्ट अनुप्रयोगों की सूचना दी गई है और कुछ विशिष्ट उद्देश्य के अनुसार सरलीकृत एचआईएल सिमुलेटर बनाए गए थे।<ref name=brake/><ref>A. Cebi, L. Guvenc, M. Demirci, C. Karadeniz, K. Kanar, and E. Guraslan, "A low cost, portable engine electronic control unit hardware-in-the-loop test system", ''Proceedings of the IEEE International Symposium on Industrial Electronics'', 2005.</ref><ref>J. Du, Y. Wang, C. Yang, and H. Wang, "Hardware-in-the-loop simulation approach to testing controller of sequential turbocharging system", ''Proceedings of the IEEE International Conference on Automation and Logistics'', 2007.</ref> उदाहरण के लिए, नए ईसीयू सॉफ़्टवेयर रिलीज़ का परीक्षण करते समय, प्रयोग ओपन लूप में किए जा सकते हैं और इसलिए अनेक इंजन डायनेमिक मॉडल की अब आवश्यकता नहीं है। नियंत्रित इनपुट द्वारा उत्साहित होने पर रणनीति ईसीयू आउटपुट के विश्लेषण तक ही सीमित है। इस स्तिथि में, माइक्रो एचआईएल सिस्टम (एमएचआईएल) सरल और अधिक सस्ता समाधान प्रदान करता है। <ref name=palladino>A. Palladino, G. Fiengo, F. Giovagnini, and D. Lanzo, "A Micro Hardware-In-the-Loop Test System", ''IEEE European Control Conference'', 2009.</ref> चूंकि मॉडल प्रसंस्करण की सम्मिश्रता को खत्म कर दिया गया है, पूर्ण आकार के एचआईएल सिस्टम को पोर्टेबल डिवाइस में परिवर्तित कर दिया गया है जो सिग्नल जनरेटर, आई/ओ बोर्ड और ईसीयू से जुड़े एक्चुएटर्स (बाहरी भार) वाले कंसोल से बना है।
साहित्य में, अनेक एचआईएल विशिष्ट अनुप्रयोगों की सूचना दी गई है और कुछ विशिष्ट उद्देश्य के अनुसार सरलीकृत एचआईएल सिमुलेटर बनाए गए थे।<ref name=brake/><ref>A. Cebi, L. Guvenc, M. Demirci, C. Karadeniz, K. Kanar, and E. Guraslan, "A low cost, portable engine electronic control unit hardware-in-the-loop test system", ''Proceedings of the IEEE International Symposium on Industrial Electronics'', 2005.</ref><ref>J. Du, Y. Wang, C. Yang, and H. Wang, "Hardware-in-the-loop simulation approach to testing controller of sequential turbocharging system", ''Proceedings of the IEEE International Conference on Automation and Logistics'', 2007.</ref> उदाहरण के लिए, नए ईसीयू सॉफ़्टवेयर रिलीज़ का परीक्षण करते समय, प्रयोग ओपन लूप में किए जा सकते हैं और इसलिए अनेक इंजन डायनेमिक मॉडल की अब आवश्यकता नहीं है। नियंत्रित इनपुट द्वारा उत्साहित होने पर रणनीति ईसीयू आउटपुट के विश्लेषण तक ही सीमित है। इस स्तिथि में, माइक्रो एचआईएल सिस्टम (एमएचआईएल) सरल और अधिक सस्ता समाधान प्रदान करता है। <ref name=palladino>A. Palladino, G. Fiengo, F. Giovagnini, and D. Lanzo, "A Micro Hardware-In-the-Loop Test System", ''IEEE European Control Conference'', 2009.</ref> चूंकि मॉडल प्रसंस्करण की काम्प्लेक्स को खत्म कर दिया गया है, पूर्ण आकार के एचआईएल सिस्टम को पोर्टेबल डिवाइस में परिवर्तित कर दिया गया है जो सिग्नल जनरेटर, आई/ओ बोर्ड और ईसीयू से जुड़े एक्चुएटर्स (बाहरी भार) वाले कंसोल से बना है।


