माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:


== प्रकार ==
== प्रकार ==
MEMS स्विच प्रौद्योगिकी के दो मूल प्रकार हैं: संधारित्र और ओमिक। एक संधारित्र MEMS स्विच एक गतिशील प्लेट या सेंसिंग तत्व का उपयोग करके विकसित किया जाता है, जो संधार्यता को बदल देता है।<ref>{{cite journal|title=Evaluation of MEMS capacitive accelerometers |date=1999-12-01 |doi=10.1109/54.808209 |last1=Beliveau |first1=A. |last2=Spencer |first2=G.T. |last3=Thomas |first3=K.A. |last4=Roberson |first4=S.L. |journal=IEEE Design & Test of Computers |volume=16 |issue=4 |pages=48–56 }}</ref> OHMIC स्विच इलेक्ट्रोस्टिक रूप से नियंत्रित कैंटिलीवर द्वारा नियंत्रित किए जाते हैं।<ref>{{cite web|url=https://iopscience.iop.org/book/978-0-7503-1545-6/chapter/bk978-0-7503-1545-6ch1 |title=Introduction to MEMS and RF-MEMS: From the early days of microsystems to modern RF-MEMS passives |website=iop.org |date=2017-11-01 |access-date=2019-08-06}}</ref> OHMIC MEMS स्विच MEMS एक्ट्यूएटर (कैंटिलीवर) और संपर्क पहनने के धातु की थकान से विफल हो सकते हैं, क्योंकि कैंटिलीवर समय के साथ विकृत हो सकते हैं।<ref>{{cite web|url=https://www.evaluationengineering.com/instrumentation/switching-systems/article/21082562/mems-technology-is-transforming-highdensity-switch-matrices |title=MEMS technology is transforming high-density switch matrices |website=evaluationengineering.com |date=2019-06-24 |access-date=2019-08-06}}</ref>
MEMS स्विच प्रौद्योगिकी के दो मूल प्रकार हैं: संधारित्र और ओमिक। एक संधारित्र MEMS स्विच एक गतिशील प्लेट या सेंसिंग तत्व का उपयोग करके विकसित किया जाता है, जो संधार्यता को बदल देता है।<ref>{{cite journal|title=Evaluation of MEMS capacitive accelerometers |date=1999-12-01 |doi=10.1109/54.808209 |last1=Beliveau |first1=A. |last2=Spencer |first2=G.T. |last3=Thomas |first3=K.A. |last4=Roberson |first4=S.L. |journal=IEEE Design & Test of Computers |volume=16 |issue=4 |pages=48–56 }}</ref> ओमिक स्विचों को इलेक्ट्रोस्टैटिक रूप से नियंत्रित कैंटीलीवरों द्वारा नियंत्रित किया जाता है।<ref>{{cite web|url=https://iopscience.iop.org/book/978-0-7503-1545-6/chapter/bk978-0-7503-1545-6ch1 |title=Introduction to MEMS and RF-MEMS: From the early days of microsystems to modern RF-MEMS passives |website=iop.org |date=2017-11-01 |access-date=2019-08-06}}</ref> ओमिक MEMS स्विच MEMS प्रवर्तक (कैंटीलीवर) की धातु के संपर्क से विफल हो सकते हैं, क्योंकि कैंटिलीवर समय के साथ ख़राब हो सकते हैं।<ref>{{cite web|url=https://www.evaluationengineering.com/instrumentation/switching-systems/article/21082562/mems-technology-is-transforming-highdensity-switch-matrices |title=MEMS technology is transforming high-density switch matrices |website=evaluationengineering.com |date=2019-06-24 |access-date=2019-08-06}}</ref>
 
 
== MEMS निर्माण के लिए सामग्री ==
== MEMS निर्माण के लिए सामग्री ==
एमईएमएस का निर्माण अर्धचालक डिवाइस निर्माण में प्रक्रिया प्रौद्योगिकी से विकसित हुआ, अर्थात् बुनियादी तकनीक सामग्री परतों का बयान है, आवश्यक आकृतियों का उत्पादन करने के लिए फोटोलिथोग्राफी और नक़्क़ाशी द्वारा पैटर्निंग।<ref>{{cite book|title=MEMS Materials and Processes Handbook|vauthors=Ghodssi R, Lin P|publisher=[[Springer Science+Business Media|Springer]]|year=2011|isbn=9780387473161|place=Berlin}}</ref>
MEMS का निर्माण सेमीकंडक्टर उपकरण फैब्रिकेशन में प्रौद्योगिकी प्रक्रिया से हुआ है। प्राचीन तकनीक सामग्री परतों का निक्षेपण है, फोटोलिथोग्राफी और नक़्क़ाशी द्वारा आवश्यक आकृति का निर्माण कर सकते है।<ref>{{cite book|title=MEMS Materials and Processes Handbook|vauthors=Ghodssi R, Lin P|publisher=[[Springer Science+Business Media|Springer]]|year=2011|isbn=9780387473161|place=Berlin}}</ref>
 
=== सिलिकॉन ===
 
सिलिकॉन (silicon) आधुनिक उद्योग में उपभोक्ता इलेक्ट्रॉनिक्स (consumer electronics) में प्रयुक्त सर्वाधिक एकीकृत परिपथों (सर्किटों) के निर्माण के लिए प्रयुक्त सामग्री है। पैमाने की अर्थव्यवस्थाएं, सस्ती उच्च गुणवत्ता वाली सामग्री की तैयार उपलब्धता और इलेक्ट्रॉनिक कार्यक्षमता को शामिल करने की क्षमता, सिलिकॉन को विभिन्न प्रकार के MEMS अनुप्रयोगों के लिए आकर्षक बनाती हैं। सिलिकॉन के भौतिक गुणों के माध्यम से भी महत्वपूर्ण लाभ हैं। एकल क्रिस्टल रूप में, सिलिकॉन लगभग पूर्ण हूकेन (Hookean) सामग्री है, जिसका अर्थ है कि जब यह लचीला होता है तो वास्तव में कोई शैथिल्य (hysteresis) नहीं होता है और इसलिए लगभग कोई ऊर्जा अपव्यय नहीं होता है। अत्यधिक दोहराने योग्य गति के साथ-साथ, यह सिलिकॉन को बहुत विश्वसनीय भी बनाता है क्योंकि यह बहुत कम थकान महसूस करता है और बिना टूटे अरबों से खरबों चक्रों की सीमा का जीवनकाल हो सकता है। सिलिकॉन (silicon) पर आधारित अर्धचालक नैनोस्ट्रक्चर (semiconductor nanostructs) विशेष रूप से माइक्रोइलेक्ट्रॉनिक्स (microelectronics) और एमईएम (mems) के क्षेत्र में अधिक महत्व प्राप्त कर रहे हैं। सिलिकॉन (silicon) के थर्मल ऑक्सीडेशन (thermal oxidation) के माध्यम से निर्मित सिलिकॉन नैनोवायर (silicon nanowier) इलेक्ट्रोकेमिकल रूपांतरण और भंडारण (storage) में आगे रुचि रखते हैं, जिसमें नैनोवायर बैटरी (nanowire batteries) और फोटोवोल्टिक सिस्टम (photovolic systems) शामिल हैं।
=== सिलिकॉन ====
सिलिकॉन आधुनिक उद्योग में उपभोक्ता इलेक्ट्रॉनिक्स में उपयोग किए जाने वाले अधिकांश एकीकृत सर्किट बनाने के लिए उपयोग की जाने वाली सामग्री है। पैमाने की अर्थव्यवस्थाएं, सस्ती उच्च गुणवत्ता वाली सामग्रियों की तैयार उपलब्धता, और इलेक्ट्रॉनिक कार्यक्षमता को शामिल करने की क्षमता MEMS अनुप्रयोगों की एक विस्तृत विविधता के लिए सिलिकॉन को आकर्षक बनाती है। सिलिकॉन के पास अपने भौतिक गुणों के माध्यम से महत्वपूर्ण लाभ भी हैं। सिंगल क्रिस्टल रूप में, सिलिकॉन एक लगभग सही हुक का नियम है। हुकियन सामग्री, जिसका अर्थ है कि जब इसे फ्लेक्स किया जाता है तो वस्तुतः कोई हिस्टैरिसीस नहीं होता है और इसलिए लगभग कोई ऊर्जा अपव्यय नहीं होता है। अत्यधिक दोहराने योग्य गति के लिए बनाने के साथ -साथ, यह सिलिकॉन को बहुत विश्वसनीय बनाता है क्योंकि यह बहुत कम थकान से ग्रस्त है और 1000000000 (नंबर) की सीमा में सेवा जीवनकाल हो सकता है। सिलिकॉन पर आधारित अर्धचालक नैनोस्ट्रक्चर विशेष रूप से माइक्रोइलेक्ट्रॉनिक्स और एमईएमएस के क्षेत्र में बढ़ते महत्व प्राप्त कर रहे हैं। सिलिकॉन के थर्मल ऑक्सीकरण के माध्यम से गढ़े गए सिलिकॉन नैनोवायर्स, नैनोवायर बैटरी और फोटोवोल्टिक सिस्टम सहित इलेक्ट्रोकेमिकल रूपांतरण और भंडारण में आगे रुचि रखते हैं।


=== पॉलिमर ===
=== पॉलिमर ===

Revision as of 12:03, 1 September 2022

1986 में DARPA को प्रस्तुत प्रस्ताव पहले माइक्रोइलेक्ट्रोमैकेनिकल शब्द का परिचय दिया
MEMS माइक्रोकंटिलेवर एक स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप के अंदर प्रतिध्वनित होता है

माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम (mems), जिसे माइक्रो-इलेक्ट्रो-मैकेनिकल सिस्टम (या माइक्रोइलेक्ट्रॉनिक और माइक्रोइलेक्ट्रॉनिक सिस्टम) के रूप में भी लिखा जाता है और संबंधित माइक्रोमैक्ट्रोनिक्स और माइक्रोसिस्टम्स सूक्ष्म उपकरणों की तकनीक का गठन करते हैं, विशेष रूप से उन क्षेत्रो के लिए जो गतिशील हैं। वे नैनोस्केल पर नैनोइलेक्ट्रोमैकेनिकल सिस्टम (NEMS) और नैनो टेक्नोलॉजी में विलय होते हैं। MEMS को जापान में माइक्रोमाशीन और यूरोप में माइक्रोसिस्टम टेक्नोलॉजी (MST) के रूप में भी जाना जाता है।

MEMS आकार में 1 और 100 माइक्रोमीटर (यानी 0.001 से 0.1 मिमी) के बीच घटकों से बने होते हैं, और MEMS उपकरण आम तौर पर 20 माइक्रोमीटर से एक मिलीमीटर (यानी 0.02 से 1.0 मिमी) तक आकार में होते हैं, हालांकि घटक सरणी (जैसे, डिजिटल माइक्रोमिरर उपकरण) में व्यवस्थित घटक 1000 मिमी 2 से अधिक हो सकते हैं।.[1] वे आम तौर पर एक केंद्रीय इकाई से मिलकर डेटा (एक एकीकृत सर्किट चिप जैसे माइक्रोप्रोसेसर) और कई घटकों को संसाधित करते हैं जो आसपास (जैसे माइक्रोसेन्सर्स) के साथ  एक दूसरे को प्रभावित करते हैं।[2] MEMS के बड़े सतह क्षेत्र से आयतन अनुपात के कारण, परिवेश विद्युत चुंबकत्व (जैसे, इलेक्ट्रोस्टैटिक चार्ज और चुंबकीय क्षण), और द्रव गतिकी (जैसे, सतह तनाव और चिपचिपाहट) द्वारा उत्पन्न बल बड़े पैमाने पर यांत्रिक उपकरणों की तुलना में अधिक महत्वपूर्ण डिजाइन के कारण हैं। MEMS प्रौद्योगिकी आणविक नैनो प्रौद्योगिकी या आणविक इलेक्ट्रॉनिक्स से अलग है जिसमें बाद के दो को सतह रसायन शास्त्र पर भी विचार करना चाहिए।

प्रौद्योगिकी के अस्तित्व से पहले बहुत छोटी मशीनों की क्षमता की सराहना की गई थी जो उन्हें बना सकती थी (उदाहरण के लिए, रिचर्ड फेनमैन का 1959 का प्रसिद्ध व्याख्यान देयर्स पलेँटी ऑफ रूम एट द बॉटम)। mems तब व्यावहारिक हो गए जब उन्हें संशोधित अर्धचालक उपकरण निर्माण प्रौद्योगिकियों का उपयोग करके तैयार किया जा सकता था, आमतौर पर इलेक्ट्रॉनिक्स बनाने के लिए उपयोग किया जाता था।[3] इनमें मोल्डिंग और प्लेटिंग, गीले टीचिंग (KOH, TMAH) और ड्राई ईचिंग (RIE and DRIE), इलेक्ट्रिकल डिसचार्ज मशीनिंग (EDM) और छोटे उपकरणों के निर्माण में सक्षम अन्य प्रौद्योगिकियां शामिल हैं।

इतिहास

MEMS प्रौद्योगिकी की जड़ें सिलिकॉन क्रांति में हैं, जिसे 1959 से दो महत्वपूर्ण सिलिकॉन अर्धचालक आविष्कारों में खोजा जा सकता है: फेयरचाइल्ड सेमीकंडक्टर में रॉबर्ट नोयस द्वारा मोनोलिथिक एकीकृत सर्किट (IC) चिप, और बेल लैब्स में मोहम्मद एम. अटाला और डॉन कहंग द्वारा MOSFET (मेटल-ऑक्साइड-माइक्रो-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर, या MOS ट्रांजिस्टर)। MOSFET स्केलिंग, IC चिप्स पर (जैसा कि मूर के नियम और डेनार्ड स्केलिंग द्वारा भविष्यवाणी की गई थी) MOSFETs के लघुकरण ने इलेक्ट्रॉनिक्स के लघुकरण का नेतृत्व किया। इसने मैकेनिकल सिस्टम के लघुकरण के लिए नींव रखी, सिलिकॉन अर्धचालक प्रौद्योगिकी पर आधारित माइक्रोमाशीनिंग प्रौद्योगिकी के विकास के साथ, जैसा कि इंजीनियरों ने महसूस करना शुरू किया कि सिलिकॉन चिप्स और MOSFETs आसपास के वातावरण और प्रक्रिया जैसे रसायनों, गति और प्रकाश एक दूसरे को प्रभावित और संचार कर सकते हैं। 1962 में हनीवेल द्वारा पहले सिलिकॉन प्रेशर सेंसर में से एक को आइसोट्रोपिक रूप से माइक्रोमैच किया गया था।[4]

MEMS उपकरण का एक प्रारंभिक उदाहरण अनुनाद-गेट ट्रांजिस्टर है, जो सन् 1965 में हार्वे सी. नाथसन द्वारा विकसित MOSFET का रूपांतरण है।[5] एक और प्रारंभिक उदाहरण है प्रतिध्वनि, एक इलेक्ट्रोमैकेनिकल मोनोलिथिक प्रतिध्वनिकार, जो 1966 और 1971 के बीच रेमंड जे विल्फिंगर द्वारा पेटेंट कराया गया था।[6][7] 1970 से 1980 के दशक के दौरान, भौतिक, रासायनिक, जैविक और पर्यावरणीय मापदंडों को मापने के लिए कई MOSFET माइक्रोसेंसर विकसित किए गए थे। [8] MEMS शब्द 1986 में पेश किया गया था।[9]


प्रकार

MEMS स्विच प्रौद्योगिकी के दो मूल प्रकार हैं: संधारित्र और ओमिक। एक संधारित्र MEMS स्विच एक गतिशील प्लेट या सेंसिंग तत्व का उपयोग करके विकसित किया जाता है, जो संधार्यता को बदल देता है।[10] ओमिक स्विचों को इलेक्ट्रोस्टैटिक रूप से नियंत्रित कैंटीलीवरों द्वारा नियंत्रित किया जाता है।[11] ओमिक MEMS स्विच MEMS प्रवर्तक (कैंटीलीवर) की धातु के संपर्क से विफल हो सकते हैं, क्योंकि कैंटिलीवर समय के साथ ख़राब हो सकते हैं।[12]

MEMS निर्माण के लिए सामग्री

MEMS का निर्माण सेमीकंडक्टर उपकरण फैब्रिकेशन में प्रौद्योगिकी प्रक्रिया से हुआ है। प्राचीन तकनीक सामग्री परतों का निक्षेपण है, फोटोलिथोग्राफी और नक़्क़ाशी द्वारा आवश्यक आकृति का निर्माण कर सकते है।[13]

सिलिकॉन

सिलिकॉन (silicon) आधुनिक उद्योग में उपभोक्ता इलेक्ट्रॉनिक्स (consumer electronics) में प्रयुक्त सर्वाधिक एकीकृत परिपथों (सर्किटों) के निर्माण के लिए प्रयुक्त सामग्री है। पैमाने की अर्थव्यवस्थाएं, सस्ती उच्च गुणवत्ता वाली सामग्री की तैयार उपलब्धता और इलेक्ट्रॉनिक कार्यक्षमता को शामिल करने की क्षमता, सिलिकॉन को विभिन्न प्रकार के MEMS अनुप्रयोगों के लिए आकर्षक बनाती हैं। सिलिकॉन के भौतिक गुणों के माध्यम से भी महत्वपूर्ण लाभ हैं। एकल क्रिस्टल रूप में, सिलिकॉन लगभग पूर्ण हूकेन (Hookean) सामग्री है, जिसका अर्थ है कि जब यह लचीला होता है तो वास्तव में कोई शैथिल्य (hysteresis) नहीं होता है और इसलिए लगभग कोई ऊर्जा अपव्यय नहीं होता है। अत्यधिक दोहराने योग्य गति के साथ-साथ, यह सिलिकॉन को बहुत विश्वसनीय भी बनाता है क्योंकि यह बहुत कम थकान महसूस करता है और बिना टूटे अरबों से खरबों चक्रों की सीमा का जीवनकाल हो सकता है। सिलिकॉन (silicon) पर आधारित अर्धचालक नैनोस्ट्रक्चर (semiconductor nanostructs) विशेष रूप से माइक्रोइलेक्ट्रॉनिक्स (microelectronics) और एमईएम (mems) के क्षेत्र में अधिक महत्व प्राप्त कर रहे हैं। सिलिकॉन (silicon) के थर्मल ऑक्सीडेशन (thermal oxidation) के माध्यम से निर्मित सिलिकॉन नैनोवायर (silicon nanowier) इलेक्ट्रोकेमिकल रूपांतरण और भंडारण (storage) में आगे रुचि रखते हैं, जिसमें नैनोवायर बैटरी (nanowire batteries) और फोटोवोल्टिक सिस्टम (photovolic systems) शामिल हैं।