===[[राडार]]===
===[[राडार]]===
रडार सिस्टम्स के लिए एचआईएल सिमुलेशन रडार-जैमिंग से विकसित हुआ है। [[डिजिटल रेडियो फ्रीक्वेंसी मेमोरी]] (डीआरएफएम) सिस्टम का उपयोग सामान्यतः बैटलफील्ड में रडार को भ्रमित करने के लिए झूठे लक्ष्य बनाने के लिए किया जाता है, किन्तु यह वही सिस्टम प्रयोगशाला में किसी लक्ष्य का अनुकरण कर सकते हैं। यह कॉन्फ़िगरेशन रडार प्रणाली के परीक्षण और मूल्यांकन की अनुमति देता है, जिससे उड़ान परीक्षणों (हवाई रडार सिस्टम्स के लिए) और क्षेत्र परीक्षणों (खोज या ट्रैकिंग रडार के लिए) की आवश्यकता कम हो जाती है, और [[इलेक्ट्रानिक युद्ध|इलेक्ट्रानिक वारफेयर (ईडब्ल्यू) तकनीकों]] लिए रडार की संवेदनशीलता का प्रारंभिक संकेत दे सकता है।  
रडार सिस्टम के लिए एचआईएल सिमुलेशन रडार-जैमिंग से विकसित हुआ है। [[डिजिटल रेडियो फ्रीक्वेंसी मेमोरी]] (डीआरएफएम) सिस्टम का उपयोग सामान्यतः बैटलफील्ड में रडार को भ्रमित करने के लिए झूठे लक्ष्य बनाने के लिए किया जाता है, किन्तु यह वही सिस्टम प्रयोगशाला में किसी लक्ष्य का सिमुलेशन कर सकते हैं। यह कॉन्फ़िगरेशन रडार सिस्टम के परीक्षण और मूल्यांकन की अनुमति देता है, जिससे फ्लाइट कण्ट्रोल (हवाई रडार सिस्टम के लिए) और क्षेत्र परीक्षणों (खोज या ट्रैकिंग रडार के लिए) की आवश्यकता कम हो जाती है, और [[इलेक्ट्रानिक युद्ध|इलेक्ट्रानिक वारफेयर (ईडब्ल्यू) तकनीकों]] लिए रडार की संवेदनशीलता का प्रारंभिक संकेत दे सकता है।  


===रोबोटिक्स                                                                                                                                      ===
===रोबोटिक्स                                                                                                                                      ===
एचआईएल सिमुलेशन की तकनीकों को वर्तमान में रोबोटों के लिए सम्मिश्र नियंत्रकों की स्वचालित जनरेशन पर प्रयुक्त किया गया है। रोबोट संवेदना और सक्रियण डेटा निकालने के लिए अपने स्वयं के वास्तविक हार्डवेयर का उपयोग करता है, फिर इस डेटा का उपयोग भौतिक सिमुलेशन (स्व-मॉडल) का अनुमान लगाने के लिए करता है जिसमें उसके स्वयं के आकारिकी के साथ-साथ पर्यावरण की विशेषताओं जैसे पहलू सम्मिलित होते हैं। बैक-टू-रियलिटी जैसे एल्गोरिदम<ref>Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P. (2004) Back-to-Reality: Crossing the Reality Gap in Evolutionary Robotics. In IAV 2004: Proceedings 5th IFAC Symposium on Intelligent Autonomous Vehicles, Elsevier Science Publishers B.V.</ref> (बीटीआर) और अनुमान अन्वेषण<ref>Bongard, J.C., Lipson, H. (2004) “Once More Unto the Breach: Automated Tuning of Robot Simulation using an Inverse Evolutionary Algorithm”, Proceedings of the Ninth Int. Conference on Artificial Life (ALIFE IX)</ref> (ईईए) इस संदर्भ में प्रस्तावित किया गया है।
एचआईएल सिमुलेशन की तकनीकों को वर्तमान में रोबोटों के लिए काम्प्लेक्स कंट्रोलर की स्वचालित जनरेशन पर प्रयुक्त किया गया है। रोबोट संवेदना और सक्रियण डेटा निकालने के लिए अपने स्वयं के वास्तविक हार्डवेयर का उपयोग करता है, फिर इस डेटा का उपयोग भौतिक सिमुलेशन (स्व-मॉडल) का अनुमान लगाने के लिए करता है जिसमें उसके स्वयं के आकारिकी के साथ-साथ पर्यावरण की विशेषताओं जैसे पहलू सम्मिलित होते हैं। बैक-टू-रियलिटी जैसे एल्गोरिदम<ref>Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P. (2004) Back-to-Reality: Crossing the Reality Gap in Evolutionary Robotics. In IAV 2004: Proceedings 5th IFAC Symposium on Intelligent Autonomous Vehicles, Elsevier Science Publishers B.V.</ref> (बीटीआर) और अनुमान अन्वेषण<ref>Bongard, J.C., Lipson, H. (2004) “Once More Unto the Breach: Automated Tuning of Robot Simulation using an Inverse Evolutionary Algorithm”, Proceedings of the Ninth Int. Conference on Artificial Life (ALIFE IX)</ref> (ईईए) इस संदर्भ में प्रस्तावित किया गया है।


===पॉवर सिस्टम्स                                                                                                                                             ===
===पॉवर सिस्टम                                                                                                                                             ===
इस प्रकार वर्तमान के वर्षों में, पॉवर सिस्टम्स के लिए एचआईएल का उपयोग बड़े पैमाने पर [[विद्युत ग्रिड]] की स्थिरता, संचालन और दोष सहनशीलता को सत्यापित करने के लिए किया गया है। वर्तमान जनरेशन के वास्तविक समय प्रसंस्करण प्लेटफार्मों में वास्तविक समय में बड़े पैमाने पर पॉवर सिस्टम्स को मॉडल करने की क्षमता है। इसमें संबंधित जनरेटर, लोड, पावर-फैक्टर सुधार उपकरण और नेटवर्क इंटरकनेक्शन के साथ 10,000 से अधिक बसों वाले सिस्टम सम्मिलित हैं।<ref>{{cite web|title=ePHASORsim रीयल-टाइम क्षणिक स्थिरता सिम्युलेटर|url=http://www.opal-rt.com/sites/default/files/OPAL-RT_Presentation_ePHASORsim_RT13.pdf|accessdate=23 November 2013}}</ref> इस प्रकार के सिमुलेशन प्लेटफ़ॉर्म यथार्थवादी अनुकरणीय वातावरण में बड़े पैमाने पर पॉवर सिस्टम्स के मूल्यांकन और परीक्षण को सक्षम बनाते हैं। इसके अतिरिक्त, पॉवर सिस्टम्स के लिए एचआईएल का उपयोग वितरित संसाधनों, नेक्स्ट-जनरेशन के [[SCADA|स्काडा]] सिस्टम, पावर प्रबंधन इकाई और [[STATCOM|स्टैटकॉम]] उपकरणों के एकीकरण की जांच के लिए किया गया है।<ref>{{cite book|last=Al-Hammouri|first=A.T|author2=Nordstrom, L. |author3=Chenine, M. |author4=Vanfretti, L. |author5=Honeth, N. |author6= Leelaruji, R. |title=2012 IEEE Power and Energy Society General Meeting |chapter=Virtualization of synchronized phasor measurement units within real-time simulators for smart grid applications |journal=Power and Energy Society General Meeting, 2012 IEEE|date=22 July 2012|pages=1–7|doi=10.1109/PESGM.2012.6344949|isbn=978-1-4673-2729-9|s2cid=10605905|chapter-url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-70274}}</ref>
इस प्रकार वर्तमान के वर्षों में, पॉवर सिस्टम के लिए एचआईएल का उपयोग बड़े पैमाने पर [[विद्युत ग्रिड]] की स्थिरता, संचालन और दोष सहनशीलता को सत्यापित करने के लिए किया गया है। वर्तमान जनरेशन के वास्तविक समय प्रसंस्करण प्लेटफार्मों में वास्तविक समय में बड़े पैमाने पर पॉवर सिस्टम को मॉडल करने की क्षमता है। इसमें संबंधित जनरेटर, लोड, पावर-फैक्टर सुधार उपकरण और नेटवर्क इंटरकनेक्शन के साथ 10,000 से अधिक बसों वाले सिस्टम सम्मिलित हैं।<ref>{{cite web|title=ePHASORsim रीयल-टाइम क्षणिक स्थिरता सिम्युलेटर|url=http://www.opal-rt.com/sites/default/files/OPAL-RT_Presentation_ePHASORsim_RT13.pdf|accessdate=23 November 2013}}</ref> इस प्रकार के सिमुलेशन प्लेटफ़ॉर्म यथार्थवादी सिमुलेशनीय वातावरण में बड़े पैमाने पर पॉवर सिस्टम के मूल्यांकन और परीक्षण को सक्षम बनाते हैं। इसके अतिरिक्त, पॉवर सिस्टम के लिए एचआईएल का उपयोग वितरित संसाधनों, नेक्स्ट-जनरेशन के [[SCADA|स्काडा]] सिस्टम, पावर प्रबंधन इकाई और [[STATCOM|स्टैटकॉम]] उपकरणों के एकीकरण की जांच के लिए किया गया है।<ref>{{cite book|last=Al-Hammouri|first=A.T|author2=Nordstrom, L. |author3=Chenine, M. |author4=Vanfretti, L. |author5=Honeth, N. |author6= Leelaruji, R. |title=2012 IEEE Power and Energy Society General Meeting |chapter=Virtualization of synchronized phasor measurement units within real-time simulators for smart grid applications |journal=Power and Energy Society General Meeting, 2012 IEEE|date=22 July 2012|pages=1–7|doi=10.1109/PESGM.2012.6344949|isbn=978-1-4673-2729-9|s2cid=10605905|chapter-url=http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-70274}}</ref>