पॉलिमर

भले ही इलेक्ट्रॉनिक्स उद्योग सिलिकॉन उद्योग के लिए पैमाने की अर्थव्यवस्था प्रदान करता है, क्रिस्टलीय सिलिकॉन अभी भी एक जटिल और अपेक्षाकृत महंगा सामग्री है।दूसरी ओर पॉलिमर को विशाल संस्करणों में उत्पादित किया जा सकता है, जिसमें विभिन्न प्रकार की भौतिक विशेषताओं के साथ।एमईएमएस उपकरणों को इंजेक्शन मोल्डिंग, एम्बॉसिंग या स्टिरोलिथोग्राफी जैसी प्रक्रियाओं द्वारा पॉलिमर से बनाया जा सकता है और विशेष रूप से डिस्पोजेबल रक्त परीक्षण कारतूस जैसे माइक्रोफ्लुइडिक अनुप्रयोगों के लिए विशेष रूप से अनुकूल हैं।

धातु

MEMS तत्वों को बनाने के लिए धातुओं का उपयोग भी किया जा सकता है।जबकि धातुओं के पास यांत्रिक गुणों के संदर्भ में सिलिकॉन द्वारा प्रदर्शित कुछ फायदे नहीं होते हैं, जब उनकी सीमाओं के भीतर उपयोग किया जाता है, तो धातुएं विश्वसनीयता के बहुत उच्च डिग्री का प्रदर्शन कर सकती हैं।धातुओं को इलेक्ट्रोप्लेटिंग, वाष्पीकरण और स्पटरिंग प्रक्रियाओं द्वारा जमा किया जा सकता है।आमतौर पर इस्तेमाल की जाने वाली धातुओं में सोने, निकल, एल्यूमीनियम, तांबा, क्रोमियम, टाइटेनियम, टंगस्टन, प्लैटिनम और चांदी शामिल हैं।

सिरेमिक

ग्राउंड प्लेट के ऊपर एक्स-आकार के टिन बीम के इलेक्ट्रॉन माइक्रोस्कोप चित्र (ऊंचाई अंतर 2.5 माइक्रोन)।बीच में क्लिप के कारण, एक बढ़ती रीसेट बल विकसित होता है जब बीम नीचे की ओर झुकता है।सही आंकड़ा क्लिप का एक आवर्धन दिखाता है।[14]

सिलिकॉन, एल्यूमीनियम और टाइटेनियम के साथ -साथ सिलिकॉन कार्बाइड और अन्य सिरेमिक के नाइट्राइड्स को भौतिक गुणों के लाभप्रद संयोजन के कारण एमईएमएस निर्माण में तेजी से लागू किया जाता है।ALN Wurtzite संरचना में क्रिस्टलीकृत करता है और इस प्रकार पाइरोइलेक्ट्रिक और पीज़ोइलेक्ट्रिक गुणों को दिखाता है जो सेंसर को सक्षम करता है, उदाहरण के लिए, सामान्य और कतरनी बलों के प्रति संवेदनशीलता के साथ।[15] दूसरी ओर, टिन, एक उच्च विद्युत चालकता और बड़े लोचदार मापांक को प्रदर्शित करता है, जिससे अल्ट्रैथिन बीम के साथ इलेक्ट्रोस्टैटिक एमईएमएस सक्रियण योजनाओं को लागू करना संभव हो जाता है।इसके अलावा, बायोकोरोसियन के खिलाफ टिन का उच्च प्रतिरोध बायोजेनिक वातावरण में अनुप्रयोगों के लिए सामग्री को योग्य बनाता है।यह आंकड़ा 50 & nbsp के साथ एक MEMS बायोसेंसर की एक इलेक्ट्रॉन-माइक्रोस्कोपिक तस्वीर दिखाता है; एक टिन ग्राउंड प्लेट के ऊपर एनएम पतली बेंडेबल टिन बीम।दोनों को संधारित्र के विपरीत इलेक्ट्रोड के रूप में संचालित किया जा सकता है, क्योंकि बीम विद्युत रूप से अलग -थलग साइड की दीवारों में तय किया जाता है।जब एक तरल पदार्थ को गुहा में निलंबित कर दिया जाता है, तो इसकी चिपचिपाहट को बीम को बिजली के आकर्षण द्वारा जमीन की प्लेट में झुकने और झुकने वाले वेग को मापने से लिया जा सकता है।[14]


MEMS मूल प्रक्रियाएं

बयान प्रक्रियाएं =

एमईएमएस प्रसंस्करण में बुनियादी बिल्डिंग ब्लॉकों में से एक एक माइक्रोमीटर के बीच कहीं भी मोटाई के साथ सामग्री की पतली फिल्मों को जमा करने की क्षमता है, लगभग 100 माइक्रोमीटर।एनईएमएस प्रक्रिया समान है, हालांकि फिल्म के जमाव का माप कुछ नैनोमीटर से एक माइक्रोमीटर तक होता है।दो प्रकार की बयान प्रक्रियाएं हैं, निम्नानुसार हैं।

भौतिक बयान =

भौतिक वाष्प जमाव (पीवीडी) में एक प्रक्रिया होती है जिसमें एक सामग्री को एक लक्ष्य से हटा दिया जाता है, और एक सतह पर जमा किया जाता है।ऐसा करने की तकनीकों में स्पटरिंग की प्रक्रिया शामिल है, जिसमें एक आयन बीम परमाणुओं को एक लक्ष्य से मुक्त करता है, जिससे उन्हें हस्तक्षेप करने वाले स्थान के माध्यम से स्थानांतरित करने और वांछित सब्सट्रेट पर जमा करने की अनुमति मिलती है, और वाष्पीकरण होता है, जिसमें एक सामग्री को एक लक्ष्य से वाष्पित किया जाता है।एक वैक्यूम सिस्टम में हीट (थर्मल वाष्पीकरण) या एक इलेक्ट्रॉन बीम (ई-बीम वाष्पीकरण)।

रासायनिक जमाव

रासायनिक जमाव तकनीकों में रासायनिक वाष्प जमाव (सीवीडी) शामिल है, जिसमें स्रोत गैस की एक धारा वांछित सामग्री को विकसित करने के लिए सब्सट्रेट पर प्रतिक्रिया करती है।इसे तकनीक के विवरण के आधार पर श्रेणियों में विभाजित किया जा सकता है, उदाहरण के लिए LPCVD (कम दबाव रासायनिक वाष्प जमाव) और PECVD (प्लाज्मा-संवर्धित रासायनिक वाष्प जमाव)।

ऑक्साइड फिल्मों को थर्मल ऑक्सीकरण की तकनीक द्वारा भी उगाया जा सकता है, जिसमें सिलिकॉन डाइऑक्साइड की एक पतली सतह परत को विकसित करने के लिए (आमतौर पर सिलिकॉन) वेफर ऑक्सीजन और/या भाप के संपर्क में आता है।

पैटर्निंग

MEMS में पैटर्निंग एक सामग्री में एक पैटर्न का हस्तांतरण है।

लिथोग्राफी

MEMS संदर्भ में लिथोग्राफी आमतौर पर प्रकाश जैसे विकिरण स्रोत के लिए चयनात्मक जोखिम द्वारा एक फ़ोटोटेंसिटिव सामग्री में एक पैटर्न का हस्तांतरण होता है।एक फोटोसेंसिटिव सामग्री एक ऐसी सामग्री है जो विकिरण स्रोत के संपर्क में आने पर अपने भौतिक गुणों में परिवर्तन का अनुभव करती है।यदि एक फोटोसेंसिटिव सामग्री को चुनिंदा रूप से विकिरण के लिए उजागर किया जाता है (उदाहरण के लिए, कुछ विकिरण को मास्क करके) सामग्री पर विकिरण का पैटर्न उजागर किए गए सामग्री में स्थानांतरित किया जाता है, क्योंकि उजागर और अप्रकाशित क्षेत्रों के गुण भिन्न होते हैं।

इस उजागर क्षेत्र को तब हटा दिया जा सकता है या अंतर्निहित सब्सट्रेट के लिए एक मुखौटा प्रदान किया जा सकता है।फोटोलिथोग्राफी का उपयोग आमतौर पर धातु या अन्य पतली फिल्म बयान, गीले और सूखे नक़्क़ाशी के साथ किया जाता है।कभी -कभी, फोटोलिथोग्राफी का उपयोग किसी भी तरह के पोस्ट नक़्क़ाशी के बिना संरचना बनाने के लिए किया जाता है।एक उदाहरण SU8 आधारित लेंस है जहां SU8 आधारित वर्ग ब्लॉक उत्पन्न होते हैं।तब फोटोरिसिस्ट को एक अर्ध-क्षेत्र बनाने के लिए पिघलाया जाता है जो एक लेंस के रूप में कार्य करता है।

इलेक्ट्रॉन बीम लिथोग्राफी

इलेक्ट्रॉन बीम लिथोग्राफी (अक्सर ई-बीम लिथोग्राफी के रूप में संक्षिप्त) एक फिल्म के साथ कवर की गई सतह पर एक पैटर्न वाले फैशन में इलेक्ट्रॉनों के एक बीम को स्कैन करने की प्रथा है (जिसे प्रतिरोध कहा जाता है),[16] (प्रतिरोध को उजागर करना) और चुनिंदा रूप से या तो उजागर या गैर-उजागर क्षेत्रों को प्रतिरोध (विकास) के गैर-उजागर क्षेत्रों को हटाने के लिए। उद्देश्य, फोटोलिथोग्राफी के साथ, प्रतिरोध में बहुत छोटी संरचनाएं बनाना है जो बाद में सब्सट्रेट सामग्री में स्थानांतरित किया जा सकता है, अक्सर नक़्क़ाशी द्वारा। यह एकीकृत सर्किट के निर्माण के लिए विकसित किया गया था, और इसका उपयोग नैनो टेक्नोलॉजी आर्किटेक्चर बनाने के लिए भी किया जाता है।