===ऑफशोर सिस्टम===
===ऑफशोर सिस्टम===
अपतटीय और समुद्री इंजीनियरिंग में, नियंत्रण प्रणाली और यांत्रिक संरचनाएं सामान्यतः समानांतर में डिजाइन की जाती हैं। नियंत्रण सिस्टम्स का परीक्षण एकीकरण के पश्चात ही संभव है। परिणामस्वरूप, अनेक त्रुटियाँ पाई जाती हैं जिन्हें कमीशनिंग के समय हल करना पड़ता है, जिसमें व्यक्तिगत चोटों, क्षतिग्रस्त उपकरणों और देरी का कठिन परिस्थिति होती है। इन त्रुटियों को कम करने के लिए, एचआईएल सिमुलेशन व्यापक ध्यान आकर्षित कर रहा है।<ref>{{cite conference |first1=T. A. |last1=Johansen |first2=T. I. |last2=Fossen |first3=B. |last3=Vik |title=डीपी सिस्टम का हार्डवेयर-इन-द-लूप परीक्षण|conference=DP Conference |location=Houston |year = 2005}}</ref> यह [[नॉर्वेजियन वेरिटास]] नियमों में एचआईएल सिमुलेशन को अपनाने से परिलक्षित होता है।<ref>DNV. Rules for classification of Ships, Part 7 Ch 1 Sec 7 I. [[Enhanced System Verification]] - SiO, 2010</ref>                                   
अपतटीय और समुद्री इंजीनियरिंग में, नियंत्रण सिस्टम और यांत्रिक संरचनाएं सामान्यतः समानांतर में डिजाइन की जाती हैं। नियंत्रण सिस्टम का परीक्षण एकीकरण के पश्चात ही संभव है। परिणामस्वरूप, अनेक त्रुटियाँ पाई जाती हैं जिन्हें कमीशनिंग के समय हल करना पड़ता है, जिसमें व्यक्तिगत चोटों, क्षतिग्रस्त उपकरणों और देरी का कठिन परिस्थिति होती है। इन त्रुटियों को कम करने के लिए, एचआईएल सिमुलेशन व्यापक ध्यान आकर्षित कर रहा है।<ref>{{cite conference |first1=T. A. |last1=Johansen |first2=T. I. |last2=Fossen |first3=B. |last3=Vik |title=डीपी सिस्टम का हार्डवेयर-इन-द-लूप परीक्षण|conference=DP Conference |location=Houston |year = 2005}}</ref> यह [[नॉर्वेजियन वेरिटास]] नियमों में एचआईएल सिमुलेशन को अपनाने से परिलक्षित होता है।<ref>DNV. Rules for classification of Ships, Part 7 Ch 1 Sec 7 I. [[Enhanced System Verification]] - SiO, 2010</ref>                                   
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
Line 75: Line 76:
==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.hil-simulation.com/images/stories/Documents/Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf Introduction to Hardware-in-the-Loop Simulation].
* [http://www.hil-simulation.com/images/stories/Documents/Introduction%20to%20Hardware-in-the-Loop%20Simulation.pdf Introduction to Hardware-in-the-Loop Simulation].
[[Category: अंतः स्थापित प्रणालियाँ]]


[[Category: Machine Translated Page]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अंतः स्थापित प्रणालियाँ]]

Latest revision as of 19:31, 22 August 2023

हार्डवेयर-इन-द-लूप (एचआईएल) सिमुलेशन, एचडब्ल्यूआईएल, या एचआईटीएल, ऐसी तकनीक है जिसका उपयोग काम्प्लेक्स वास्तविक समय एंबेडेड सिस्टम सिस्टम के विकास और परीक्षण में किया जाता है। तथा एचआईएल सिमुलेशन परीक्षण प्लेटफॉर्म में प्लांट (नियंत्रण सिद्धांत) के रूप में जाने जाने वाले प्रोसेस-एक्चुएटर सिस्टम की काम्प्लेक्स को जोड़कर प्रभावी परीक्षण प्लेटफ़ॉर्म (कंप्यूटिंग) प्रदान करता है। इसमें नियंत्रणाधीन संयंत्र की काम्प्लेक्स को सभी संबंधित गतिशील सिस्टम का प्रतिनिधित्व (गणित) जोड़कर परीक्षण और विकास में सम्मिलित किया गया है। इन गणितीय निरूपणों को प्लांट सिमुलेशन कहा जाता है। इसी प्रकार परीक्षण किया जाने वाला एम्बेडेड सिस्टम इस प्लांट सिमुलेशन के साथ इंटरैक्ट करता है।

एचआईएल कैसे कार्य करता है

एचआईएल सिमुलेशन में सेंसर और एक्चुएटर्स का विद्युत सिमुलेशन सम्मिलित होना चाहिए। जहाँ यह विद्युत सिमुलेशन संयंत्र सिमुलेशन और परीक्षण के अनुसार एम्बेडेड सिस्टम के मध्य इंटरफेस के रूप में कार्य करते हैं। प्रत्येक विद्युत उत्सर्जित सेंसर का मान प्लांट सिमुलेशन द्वारा नियंत्रित किया जाता है और परीक्षण (फीडबैक) के अनुसार एम्बेडेड सिस्टम द्वारा पढ़ा भी जाता है। इसी प्रकार, परीक्षण के अनुसार एम्बेडेड सिस्टम एक्चुएटर नियंत्रण संकेतों को आउटपुट करके अपने नियंत्रण एल्गोरिदम को कार्यान्वित करता है। तथा नियंत्रण संकेतों में परिवर्तन के परिणामस्वरूप प्लांट सिमुलेशन में परिवर्तनशील मानों में परिवर्तन होता है।

उदाहरण के लिए, एंटी लॉक ब्रेक होता हैं | ऑटोमोटिव एंटी-लॉक ब्रेकिंग सिस्टम के विकास के लिए एचआईएल सिमुलेशन प्लेटफॉर्म में प्लांट सिमुलेशन में निम्नलिखित सब-सिस्टम में से प्रत्येक के लिए गणितीय प्रतिनिधित्व हो सकता है | [1]

  • वाहन की गतिशीलता, जैसे सस्पेंशन, पहिए, टायर, रोल, पिच और यॉ
  • ब्रेक सिस्टम के हाइड्रोलिक अवयवो की गतिशीलता
  • सड़क की विशेषताएं

उपयोग

अनेक स्तिथियों में, एम्बेडेड सिस्टम विकसित करने की सबसे प्रभावी विधि एम्बेडेड सिस्टम को वास्तविक संयंत्र से जोड़ना की होती है। और अन्य स्तिथियों में, एचआईएल सिमुलेशन अधिक कुशल होता है। जहाँ विकास और परीक्षण दक्षता का मीट्रिक सामान्यतः सूत्र है जिसमें निम्नलिखित कारक जैसे कि 1.निवेश 2.अवधि 3. सुरक्षा 4. व्यवहार्यता आदि सम्मिलित होते हैं |