इलेक्ट्रॉन बीम लिथोग्राफी का प्राथमिक लाभ यह है कि यह प्रकाश की विवर्तन सीमा को हराने और नैनोमीटर रेंज में सुविधाएँ बनाने के तरीकों में से एक है। मास्कलेस लिथोग्राफी के इस रूप में फोटोलिथोग्राफी में उपयोग किए जाने वाले फोटोमास्क-मेकिंग में व्यापक उपयोग, अर्धचालक घटकों के कम-मात्रा उत्पादन और अनुसंधान और विकास में व्यापक उपयोग पाया गया है।

इलेक्ट्रॉन बीम लिथोग्राफी की प्रमुख सीमा थ्रूपुट है, अर्थात, एक पूरे सिलिकॉन वेफर या ग्लास सब्सट्रेट को उजागर करने में बहुत लंबा समय लगता है। एक लंबा एक्सपोज़र समय उपयोगकर्ता को बीम के बहाव या अस्थिरता के लिए असुरक्षित छोड़ देता है जो एक्सपोज़र के दौरान हो सकता है। इसके अलावा, फिर से काम करने या फिर से डिजाइन के लिए टर्न-अराउंड समय को अनावश्यक रूप से लंबा किया जाता है यदि पैटर्न को दूसरी बार नहीं बदला जा रहा है।

आयन बीम लिथोग्राफी

यह ज्ञात है कि फोकस-आयन बीम लिथोग्राफी में निकटता प्रभाव के बिना बेहद ठीक लाइनें (50 & nbsp से कम; एनएम लाइन और स्पेस प्राप्त किया गया है) लिखने की क्षमता है।[citation needed] हालांकि, क्योंकि आयन-बीम लिथोग्राफी में लेखन क्षेत्र काफी छोटा है, बड़े क्षेत्र के पैटर्न को छोटे क्षेत्रों को एक साथ सिलाई करके बनाया जाना चाहिए।

आयन ट्रैक प्रौद्योगिकी =

आयन ट्रैक तकनीक एक गहरी काटने का उपकरण है, जिसमें 8 & nbsp के आसपास एक रिज़ॉल्यूशन सीमा है; NM विकिरण प्रतिरोधी खनिजों, चश्मे और पॉलिमर के लिए लागू होता है।यह बिना किसी विकास प्रक्रिया के पतली फिल्मों में छेद बनाने में सक्षम है।संरचनात्मक गहराई को या तो आयन रेंज या सामग्री की मोटाई द्वारा परिभाषित किया जा सकता है।कई 10 तक पहलू अनुपात4पहुँचा जा सकता है।तकनीक एक परिभाषित झुकाव कोण पर सामग्री को आकार और बनावट कर सकती है।यादृच्छिक पैटर्न, एकल-आयन ट्रैक संरचनाएं और व्यक्तिगत एकल ट्रैक से युक्त एक उद्देश्य पैटर्न उत्पन्न किया जा सकता है।

एक्स-रे लिथोग्राफी

एक्स-रे लिथोग्राफी एक पतली फिल्म के कुछ हिस्सों को चुनिंदा रूप से हटाने के लिए इलेक्ट्रॉनिक उद्योग में उपयोग की जाने वाली एक प्रक्रिया है।यह एक मास्क से एक ज्यामितीय पैटर्न को हल्के-संवेदनशील रासायनिक फोटोरिसिस्ट में स्थानांतरित करने के लिए एक्स-रे का उपयोग करता है, या बस सब्सट्रेट पर विरोध करता है।रासायनिक उपचारों की एक श्रृंखला तब फोटोरिसिस्ट के नीचे सामग्री में उत्पादित पैटर्न को उकेरा जाती है।

डायमंड पैटर्निंग

नैनोडायमंड्स की सतह पर पैटर्न बनाने या बनाने का एक सरल तरीका उन्हें नुकसान पहुंचाए बिना फोटोनिक उपकरणों की एक नई पीढ़ी को जन्म दे सकता है।[17] डायमंड पैटर्निंग डायमंड मेम बनाने की एक विधि है।यह सिलिकॉन जैसे सब्सट्रेट के लिए हीरे की फिल्मों के लिथोग्राफिक एप्लिकेशन द्वारा प्राप्त किया जाता है।पैटर्न को सिलिकॉन डाइऑक्साइड मास्क के माध्यम से चयनात्मक बयान द्वारा बनाया जा सकता है, या इसके बाद डिपॉजिशन द्वारा माइक्रोमैचिनिंग या केंद्रित आयन बीम मिलिंग के बाद।[18]


नक़्क़ाशी प्रक्रियाएं

नक़्क़ाशी प्रक्रियाओं की दो बुनियादी श्रेणियां हैं: गीले नक़्क़ाशी और सूखी नक़्क़ाशी।पूर्व में, एक रासायनिक समाधान में डूब जाने पर सामग्री को भंग कर दिया जाता है।उत्तरार्द्ध में, सामग्री को प्रतिक्रियाशील आयनों या एक वाष्प चरण etchant का उपयोग करके थूक या भंग कर दिया जाता है।[19][20]


गीला नक़्क़ाशी

गीले रासायनिक नक़्क़ाशी में एक सब्सट्रेट को एक समाधान में डुबोकर सामग्री के चयनात्मक हटाने में शामिल होते हैं जो इसे भंग करता है।इस नक़्क़ाशी प्रक्रिया की रासायनिक प्रकृति एक अच्छी चयनात्मकता प्रदान करती है, जिसका अर्थ है कि लक्ष्य सामग्री की नक़्क़ाशी दर मास्क सामग्री की तुलना में काफी अधिक है यदि सावधानी से चुना गया हो।गीले नक़्क़ाशी या तो आइसोट्रोपिक वेट एचेंट या एनिसोट्रोपिक वेट एचेंट्स का उपयोग करके किया जा सकता है।लगभग समान दरों पर क्रिस्टलीय सिलिकॉन के सभी दिशाओं में आइसोट्रोपिक गीला नटखट etch।Anisotropic गीले etchants अधिमानतः कुछ क्रिस्टल विमानों के साथ अन्य विमानों की तुलना में तेज दरों पर, जिससे अधिक जटिल 3-डी माइक्रोस्ट्रक्चर को लागू करने की अनुमति मिलती है।

वेट एनिसोट्रोपिक नक़्क़ाशी अक्सर बोरॉन एच स्टॉप के साथ संयोजन में उपयोग किए जाते हैं, जिसमें सिलिकॉन की सतह को बोरान के साथ भारी रूप से डोप किया जाता है, जिसके परिणामस्वरूप एक सिलिकॉन सामग्री परत होती है जो गीले नक़्क़ोंटों के लिए प्रतिरोधी होती है।इसका उपयोग उदाहरण के लिए MEWS प्रेशर सेंसर मैन्युफैक्चरिंग में किया गया है।

आइसोट्रोपिक नक़्क़ाशी =

नक़्क़ाशी सभी दिशाओं में एक ही गति से आगे बढ़ती है।एक मास्क में लंबे और संकीर्ण छेद सिलिकॉन में वी-आकार के खांचे का उत्पादन करेंगे।इन खांचे की सतह परमाणु रूप से चिकनी हो सकती है यदि ईच को सही ढंग से किया जाता है, तो आयाम और कोण बेहद सटीक होते हैं।

अनिसोट्रोपिक नक़्क़ाशी =

कुछ एकल क्रिस्टल सामग्री, जैसे कि सिलिकॉन, में सब्सट्रेट के क्रिस्टलोग्राफिक अभिविन्यास के आधार पर अलग -अलग नक़्क़ाशी दर होगी।इसे अनीसोट्रोपिक नक़्क़ाशी के रूप में जाना जाता है और सबसे आम उदाहरणों में से एक कोह (पोटेशियम हाइड्रॉक्साइड) में सिलिकॉन की नक़्क़ाशी है, जहां सी <111> विमान अन्य विमानों (क्रिस्टलोग्राफिक ओरिएंटेशन) की तुलना में लगभग 100 गुना धीमा करते हैं।इसलिए, ए (100) -si वेफर में एक आयताकार छेद को नक़्क़ाशी करते हुए 54.7 ° दीवारों के साथ एक पिरामिड के आकार के ईच गड्ढे में परिणाम होता है, बजाय आइसोट्रोपिक नक़्क़ाशी के साथ घुमावदार फुटपाथों के साथ एक छेद के।

एचएफ नक़्क़ाशी

हाइड्रोफ्लोरिक एसिड आमतौर पर सिलिकॉन डाइऑक्साइड के लिए एक जलीय नक़्क़ाशी के रूप में उपयोग किया जाता है (SiO
2
, SOI के लिए बॉक्स के रूप में भी जाना जाता है), आमतौर पर 49% केंद्रित रूप में, 5: 1, 10: 1 या 20: 1 BOE (बफर ऑक्साइड Etchant) या BHF (बफर HF)।वे पहले कांच की नक़्क़ाशी के लिए मध्ययुगीन समय में उपयोग किए गए थे।इसका उपयोग आईसी फैब्रिकेशन में गेट ऑक्साइड को पैटर्न करने के लिए किया गया था जब तक कि प्रक्रिया कदम को RIE द्वारा प्रतिस्थापित नहीं किया गया था।

हाइड्रोफ्लोरिक एसिड को क्लीनरूम में अधिक खतरनाक एसिड में से एक माना जाता है।यह संपर्क पर त्वचा में प्रवेश करता है और यह सीधे हड्डी तक फैलता है।इसलिए, क्षति तब तक महसूस नहीं की जाती है जब तक कि बहुत देर हो चुकी है।

इलेक्ट्रोकेमिकल नक़्क़ाशी =

सिलिकॉन के डोपेंट-चयनात्मक हटाने के लिए इलेक्ट्रोकेमिकल नक़्क़ाशी (ईसीई) स्वचालित करने और चुनिंदा नक़्क़ाशी को नियंत्रित करने के लिए एक सामान्य तरीका है।एक सक्रिय पी-एन डायोड जंक्शन की आवश्यकता होती है, और या तो डोपेंट का प्रकार ईच-प्रतिरोधी (ईच-स्टॉप) सामग्री हो सकता है।बोरॉन सबसे आम ईच-स्टॉप डोपेंट है।ऊपर वर्णित के रूप में गीले अनिसोट्रोपिक नक़्क़ाशी के साथ संयोजन में, ईसीई का उपयोग वाणिज्यिक पीज़ोरेसिस्टिव सिलिकॉन प्रेशर सेंसर में सिलिकॉन डायाफ्राम मोटाई को नियंत्रित करने के लिए सफलतापूर्वक किया गया है।चुनिंदा डोप किए गए क्षेत्रों को सिलिकॉन के आरोपण, प्रसार या एपिटैक्सियल बयान द्वारा या तो बनाया जा सकता है।

सूखी नक़्क़ाशी


वाष्प नक़्क़ाशी
xenon difluoride =

Xenon difluoride (XeF
2
) सिलिकॉन के लिए एक सूखा वाष्प चरण आइसोट्रोपिक ईच है जो मूल रूप से 1995 में कैलिफोर्निया विश्वविद्यालय, लॉस एंजिल्स में एमईएमएस के लिए लागू किया गया था।[21][22] मुख्य रूप से सिलिकॉन को कम करके धातु और ढांकता हुआ संरचनाओं को जारी करने के लिए उपयोग किया जाता है, XeF
2
गीले etchants के विपरीत एक स्थिर-मुक्त रिलीज का लाभ है।सिलिकॉन के लिए इसकी नक़्क़ाशी चयनात्मकता बहुत अधिक है, जिससे यह फोटोरिस्ट के साथ काम करने की अनुमति देता है, SiO
2
, सिलिकॉन नाइट्राइड, और मास्किंग के लिए विभिन्न धातुएं।सिलिकॉन के लिए इसकी प्रतिक्रिया प्लास्मलेस है, विशुद्ध रूप से रासायनिक और सहज है और अक्सर स्पंदित मोड में संचालित होती है।नक़्क़ाशी कार्रवाई के मॉडल उपलब्ध हैं,[23] और विश्वविद्यालय प्रयोगशालाएं और विभिन्न वाणिज्यिक उपकरण इस दृष्टिकोण का उपयोग करके समाधान प्रदान करते हैं।

प्लाज्मा नक़्क़ाशी

आधुनिक वीएलएसआई प्रक्रियाएं गीली नक़्क़ाशी से बचती हैं, और इसके बजाय प्लाज्मा नक़्क़ाशी का उपयोग करती हैं। प्लाज्मा Etchers प्लाज्मा के मापदंडों को समायोजित करके कई मोड में काम कर सकते हैं। साधारण प्लाज्मा नक़्क़ाशी 0.1 और 5 टोर के बीच संचालित होती है। (दबाव की यह इकाई, जिसे आमतौर पर वैक्यूम इंजीनियरिंग में उपयोग किया जाता है, लगभग 133.3 पास्कल्स के बराबर होता है।) प्लाज्मा ऊर्जावान मुक्त कणों का उत्पादन करता है, जो न्यूट्रल रूप से चार्ज होता है, जो वेफर की सतह पर प्रतिक्रिया करता है। चूंकि तटस्थ कण सभी कोणों से वेफर पर हमला करते हैं, इसलिए यह प्रक्रिया आइसोट्रोपिक है।

प्लाज्मा नक़्क़ाशी आइसोट्रोपिक हो सकती है, अर्थात, एक पैटर्न वाली सतह पर एक पार्श्व अंडरकट दर का प्रदर्शन लगभग अपनी नीचे की ओर की दर के समान है, या अनिसोट्रोपिक हो सकता है, अर्थात, इसकी नीचे की ओर की तुलना में एक छोटे पार्श्व अंडरकट दर का प्रदर्शन करना। इस तरह के अनिसोट्रॉपी को गहरी प्रतिक्रियाशील आयन नक़्क़ाशी में अधिकतम किया जाता है। प्लाज्मा नक़्क़ाशी के लिए अनिसोट्रॉपी शब्द का उपयोग अभिविन्यास-निर्भर नक़्क़ाशी का उल्लेख करते समय उसी शब्द के उपयोग के साथ नहीं किया जाना चाहिए।

प्लाज्मा के लिए स्रोत गैस में आमतौर पर क्लोरीन या फ्लोरीन से भरपूर छोटे अणु होते हैं। उदाहरण के लिए, कार्बन टेट्राक्लोराइड (CCl4) ETCHES सिलिकॉन और एल्यूमीनियम, और ट्राइफ्लोरोमेथेन ETCHES सिलिकॉन डाइऑक्साइड और सिलिकॉन नाइट्राइड।ऑक्सीजन युक्त एक प्लाज्मा का उपयोग फोटोरिसिस्ट को ऑक्सीकरण करने के लिए किया जाता है और इसे हटाने की सुविधा प्रदान करता है।

आयन मिलिंग, या स्पटर नक़्क़ाशी, कम दबाव का उपयोग करता है, अक्सर 10 = 4 टोर (10 एमपीए) के रूप में कम।यह नोबल गैसों के ऊर्जावान आयनों के साथ वेफर पर बमबारी करता है, अक्सर एआर+, जो गति को स्थानांतरित करके सब्सट्रेट से परमाणुओं को खटखटाते हैं।क्योंकि नक़्क़ाशी आयनों द्वारा किया जाता है, जो एक दिशा से लगभग वेफर के पास पहुंचता है, यह प्रक्रिया अत्यधिक अनिसोट्रोपिक है।दूसरी ओर, यह खराब चयनात्मकता प्रदर्शित करता है।प्रतिक्रियाशील-आयन नक़्क़ाशी (RIE) स्पटर और प्लाज्मा नक़्क़ाशी (10-3 और 10 and 1 टॉर के बीच) के बीच मध्यवर्ती स्थितियों के तहत संचालित होता है।डीप रिएक्टिव-आयन नक़्क़ाशी (DRIE) गहरी, संकीर्ण सुविधाओं का उत्पादन करने के लिए RIE तकनीक को संशोधित करता है।

स्पटरिंग


प्रतिक्रियाशील आयन नक़्क़ाशी (RIE) =

प्रतिक्रियाशील-आयन नक़्क़ाशी (RIE) में, सब्सट्रेट को एक रिएक्टर के अंदर रखा जाता है, और कई गैसों को पेश किया जाता है।एक प्लाज्मा को एक आरएफ पावर स्रोत का उपयोग करके गैस मिश्रण में मारा जाता है, जो गैस अणुओं को आयनों में तोड़ता है।आयनों में तेजी आती है, और प्रतिक्रिया होती है, सामग्री की सतह को नक़्क़ाशी की जा रही है, एक और गैसीय सामग्री बनाती है।इसे प्रतिक्रियाशील आयन नक़्क़ाशी के रासायनिक भाग के रूप में जाना जाता है।एक भौतिक हिस्सा भी है, जो स्पटरिंग डिपोजिशन प्रक्रिया के समान है।यदि आयनों में पर्याप्त ऊर्जा उच्च होती है, तो वे परमाणुओं को रासायनिक प्रतिक्रिया के बिना खोदने के लिए सामग्री से बाहर खटखटा सकते हैं।यह सूखी ईच प्रक्रियाओं को विकसित करने के लिए एक बहुत ही जटिल कार्य है जो रासायनिक और भौतिक नक़्क़ाशी को संतुलित करते हैं, क्योंकि समायोजित करने के लिए कई पैरामीटर हैं।संतुलन को बदलकर, नक़्क़ाशी के अनिसोट्रॉपी को प्रभावित करना संभव है, क्योंकि रासायनिक भाग आइसोट्रोपिक है और भौतिक भाग अत्यधिक अनिसोट्रोपिक संयोजन फुटपाथ बना सकता है जिसमें गोल से ऊर्ध्वाधर तक आकार होते हैं।

दीप रे (DRIE) RIE का एक विशेष उपवर्ग है जो लोकप्रियता में बढ़ रहा है।इस प्रक्रिया में, लगभग ऊर्ध्वाधर साइडवॉल के साथ सैकड़ों माइक्रोमीटर की ईच गहराई प्राप्त की जाती है।प्राथमिक तकनीक तथाकथित बॉश प्रक्रिया पर आधारित है,[24] जर्मन कंपनी रॉबर्ट बॉश के नाम पर नामित, जिसने मूल पेटेंट दायर किया, जहां रिएक्टर में दो अलग -अलग गैस रचनाएं वैकल्पिक हैं।वर्तमान में, ड्रि के दो रूपांतर हैं।पहली भिन्नता में तीन अलग -अलग चरण (मूल बॉश प्रक्रिया) शामिल हैं, जबकि दूसरी भिन्नता में केवल दो चरण होते हैं।

पहली भिन्नता में, ETCH चक्र इस प्रकार है:

(मैं)SF
6
आइसोट्रोपिक Etch;
(ii) C
4
F
8
पास होने;
(iii) SF
6
फर्श की सफाई के लिए अनीसोट्रोपिक ईच।