दृष्टिकोण की निवेश में सभी उपकरणों और प्रयासों की निवेश की माप होनी चाहिए। विकास और परीक्षण की अवधि नियोजित उत्पाद के मार्केट में आने के समय को प्रभावित करती है। तथा सुरक्षा कारक और विकास अवधि सामान्यतः निवेश माप के समान होती है। और एचआईएल सिमुलेशन के उपयोग को अस्वासन देने वाली विशिष्ट स्थितियों में निम्नलिखित स्तिथियाँ सम्मिलित होती हैं

  • परीक्षण की गुणवत्ता को बढ़ाना
  • टाइट डेवलपमेंट शेड्यूल
  • हाई-बर्डन-रेट-प्लांट
  • प्रारंभिक प्रक्रिया मानव कारक विकास

परीक्षण की गुणवत्ता बढ़ाना

इस प्रकार एचआईएल का उपयोग परीक्षण के क्षेत्र को बढ़ाकर परीक्षण की गुणवत्ता को बढ़ाता है। तथा जहाँ आदर्श रूप से, एम्बेडेड सिस्टम का परीक्षण वास्तविक संयंत्र के विरुद्ध किया जाता हैं, किन्तु अधिकांश समय वास्तविक संयंत्र स्वयं परीक्षण के क्षेत्र के संदर्भ में सीमाएं लगाता है। उदाहरण के लिए, किसी इंजन नियंत्रण इकाई को वास्तविक संयंत्र के रूप में परीक्षण करने से परीक्षण इंजीनियर के लिए निम्नलिखित हानिकारक स्थितियाँ उत्पन्न हो सकती हैं

  • कुछ ईसीयू मापदंडों (जैसे इंजन मापदंड आदि) की सीमा पर या उससे भिन्न परीक्षण में उत्पन्न होती है |
  • कुछ विफलता की स्थिति में सिस्टम का परीक्षण और सत्यापन इसमें उत्पन्न हो सकती है |

उपर्युक्त परीक्षण परिदृश्यों में, एचआईएल कुशल नियंत्रण और सुरक्षित वातावरण प्रदान करता है जहां परीक्षण या एप्लिकेशन इंजीनियर नियंत्रक की कार्य क्षमता पर ध्यान केंद्रित कर सकते हैं।

टाइट डेवलपमेंट शेड्यूल

अधिकांश नए ऑटोमोटिव, एयरोस्पेस और रक्षा प्रोग्रामों से जुड़े तंग विकास प्रोग्राम एम्बेडेड सिस्टम परीक्षण को प्रोटोटाइप उपलब्ध होने की प्रतीक्षा करने की अनुमति नहीं देते हैं। वास्तव में, अधिकांश नए विकास प्रोग्राम यह मानते हैं कि एचआईएल सिमुलेशन का उपयोग संयंत्र के विकास के समानांतर किया जाता हैं। उदाहरण के लिए, जब तक नया ऑटोमोबाइल इंजन प्रोटोटाइप नियंत्रण सिस्टम परीक्षण के लिए उपलब्ध कराया जाता है, तब तक एचआईएल सिमुलेशन का उपयोग करके इंजन नियंत्रक परीक्षण का 95% पूरा हो चुका होता हैं।

एयरोस्पेस और रक्षा उद्योगों पर टाइट डेवलपमेंट शेड्यूल प्रयुक्त करने की और भी अधिक संभावना होती है। जहाँ एयरक्राफ्ट और लैंड व्हीकल डेवलोपमेन्ट प्रोग्राम समानांतर में डिजाइन, परीक्षण और एकीकरण करने के लिए डेस्कटॉप और एचआईएल सिमुलेशन का उपयोग कर रहे हैं।

हाई-बर्डन-रेट-प्लांट

अनेक स्तिथियों में, संयंत्र उच्च निष्ठा, वास्तविक समय सिम्युलेटर की तुलना में अधिक मूल्यवान होती है और इसलिए इसकी भार दर अधिक होती है। इसलिए, वास्तविक संयंत्र की तुलना में एचआईएल सिम्युलेटर से जुड़े रहते हुए इसे विकसित करना और परीक्षण करना अधिक सस्ता है। जेट इंजन निर्माताओं के लिए, एचआईएल सिमुलेशन इंजन विकास का मूलभूत भाग है। विमान जेट इंजनों के लिए पूर्ण प्राधिकरण डिजिटल इंजन कंट्रोलर (एफएडीईसी) का विकास हाई-बर्डन-रेट-प्लांट का एक्सट्रीम उदाहरण है। जिसमे प्रत्येक जेट इंजन का मूल्य लाखों डॉलर हो सकते है। इसके विपरीत, जेट इंजन निर्माता के इंजनों की पूरी श्रृंखला का परीक्षण करने के लिए डिज़ाइन किया गया था जिससे एचआईएल सिम्युलेटर इंजन की निवेश का केवल दसवां भाग मांग सकता है।