2 भिन्नता में, चरण (i) और (iii) संयुक्त हैं।

दोनों विविधताएं समान रूप से संचालित होती हैं।C
4
F
8
}} सब्सट्रेट की सतह पर एक बहुलक बनाता है, और दूसरी गैस रचना ( {रसायन | sf | 6}} और {रसायन | O | 2}}) सब्सट्रेट को खोदता है।पॉलिमर को तुरंत नक़्क़ाशी के भौतिक भाग से दूर कर दिया जाता है, लेकिन केवल क्षैतिज सतहों पर न कि फुटपाथों पर।चूंकि बहुलक केवल नक़्क़ाशी के रासायनिक भाग में बहुत धीरे -धीरे घुल जाता है, इसलिए यह फुटपाथों पर बनाता है और उन्हें नक़्क़ाशी से बचाता है।नतीजतन, 50 से 1 के पहलू अनुपात को प्राप्त किया जा सकता है।इस प्रक्रिया का उपयोग आसानी से एक सिलिकॉन सब्सट्रेट के माध्यम से पूरी तरह से ETCH के लिए किया जा सकता है, और ETCH दरें गीली नक़्क़ाशी की तुलना में 3-6 गुना अधिक हैं।

डाई तैयारी

एक सिलिकॉन वेफर पर बड़ी संख्या में एमईएमएस उपकरणों को तैयार करने के बाद, व्यक्तिगत मर जाता है, इसे अलग करना पड़ता है, जिसे अर्धचालक प्रौद्योगिकी में मरने की तैयारी कहा जाता है।कुछ अनुप्रयोगों के लिए, पृथक्करण वेफर मोटाई को कम करने के लिए वेफर बैकग्राइंडिंग से पहले होता है।वेफर डिसिंग तब या तो एक शीतलन तरल या एक सूखी लेजर प्रक्रिया का उपयोग करके देखकर किया जा सकता है जिसे चुपके से डाइसिंग कहा जाता है।

एमईएमएस विनिर्माण प्रौद्योगिकियां

थोक माइक्रोचिनिंग

बल्क माइक्रोमैचिनिंग सिलिकॉन-आधारित एमईएमएस का सबसे पुराना प्रतिमान है।एक सिलिकॉन वेफर की पूरी मोटाई का उपयोग सूक्ष्म-यांत्रिक संरचनाओं के निर्माण के लिए किया जाता है।[20] सिलिकॉन को विभिन्न नक़्क़ाशी प्रक्रियाओं का उपयोग करके मशीनीकृत किया जाता है।1980 और 90 के दशक में सेंसर उद्योग को बदलने वाले उच्च प्रदर्शन दबाव सेंसर और एक्सेलेरोमीटर को सक्षम करने में बल्क माइक्रोचिनिंग आवश्यक है।

सतह micromchining

सरफेस माइक्रोमैचिनिंग सब्सट्रेट की सतह पर जमा की गई परतों का उपयोग संरचनात्मक सामग्री के रूप में करता है, बजाय सब्सट्रेट का उपयोग करने के लिए।[25] 1980 के दशक के उत्तरार्ध में सर्फेस माइक्रोमैचिनिंग को प्लानर इंटीग्रेटेड सर्किट तकनीक के साथ सिलिकॉन की माइक्रोचिनिंग को अधिक संगत करने के लिए बनाया गया था, एक ही सिलिकॉन वेफर पर एमईएम और एकीकृत सर्किट के संयोजन के लक्ष्य के साथ।मूल सतह micromchining अवधारणा पतली पॉलीक्रिस्टलाइन सिलिकॉन परतों पर आधारित थी, जो चल यांत्रिक संरचनाओं के रूप में पैटर्न की गई थी और अंतर्निहित ऑक्साइड परत के बलि द्वारा जारी की गई थी।इंटरडिजिटल कंघी इलेक्ट्रोड का उपयोग इन-प्लेन बलों का उत्पादन करने और समाई आंदोलन का पता लगाने के लिए किया गया था।इस MEMS प्रतिमान ने ई.जी. के लिए कम लागत त्वरक के निर्माण को सक्षम किया है।ऑटोमोटिव एयर-बैग सिस्टम और अन्य अनुप्रयोग जहां कम प्रदर्शन और/या उच्च जी-रेंज पर्याप्त हैं।एनालॉग डिवाइसेस ने सतह micromachining के औद्योगिकीकरण का बीड़ा उठाया है और MEMS और एकीकृत सर्किट के सह-एकीकरण का एहसास किया है।

वेफर बॉन्डिंग

वेफर बॉन्डिंग में एक समग्र संरचना बनाने के लिए एक दूसरे के लिए दो या अधिक सब्सट्रेट (आमतौर पर एक ही व्यास) में शामिल होना शामिल है। कई प्रकार की वेफर बॉन्डिंग प्रक्रियाएं हैं जो माइक्रोसिस्टम्स फैब्रिकेशन में उपयोग की जाती हैं, जिनमें शामिल हैं: डायरेक्ट या फ्यूजन वेफर बॉन्डिंग, जिसमें दो या दो से अधिक वेफर्स एक साथ बंधे होते हैं जो आमतौर पर सिलिकॉन या कुछ अन्य अर्धचालक सामग्री से बने होते हैं; एनोडिक बॉन्डिंग जिसमें एक बोरान-डॉप्ड ग्लास वेफर एक अर्धचालक वेफर के लिए बंधुआ है, आमतौर पर सिलिकॉन; थर्मोकंप्रेशन बॉन्डिंग, जिसमें एक मध्यस्थ पतली-फिल्म सामग्री परत का उपयोग वेफर बॉन्डिंग की सुविधा के लिए किया जाता है; और यूटेक्टिक बॉन्डिंग, जिसमें सोने की एक पतली-फिल्म परत का उपयोग दो सिलिकॉन वेफर्स को बंधने के लिए किया जाता है। इन तरीकों में से प्रत्येक में परिस्थितियों के आधार पर विशिष्ट उपयोग होते हैं। अधिकांश वेफर बॉन्डिंग प्रक्रियाएं सफलतापूर्वक बॉन्डिंग के लिए तीन बुनियादी मानदंडों पर निर्भर करती हैं: बॉन्डेड होने वाले वेफर्स पर्याप्त रूप से सपाट हैं; वेफर सतह पर्याप्त रूप से चिकनी हैं; और वेफर सतह पर्याप्त रूप से साफ हैं। वेफर बॉन्डिंग के लिए सबसे कठोर मानदंड आमतौर पर प्रत्यक्ष संलयन वेफर बॉन्डिंग है क्योंकि एक या एक से अधिक छोटे कण भी बॉन्डिंग को असफल कर सकते हैं। इसकी तुलना में, वेफर बॉन्डिंग विधियाँ जो मध्यस्थ परतों का उपयोग करती हैं, वे अक्सर अधिक क्षमाशील होती हैं।

उच्च पहलू अनुपात (HAR) सिलिकॉन microchining

थोक और सतह सिलिकॉन माइक्रोचिनिंग दोनों का उपयोग सेंसर, इंक-जेट नलिका और अन्य उपकरणों के औद्योगिक उत्पादन में किया जाता है। लेकिन कई मामलों में इन दोनों के बीच अंतर कम हो गया है। एक नई नक़्क़ाशी तकनीक, गहरी प्रतिक्रियाशील-आयन नक़्क़ाशी, ने कंघी संरचनाओं के साथ बल्क माइक्रोचिनिंग के अच्छे प्रदर्शन को संयोजित करना संभव बना दिया है और सतह के माइक्रोमैचिनिंग के विशिष्ट-प्लेन ऑपरेशन के साथ। हालांकि यह सतह micromachining में आम है कि 2 & nbsp की सीमा में संरचनात्मक परत की मोटाई होती है; µm, हर सिलिकॉन माइक्रोचिनिंग में मोटाई 10 से 100 & nbsp; µm तक हो सकती है। आमतौर पर हर सिलिकॉन माइक्रोमैचिनिंग में उपयोग की जाने वाली सामग्री मोटी पॉलीक्रिस्टलाइन सिलिकॉन होती है, जिसे एपि-पॉली के रूप में जाना जाता है, और बंधुआ सिलिकॉन-ऑन-इन्सुलेटर (एसओआई) वेफर्स हालांकि थोक सिलिकॉन वेफर के लिए प्रक्रियाएं भी बनाई गई हैं (स्क्रीम)। ग्लास फ्रिट बॉन्डिंग, एनोडिक बॉन्डिंग या मिश्र धातु संबंध द्वारा एक दूसरे वेफर को बॉन्डिंग का उपयोग एमईएमएस संरचनाओं की सुरक्षा के लिए किया जाता है। एकीकृत सर्किट आमतौर पर एचईआर सिलिकॉन माइक्रोमाचिनिंग के साथ संयुक्त नहीं होते हैं।

थर्मल ऑक्सीकरण

माइक्रो और नैनो-स्केल घटकों के आकार को नियंत्रित करने के लिए, तथाकथित etchless प्रक्रियाओं का उपयोग अक्सर लागू किया जाता है।एमईएमएस निर्माण के लिए यह दृष्टिकोण ज्यादातर सिलिकॉन के ऑक्सीकरण पर निर्भर करता है, जैसा कि डील-ग्रोव मॉडल द्वारा वर्णित है।थर्मल ऑक्सीकरण प्रक्रियाओं का उपयोग अत्यधिक सटीक आयामी नियंत्रण के साथ विविध सिलिकॉन संरचनाओं का उत्पादन करने के लिए किया जाता है।ऑप्टिकल आवृत्ति कॉम्ब्स सहित उपकरण,[26] और सिलिकॉन मेम्स प्रेशर सेंसर,[27] एक या दो आयामों में ठीक-ठीक सिलिकॉन संरचनाओं के लिए थर्मल ऑक्सीकरण प्रक्रियाओं के उपयोग के माध्यम से उत्पादन किया गया है।थर्मल ऑक्सीकरण सिलिकॉन नैनोवायरों के निर्माण में विशेष मूल्य का है, जो कि मैकेनिकल और इलेक्ट्रिकल दोनों घटकों के रूप में एमईएमएस सिस्टम में व्यापक रूप से नियोजित हैं।

माइक्रोइलेक्ट्रोमेकेनिकल सिस्टम चिप, जिसे कभी-कभी लैब-ऑन-ए-चिप कहा जाता है


अनुप्रयोग

सिनेमा प्रक्षेपण के लिए एक टेक्सास इंस्ट्रूमेंट्स DMD चिप
एक ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोप के अंदर एमईएमएस का उपयोग करके एक सोने की पट्टी (चौड़ाई ~ 1 माइक्रोन) के यांत्रिक गुणों को मापना।[28]

एमईएमएस के कुछ सामान्य वाणिज्यिक अनुप्रयोगों में शामिल हैं:

  • इंकजेट प्रिंटर, जो कागज पर स्याही जमा करने के लिए पीज़ोइलेक्ट्रिक्स या थर्मल बबल इजेक्शन का उपयोग करते हैं।
  • एयरबैग परिनियोजन और इलेक्ट्रॉनिक स्थिरता नियंत्रण सहित बड़ी संख्या में उद्देश्यों के लिए आधुनिक कारों में एक्सेलेरोमीटर।
  • जड़त्वीय माप इकाइयाँ (IMUS):
    • मेम्स एक्सेलेरोमीटर
    • रिमोट नियंत्रित, या स्वायत्त, हेलीकॉप्टरों, विमानों और मल्टीरोटर्स (ड्रोन के रूप में भी जाना जाता है) में मेम्स गायरोस्कोप, रोल, पिच और यव की उड़ान विशेषताओं को स्वचालित रूप से संवेदन और संतुलन के लिए उपयोग किया जाता है।
    • MEMS मैग्नेटिक फील्ड सेंसर (मैग्नेटोमीटर) को दिशात्मक हेडिंग प्रदान करने के लिए ऐसे उपकरणों में भी शामिल किया जा सकता है।
    • आधुनिक कारों, हवाई जहाजों, पनडुब्बियों और अन्य वाहनों के एमईएमएस जड़त्वीय नेविगेशन सिस्टम (INSS) yaw, पिच और रोल का पता लगाने के लिए;उदाहरण के लिए, एक हवाई जहाज का ऑटोपायलट।[29]
  • उपभोक्ता इलेक्ट्रॉनिक्स उपकरणों जैसे गेम कंट्रोलर (निंटेंडो WII), व्यक्तिगत मीडिया प्लेयर / सेल फोन (लगभग सभी स्मार्टफोन, विभिन्न एचटीसी पीडीए मॉडल) जैसे उपभोक्ता इलेक्ट्रॉनिक्स उपकरणों में एक्सेलेरोमीटर[30] और कई डिजिटल कैमरे (विभिन्न कैनन डिजिटल IXUS मॉडल)।नुकसान और डेटा हानि को रोकने के लिए, फ्री-फॉल का पता चलने पर हार्ड डिस्क हेड को पार्क करने के लिए पीसी में उपयोग किया जाता है।
  • मेम्स बैरोमीटर
  • पोर्टेबल उपकरणों में MEMS माइक्रोफोन, जैसे, मोबाइल फोन, हेड सेट और लैपटॉप।स्मार्ट माइक्रोफोन के लिए बाजार में स्मार्टफोन, पहनने योग्य डिवाइस, स्मार्ट होम और ऑटोमोटिव एप्लिकेशन शामिल हैं।[31]
  • वास्तविक समय की घड़ियों में सटीक तापमान-मुआवजा प्रतिध्वनि।[32]
  • सिलिकॉन प्रेशर सेंसर जैसे, कार टायर प्रेशर सेंसर, और डिस्पोजेबल ब्लड प्रेशर सेंसर
  • उदाहरण के लिए, डिजिटल माइक्रोइरर डिवाइस (DMD) चिप DLP तकनीक पर आधारित एक प्रोजेक्टर में, जिसमें कई सौ हजार माइक्रोमिरर्स या सिंगल माइक्रो-स्कैनिंग-मिरर्स के साथ एक सतह है जिसे माइक्रोस्कैनर भी कहा जाता है
  • ऑप्टिकल स्विचिंग तकनीक, जिसका उपयोग प्रौद्योगिकी और डेटा संचार के लिए संरेखण के लिए किया जाता है
  • लैब-ऑन-ए-चिप, बायोसेंसर, केमोसेंसर के साथ-साथ चिकित्सा उपकरणों के एम्बेडेड घटक सहित चिकित्सा और स्वास्थ्य संबंधी प्रौद्योगिकियों में बायो-एमईएमएस अनुप्रयोग उदा।स्टेंट।[33]
  • उपभोक्ता इलेक्ट्रॉनिक्स में इंटरफेरोमेट्रिक मॉड्यूलेटर डिस्प्ले (IMOD) एप्लिकेशन (मुख्य रूप से मोबाइल उपकरणों के लिए डिस्प्ले), इंटरफेरोमेट्रिक मॉड्यूलेशन बनाने के लिए उपयोग किया जाता है - मिरासोल डिस्प्ले में पाया जाने वाला चिंतनशील प्रदर्शन तकनीक
  • द्रव त्वरण, जैसे कि माइक्रो-कूलिंग के लिए
  • पीज़ोइलेक्ट्रिक सहित माइक्रो-स्केल ऊर्जा कटाई,[34] इलेक्ट्रोस्टैटिक और इलेक्ट्रोमैग्नेटिक माइक्रो हार्वेस्टर।
  • माइक्रोमैचाइंड अल्ट्रासाउंड ट्रांसड्यूसर।[35][36]
  • एमईएमएस-आधारित लाउडस्पीकर इन-ईयर हेडफ़ोन और हियरिंग एड्स जैसे अनुप्रयोगों पर ध्यान केंद्रित करते हैं
  • मेम्स ऑसिलेटर
  • एमईएमएस-आधारित स्कैनिंग जांच माइक्रोस्कोप परमाणु बल माइक्रोस्कोप सहित

उद्योग संरचना

माइक्रो-इलेक्ट्रोमेकेनिकल सिस्टम के लिए वैश्विक बाजार, जिसमें ऑटोमोबाइल एयरबैग सिस्टम, डिस्प्ले सिस्टम और इंकजेट कारतूस जैसे उत्पाद शामिल हैं, जो 2006 में वैश्विक एमईएमएस/माइक्रोसिस्टम्स मार्केट्स और अवसरों के अनुसार 2006 में $ 40 बिलियन का कुल था, सेमी और योल डेवलपमेंट से एक शोध रिपोर्ट और पूर्वानुमानित है और इसका पूर्वानुमान है।2011 तक $ 72 बिलियन तक पहुंच गया।[37] मजबूत एमईएमएस कार्यक्रमों वाली कंपनियां कई आकारों में आती हैं।बड़ी फर्म उच्च मात्रा के सस्ते घटकों या पैक किए गए समाधानों जैसे कि ऑटोमोबाइल, बायोमेडिकल और इलेक्ट्रॉनिक्स के लिए पैक किए गए समाधानों का निर्माण करने में विशेषज्ञ हैं।छोटी फर्मों ने अभिनव समाधानों में मूल्य प्रदान किया और उच्च बिक्री मार्जिन के साथ कस्टम निर्माण के खर्च को अवशोषित किया।दोनों बड़ी और छोटी कंपनियां आम तौर पर नई एमईएमएस तकनीक का पता लगाने के लिए आरएंडडी में निवेश करती हैं।

MEMS उपकरणों के निर्माण के लिए उपयोग किए जाने वाले सामग्रियों और उपकरणों के लिए बाजार 2006 में दुनिया भर में $ 1 बिलियन में सबसे ऊपर है। सामग्री की मांग सब्सट्रेट द्वारा संचालित होती है, जिससे 70 प्रतिशत से अधिक बाजार, पैकेजिंग कोटिंग्स और रासायनिक यांत्रिक प्लानराइजेशन (CMP) का उपयोग बढ़ जाता है।जबकि एमईएमएस विनिर्माण उपयोग किए गए सेमीकंडक्टर उपकरणों पर हावी होना जारी है, 200 & एनबीएसपी के लिए एक माइग्रेशन है; एमएम लाइनों और नए उपकरणों का चयन करें, जिसमें कुछ एमईएमएस अनुप्रयोगों के लिए ईच और बॉन्डिंग शामिल हैं।

यह भी देखें

  • कैंटिलीवर - मेम के सबसे सामान्य रूपों में से एक
  • इलेक्ट्रोस्टैटिक मोटर्स का उपयोग किया जाता है जहां कॉइल को गढ़ना मुश्किल होता है
  • विद्युत -यांत्रिक मॉडलिंग
  • केल्विन जांच बल माइक्रोस्कोप
  • मेम्स सेंसर पीढ़ी
  • MEMS थर्मल एक्ट्यूएटर, थर्मल विस्तार द्वारा निर्मित MEMS एक्टिवेशन
  • माइक्रोप्टोइलेक्ट्रोमैकेनिकल सिस्टम (MOEMS), ऑप्टिकल तत्वों सहित MEMS
  • माइक्रोप्टोमेकेनिकल सिस्टम (एमओएम), एमईएमएस का एक वर्ग जो ऑप्टिकल और मैकेनिकल का उपयोग करता है, लेकिन इलेक्ट्रॉनिक घटक नहीं है
  • तंत्रिका धूल - मिलीमीटर आकार के उपकरण वायरलेस रूप से संचालित तंत्रिका सेंसर के रूप में संचालित होते हैं
  • Photoelectrowetting, MEMS ऑप्टिकल एक्टिवेशन फोटो-सेंसिटिव वेटिंग का उपयोग करके
  • माइक्रोपॉवर, हाइड्रोजन जनरेटर, गैस टर्बाइन, और इलेक्ट्रिकल जनरेटर जो etched सिलिकॉन से बने होते हैं
  • मिलिपेड मेमोरी, प्रति वर्ग इंच से अधिक के गैर-वाष्पशील डेटा भंडारण के लिए एक एमईएमएस तकनीक
  • नैनोइलेक्ट्रोमैकेनिकल सिस्टम मेम के समान हैं लेकिन छोटे
  • स्क्रैच ड्राइव एक्ट्यूएटर, एमईएमएस एक्टिवेशन बार -बार लागू वोल्टेज अंतर का उपयोग करके