प्रारंभिक प्रक्रिया मानवीय कारक विकास

एचआईएल सिमुलेशन मानव कारकों को विकसित करने की प्रक्रिया में महत्वपूर्ण कदम है, जो सॉफ्टवेयर एर्गोनॉमिक्स, मानव-कारक अनुसंधान और डिजाइन का उपयोग करके प्रयोज्यता और सिस्टम स्थिरता सुनिश्चित करने की विधि है। वास्तविक समय प्रौद्योगिकी के लिए, मानव-कारक विकास उन अवयवो के लिए मैन-इन-द-लूप परीक्षण से प्रयोज्य डेटा एकत्र करने का कार्य है जिनमें मानव इंटरफ़ेस होता है।

प्रयोज्य परीक्षण का उदाहरण फ्लाई-बाय-वायर फ्लाइट कंट्रोल का विकास है। फ्लाई-बाय-वायर उड़ान नियंत्रण, फ्लाइट कंट्रोल और एयरक्राफ्ट कंट्रोल सतहों के मध्य यांत्रिक संबंधों को समाप्त कर देता है। सेंसर मांग की गई उड़ान प्रतिक्रिया को संप्रेषित करते हैं और फिर मोटरों का उपयोग करके फ्लाई-बाय-वायर नियंत्रण पर यथार्थवादी बल प्रतिक्रिया प्रयुक्त करते हैं। तथा फ्लाई-बाय-वायर फ्लाइट कंट्रोल का व्यवहार नियंत्रण एल्गोरिदम द्वारा परिभाषित किया गया है। और एल्गोरिदम मापदंडों में परिवर्तन किसी दिए गए फ्लाइट कंट्रोल इनपुट से अधिक या कम उड़ान प्रतिक्रिया में परिवर्तित हो सकता है। इसी प्रकार, एल्गोरिदम मापदंडों में परिवर्तन भी किसी दिए गए फ्लाइट कंट्रोल इनपुट के लिए अधिक या कम बल प्रतिक्रिया में परिवर्तित हो सकता है। "सही" मापदंड मान व्यक्तिपरक माप हैं। इसलिए, इष्टतम मापदंड मान प्राप्त करने के लिए अनेक मैन-इन-द-लूप परीक्षणों से इनपुट प्राप्त करना महत्वपूर्ण है।

फ्लाई-बाय-वायर फ्लाइट कंट्रोल विकास की स्तिथि में, मानव कारकों का सिमुलेशन करने के लिए एचआईएल सिमुलेशन का उपयोग किया जाता है। उड़ान सिम्युलेटर में वायुगतिकी, इंजन जोर, पर्यावरण की स्थिति, फ्लाइट कंट्रोल गतिशीलता और बहुत कुछ के संयंत्र सिमुलेशन सम्मिलित हैं। प्रोटोटाइप फ्लाई-बाय-वायर फ्लाइट कंट्रोल सिम्युलेटर से जुड़े होते हैं और परीक्षण पायलट विभिन्न एल्गोरिदम मापदंडों को देखते हुए उड़ान प्रदर्शन का मूल्यांकन करते हैं।

मानवीय कारकों और प्रयोज्य विकास के लिए एचआईएल सिमुलेशन का विकल्प प्रारंभिक विमान प्रोटोटाइप में प्रोटोटाइप फ्लाइट कंट्रोल रखना और फ्लाइट कण्ट्रोल के समय प्रयोज्यता के लिए परीक्षण करना है। ऊपर सूचीबद्ध चार स्थितियों को मापते समय यह दृष्टिकोण विफल हो जाता है। निवेश: फ्लाइट कण्ट्रोल अत्यधिक मूल्यवान है और इसलिए लक्ष्य फ्लाइट कण्ट्रोल के साथ होने वाले किसी भी विकास को कम करना है। अवधि: फ्लाइट कण्ट्रोल के साथ फ्लाइट कंट्रोल विकसित करने से विमान विकास प्रोग्राम की अवधि बढ़ जाएगी। एचआईएल सिमुलेशन का उपयोग करके, वास्तविक विमान उपलब्ध होने से पहले फ्लाइट कंट्रोल विकसित किया जा सकता है।

सुरक्षा: फ्लाइट कंट्रोल जैसे महत्वपूर्ण अवयवो के विकास के लिए फ्लाइट कण्ट्रोल का उपयोग करना प्रमुख सुरक्षा निहितार्थ है। यदि प्रोटोटाइप फ्लाइट कंट्रोल के डिज़ाइन में त्रुटियाँ उपस्तिथ हों, तब परिणाम क्रैश लैंडिंग हो सकता है। व्यवहार्यता: किसी संयंत्र का संचालन करने वाले वास्तविक उपयोगकर्ताओं के साथ कुछ महत्वपूर्ण समय (उदाहरण के लिए मिलीसेकंड परिशुद्धता के साथ उपयोगकर्ता कार्यों के अनुक्रम) का पता लगाना संभव नहीं हो सकता है। इसी प्रकार मापदंड स्पेस में समस्याग्रस्त बिंदुओं के लिए जो वास्तविक संयंत्र के साथ आसानी से उपलब्ध नहीं हो सकते हैं किन्तु प्रश्न में हार्डवेयर के विरुद्ध परीक्षण किया जाना चाहिए।