संदर्भ

  1. Gabriel K, Jarvis J, Trimmer W (1988). Small Machines, Large Opportunities: A Report on the Emerging Field of Microdynamics: Report of the Workshop on Microelectromechanical Systems Research. National Science Foundation (sponsor). AT&T Bell Laboratories.
  2. Waldner JB (2008). Nanocomputers and Swarm Intelligence. London: ISTE John Wiley & Sons. p. 205. ISBN 9781848210097.
  3. Angell JB, Terry SC, Barth PW (1983). "Silicon Micromechanical Devices". Sci. Am. 248 (4): 44–55. Bibcode:1983SciAm.248d..44A. doi:10.1038/scientificamerican0483-44.
  4. Rai-Choudhury, P. (2000). MEMS and MOEMS Technology and Applications. SPIE Press. pp. ix, 3. ISBN 9780819437167.
  5. Nathanson HC, Wickstrom RA (1965). "A Resonant-Gate Silicon Surface Transistor with High-Q Band-Pass Properties". Appl. Phys. Lett. 7 (4): 84–86. Bibcode:1965ApPhL...7...84N. doi:10.1063/1.1754323.
  6. US patent 3614677A, Wilfinger RJ, "Electromechanical monolithic resonator", issued Oct 1971, assigned to International Business Machines Corp 
  7. Wilfinger RJ, Bardell PH, Chhabra DS (1968). "The Resonistor: A Frequency Selective Device Utilizing the Mechanical Resonance of a Silicon Substrate". IBM J. Res. Dev. 12 (1): 113–8. doi:10.1147/rd.121.0113.
  8. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874.
  9. S.C. Jacobsen (PI) and J.E. Wood (Co-PI) introduced the term “MEMS” by way of a proposal to DARPA (15 July 1986), titled "Micro Electro-Mechanical Systems (MEMS)", granted to the University of Utah.  The term “MEMS” was presented by way of an invited talk by S.C. Jacobsen, titled “Micro Electro-Mechanical Systems (MEMS)”, at the IEEE Micro Robots and Teleoperators Workshop (Workshop co-Chairs were Wm. Trimmer and K. Gabriel), Session III (Session Chair was J. Wood), Micro Electro-Mechanical Systems: Design, Performance and Fabrication, Hyannis, MA Nov. 9-11, 1987.  The term “MEMS” was published by way of a submitted paper by J.E. Wood, S.C. Jacobsen, and K.W. Grace, titled “SCOFSS: A Small Cantilevered Optical Fiber Servo System”, in the IEEE Proceedings Micro Robots and Teleoperators Workshop (Workshop co-Chairs were Wm. Trimmer and K. Gabriel), Session IV (Session Chair was J. Wood), Micro Electro-Mechanical Systems: Design, Performance and Fabrication, Hyannis, MA Nov. 9-11, 1987.  IEEE Catalog no. 87TH0204-8, Library of Congress no. 87-82657.  Reprinted in "Micromechanics and MEMS: Classic and Seminal Papers to 1990" (ed. Wm. S. Trimmer, ISBN 0-7803-1085-3), pgs. 231-236.  
  10. Beliveau, A.; Spencer, G.T.; Thomas, K.A.; Roberson, S.L. (1999-12-01). "Evaluation of MEMS capacitive accelerometers". IEEE Design & Test of Computers. 16 (4): 48–56. doi:10.1109/54.808209.
  11. "Introduction to MEMS and RF-MEMS: From the early days of microsystems to modern RF-MEMS passives". iop.org. 2017-11-01. Retrieved 2019-08-06.
  12. "MEMS technology is transforming high-density switch matrices". evaluationengineering.com. 2019-06-24. Retrieved 2019-08-06.
  13. Ghodssi R, Lin P (2011). MEMS Materials and Processes Handbook. Berlin: Springer. ISBN 9780387473161.
  14. 14.0 14.1 M. Birkholz; K.-E. Ehwald; T. Basmer; et al. (2013). "Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)". J. Appl. Phys. 113 (24): 244904–244904–8. Bibcode:2013JAP...113x4904B. doi:10.1063/1.4811351. PMC 3977869. PMID 25332510.
  15. Polster T, Hoffmann M (2009). "Aluminium nitride based 3D, piezoelectric, tactile sensors". Procedia Chemistry. 1 (1): 144–7. doi:10.1016/j.proche.2009.07.036.
  16. McCord MA, Rooks MJ (1997). "Electron Beam Lithography". In Choudhury PR (ed.). SPIE Handbook of Microlithography, Micromachining and Microfabrication. Vol. 1. London: SPIE. doi:10.1117/3.2265070.ch2. ISBN 9780819497864.
  17. "Diamond Patterning Technique Could Transform Photonics". MIT Technology Review (in English). Retrieved 2022-01-08.
  18. Madou MJ (2011). From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications. Fundamentals of Microfabrication and Nanotechnology. Vol. 3. Boca Raton: CRC Press. p. 252. ISBN 9781439895245.
  19. Williams KR, Muller RS (1996). "Etch rates for micromachining processing" (PDF). Journal of Microelectromechanical Systems. 5 (4): 256–269. CiteSeerX 10.1.1.120.3130. doi:10.1109/84.546406.
  20. 20.0 20.1 Kovacs GT, Maluf NI, Petersen KE (1998). "Bulk micromachining of silicon" (PDF). Proc. IEEE. 86 (8): 1536–1551. doi:10.1109/5.704259. Archived from the original (PDF) on 27 Oct 2017.
  21. Chang FI, Yeh R, Lin G, et al. (1995). "Gas-phase silicon micromachining with xenon difluoride". In Bailey W, Motamedi ME, Luo F (eds.). Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications. Vol. 2641. Austin, TX: SPIE. p. 117. doi:10.1117/12.220933. S2CID 39522253.
  22. Chang, Floy I-Jung (1995). Xenon difluoride etching of silicon for MEMS (M.S.). Los Angeles: University of California. OCLC 34531873.
  23. Brazzle JD, Dokmeci MR, Mastrangelo CH (2004). "Modeling and characterization of sacrificial polysilicon etching using vapor-phase xenon difluoride". 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. IEEE. pp. 737–740. doi:10.1109/MEMS.2004.1290690. ISBN 9780780382657. S2CID 40417914.
  24. Laermer F, Urban A (2005). "Milestones in deep reactive ion etching". The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. Vol. 2. IEEE. pp. 1118–1121. doi:10.1109/SENSOR.2005.1497272. ISBN 9780780389946. S2CID 28068644.
  25. Bustillo JM, Howe RT, Muller RS (1998). "Surface Micromachining for Microelectromechanical Systems" (PDF). Proc. IEEE. 86 (8): 1552–1574. CiteSeerX 10.1.1.120.4059. doi:10.1109/5.704260.
  26. Silicon-chip mid-infrared frequency comb generation Nature, 2015.
  27. Singh, Kulwant; Joyce, Robin; Varghese, Soney; Akhtar, J. (2015). "Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor". Sensors and Actuators A: Physical. 223: 151–158. doi:10.1016/j.sna.2014.12.033.
  28. Hosseinian E, Pierron ON (2013). "Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films". Nanoscale. 5 (24): 12532–41. Bibcode:2013Nanos...512532H. doi:10.1039/C3NR04035F. PMID 24173603. S2CID 17970529.
  29. Acar C, Shkel AM (2008). MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness. Springer Science. p. 111. ISBN 9780387095363.
  30. Johnson RC (2007). "There's more to MEMS than meets the iPhone". EE Times. Retrieved 14 Jun 2019.
  31. Clarke P (2016). "Smart MEMS microphones market emerges". EE News Analog. Retrieved 14 Jun 2019.
  32. "DS3231m RTC" (PDF). DS3231m RTC Datasheet. Maxim Inc. 2015. Retrieved 26 Mar 2019.
  33. Louizos LA, Athanasopoulos PG, Varty K (2012). "Microelectromechanical Systems and Nanotechnology. A Platform for the Next Stent Technological Era". Vasc. Endovasc. Surg. 46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818. S2CID 27563384.
  34. Hajati A, Kim SG (2011). "Ultra-wide bandwidth piezoelectric energy harvesting". Appl. Phys. Lett. 99 (8): 083105. Bibcode:2011ApPhL..99h3105H. doi:10.1063/1.3629551. hdl:1721.1/75264.
  35. Hajati A (2012). "Three-dimensional micro electromechanical system piezoelectric ultrasound transducer". Appl. Phys. Lett. 101 (25): 253101. Bibcode:2012ApPhL.101y3101H. doi:10.1063/1.4772469. S2CID 46718269.
  36. Hajati A (2013). "Monolithic ultrasonic integrated circuits based on micromachined semi-ellipsoidal piezoelectric domes". Appl. Phys. Lett. 103 (20): 202906. Bibcode:2013ApPhL.103t2906H. doi:10.1063/1.4831988.
  37. "Worldwide MEMS Systems Market Forecasted to Reach $72 Billion by 2011". AZoNano. 2007. Retrieved 5 Oct 2015.


अग्रिम पठन


बाहरी संबंध



] ]