विभिन्न विषयों में उपयोग

ऑटोमोटिव सिस्टम

ऑटोमोटिव अनुप्रयोगों के संदर्भ में हार्डवेयर-इन-द-लूप सिमुलेशन सिस्टम सिस्टम सत्यापन और सत्यापन के लिए ऐसा आभासी वाहन प्रदान करता है।[2] चूंकि इंजन नियंत्रण इकाई के प्रदर्शन और नैदानिक ​​कार्यसिस्टम के मूल्यांकन के लिए वाहन में ड्राइविंग परीक्षण अधिकांशतः समय लेने वाले, मूल्यवान और प्रतिलिपि प्रस्तुत करने योग्य नहीं होते हैं, एचआईएल सिमुलेटर डेवलपर्स को गुणवत्ता आवश्यकताओं और समय-समय पर मार्केट प्रतिबंधों का सम्मान करते हुए नए हार्डवेयर और सॉफ्टवेयर ऑटोमोटिव समाधानों को मान्य करने की अनुमति देते हैं।. विशिष्ट एचआईएल सिम्युलेटर में, समर्पित वास्तविक समय प्रोसेसर गणितीय मॉडल निष्पादित करता है जो कि इंजन गतिशीलता का सिमुलेशन करता है। इसके अतिरिक्त, I/O इकाई वाहन सेंसर और एक्चुएटर्स (जो सामान्यतः उच्च स्तर की गैर-रैखिकता प्रस्तुत करते हैं) के कनेक्शन की अनुमति देती है। अंत में, परीक्षण के अनुसार इलेक्ट्रॉनिक नियंत्रण इकाई (ईसीयू) को सिस्टम से जोड़ा जाता है और सिम्युलेटर द्वारा निष्पादित वाहन युद्धाभ्यास के समूह द्वारा उत्तेजित किया जाता है। इस बिंदु पर, एचआईएल सिमुलेशन परीक्षण चरण के समय उच्च स्तर की पुनरावृत्ति भी प्रदान करता है।

साहित्य में, अनेक एचआईएल विशिष्ट अनुप्रयोगों की सूचना दी गई है और कुछ विशिष्ट उद्देश्य के अनुसार सरलीकृत एचआईएल सिमुलेटर बनाए गए थे।[1][3][4] उदाहरण के लिए, नए ईसीयू सॉफ़्टवेयर रिलीज़ का परीक्षण करते समय, प्रयोग ओपन लूप में किए जा सकते हैं और इसलिए अनेक इंजन डायनेमिक मॉडल की अब आवश्यकता नहीं है। नियंत्रित इनपुट द्वारा उत्साहित होने पर रणनीति ईसीयू आउटपुट के विश्लेषण तक ही सीमित है। इस स्तिथि में, माइक्रो एचआईएल सिस्टम (एमएचआईएल) सरल और अधिक सस्ता समाधान प्रदान करता है। [5] चूंकि मॉडल प्रसंस्करण की काम्प्लेक्स को खत्म कर दिया गया है, पूर्ण आकार के एचआईएल सिस्टम को पोर्टेबल डिवाइस में परिवर्तित कर दिया गया है जो सिग्नल जनरेटर, आई/ओ बोर्ड और ईसीयू से जुड़े एक्चुएटर्स (बाहरी भार) वाले कंसोल से बना है।

राडार

रडार सिस्टम के लिए एचआईएल सिमुलेशन रडार-जैमिंग से विकसित हुआ है। डिजिटल रेडियो फ्रीक्वेंसी मेमोरी (डीआरएफएम) सिस्टम का उपयोग सामान्यतः बैटलफील्ड में रडार को भ्रमित करने के लिए झूठे लक्ष्य बनाने के लिए किया जाता है, किन्तु यह वही सिस्टम प्रयोगशाला में किसी लक्ष्य का सिमुलेशन कर सकते हैं। यह कॉन्फ़िगरेशन रडार सिस्टम के परीक्षण और मूल्यांकन की अनुमति देता है, जिससे फ्लाइट कण्ट्रोल (हवाई रडार सिस्टम के लिए) और क्षेत्र परीक्षणों (खोज या ट्रैकिंग रडार के लिए) की आवश्यकता कम हो जाती है, और इलेक्ट्रानिक वारफेयर (ईडब्ल्यू) तकनीकों लिए रडार की संवेदनशीलता का प्रारंभिक संकेत दे सकता है।

रोबोटिक्स

एचआईएल सिमुलेशन की तकनीकों को वर्तमान में रोबोटों के लिए काम्प्लेक्स कंट्रोलर की स्वचालित जनरेशन पर प्रयुक्त किया गया है। रोबोट संवेदना और सक्रियण डेटा निकालने के लिए अपने स्वयं के वास्तविक हार्डवेयर का उपयोग करता है, फिर इस डेटा का उपयोग भौतिक सिमुलेशन (स्व-मॉडल) का अनुमान लगाने के लिए करता है जिसमें उसके स्वयं के आकारिकी के साथ-साथ पर्यावरण की विशेषताओं जैसे पहलू सम्मिलित होते हैं। बैक-टू-रियलिटी जैसे एल्गोरिदम[6] (बीटीआर) और अनुमान अन्वेषण[7] (ईईए) इस संदर्भ में प्रस्तावित किया गया है।

पॉवर सिस्टम

इस प्रकार वर्तमान के वर्षों में, पॉवर सिस्टम के लिए एचआईएल का उपयोग बड़े पैमाने पर विद्युत ग्रिड की स्थिरता, संचालन और दोष सहनशीलता को सत्यापित करने के लिए किया गया है। वर्तमान जनरेशन के वास्तविक समय प्रसंस्करण प्लेटफार्मों में वास्तविक समय में बड़े पैमाने पर पॉवर सिस्टम को मॉडल करने की क्षमता है। इसमें संबंधित जनरेटर, लोड, पावर-फैक्टर सुधार उपकरण और नेटवर्क इंटरकनेक्शन के साथ 10,000 से अधिक बसों वाले सिस्टम सम्मिलित हैं।[8] इस प्रकार के सिमुलेशन प्लेटफ़ॉर्म यथार्थवादी सिमुलेशनीय वातावरण में बड़े पैमाने पर पॉवर सिस्टम के मूल्यांकन और परीक्षण को सक्षम बनाते हैं। इसके अतिरिक्त, पॉवर सिस्टम के लिए एचआईएल का उपयोग वितरित संसाधनों, नेक्स्ट-जनरेशन के स्काडा सिस्टम, पावर प्रबंधन इकाई और स्टैटकॉम उपकरणों के एकीकरण की जांच के लिए किया गया है।[9]


ऑफशोर सिस्टम

अपतटीय और समुद्री इंजीनियरिंग में, नियंत्रण सिस्टम और यांत्रिक संरचनाएं सामान्यतः समानांतर में डिजाइन की जाती हैं। नियंत्रण सिस्टम का परीक्षण एकीकरण के पश्चात ही संभव है। परिणामस्वरूप, अनेक त्रुटियाँ पाई जाती हैं जिन्हें कमीशनिंग के समय हल करना पड़ता है, जिसमें व्यक्तिगत चोटों, क्षतिग्रस्त उपकरणों और देरी का कठिन परिस्थिति होती है। इन त्रुटियों को कम करने के लिए, एचआईएल सिमुलेशन व्यापक ध्यान आकर्षित कर रहा है।[10] यह नॉर्वेजियन वेरिटास नियमों में एचआईएल सिमुलेशन को अपनाने से परिलक्षित होता है।[11]

संदर्भ

  1. 1.0 1.1 T. Hwang, J. Rohl, K. Park, J. Hwang, K. H. Lee, K. Lee, S.-J. Lee, and Y.-J. Kim, "Development of HIL Systems for active Brake Control Systems", SICE-ICASE International Joint Conference, 2006.
  2. S.Raman, N. Sivashankar, W. Milam, W. Stuart, and S. Nabi, "Design and Implementation of HIL Simulators for Powertrain Control System Software Development", Proceedings of the American Control Conference,1999.
  3. A. Cebi, L. Guvenc, M. Demirci, C. Karadeniz, K. Kanar, and E. Guraslan, "A low cost, portable engine electronic control unit hardware-in-the-loop test system", Proceedings of the IEEE International Symposium on Industrial Electronics, 2005.
  4. J. Du, Y. Wang, C. Yang, and H. Wang, "Hardware-in-the-loop simulation approach to testing controller of sequential turbocharging system", Proceedings of the IEEE International Conference on Automation and Logistics, 2007.
  5. A. Palladino, G. Fiengo, F. Giovagnini, and D. Lanzo, "A Micro Hardware-In-the-Loop Test System", IEEE European Control Conference, 2009.
  6. Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P. (2004) Back-to-Reality: Crossing the Reality Gap in Evolutionary Robotics. In IAV 2004: Proceedings 5th IFAC Symposium on Intelligent Autonomous Vehicles, Elsevier Science Publishers B.V.
  7. Bongard, J.C., Lipson, H. (2004) “Once More Unto the Breach: Automated Tuning of Robot Simulation using an Inverse Evolutionary Algorithm”, Proceedings of the Ninth Int. Conference on Artificial Life (ALIFE IX)
  8. "ePHASORsim रीयल-टाइम क्षणिक स्थिरता सिम्युलेटर" (PDF). Retrieved 23 November 2013.
  9. Al-Hammouri, A.T; Nordstrom, L.; Chenine, M.; Vanfretti, L.; Honeth, N.; Leelaruji, R. (22 July 2012). "Virtualization of synchronized phasor measurement units within real-time simulators for smart grid applications". 2012 IEEE Power and Energy Society General Meeting. pp. 1–7. doi:10.1109/PESGM.2012.6344949. ISBN 978-1-4673-2729-9. S2CID 10605905. {{cite book}}: |journal= ignored (help)
  10. Johansen, T. A.; Fossen, T. I.; Vik, B. (2005). डीपी सिस्टम का हार्डवेयर-इन-द-लूप परीक्षण. DP Conference. Houston.
  11. DNV. Rules for classification of Ships, Part 7 Ch 1 Sec 7 I. Enhanced System Verification - SiO, 2010


बाहरी संबंध