हाइपरडायमेंशनल कंप्यूटिंग: Difference between revisions
(Created page with "हाइपरडायमेंशनल कंप्यूटिंग (एचडीसी) गणना के लिए एक दृष्टिकोण है, वि...") |
|||
Line 6: | Line 6: | ||
डेटा को एक एन्कोडिंग फ़ंक्शन के तहत इनपुट स्पेस से विरल एचडी स्पेस में मैप किया जाता है φ: शोर/दूषित एचडी प्रस्तुतिकरण अभी भी सीखने, वर्गीकरण आदि के लिए इनपुट के रूप में काम कर सकते हैं। इनपुट डेटा को पुनर्प्राप्त करने के लिए उन्हें डिकोड भी किया जा सकता है। H आमतौर पर सीमा-सीमित पूर्णांकों (-v-v) तक ही सीमित है<ref name=":1">{{Cite journal |last1=Thomas |first1=Anthony |last2=Dasgupta |first2=Sanjoy |last3=Rosing |first3=Tajana |date=2021-10-05 |title=हाइपरडायमेंशनल कंप्यूटिंग पर एक सैद्धांतिक परिप्रेक्ष्य|url=https://redwood.berkeley.edu/wp-content/uploads/2021/08/Thomas2021.pdf |journal=Journal of Artificial Intelligence Research |language=en |volume=72 |pages=215–249 |doi=10.1613/jair.1.12664 |s2cid=239007517 |issn=1076-9757}}</ref> | डेटा को एक एन्कोडिंग फ़ंक्शन के तहत इनपुट स्पेस से विरल एचडी स्पेस में मैप किया जाता है φ: शोर/दूषित एचडी प्रस्तुतिकरण अभी भी सीखने, वर्गीकरण आदि के लिए इनपुट के रूप में काम कर सकते हैं। इनपुट डेटा को पुनर्प्राप्त करने के लिए उन्हें डिकोड भी किया जा सकता है। H आमतौर पर सीमा-सीमित पूर्णांकों (-v-v) तक ही सीमित है<ref name=":1">{{Cite journal |last1=Thomas |first1=Anthony |last2=Dasgupta |first2=Sanjoy |last3=Rosing |first3=Tajana |date=2021-10-05 |title=हाइपरडायमेंशनल कंप्यूटिंग पर एक सैद्धांतिक परिप्रेक्ष्य|url=https://redwood.berkeley.edu/wp-content/uploads/2021/08/Thomas2021.pdf |journal=Journal of Artificial Intelligence Research |language=en |volume=72 |pages=215–249 |doi=10.1613/jair.1.12664 |s2cid=239007517 |issn=1076-9757}}</ref> | ||
यह [[ड्रोसोफिला]] घ्राण प्रणाली द्वारा संचालित सीखने की प्रक्रिया के अनुरूप है। इनपुट गंध रिसेप्टर न्यूरॉन प्रकारों के अनुरूप लगभग 50-आयामी वेक्टर है। एचडी प्रतिनिधित्व ~2,000-आयामों का उपयोग करता है।<ref name=":1" /> | यह [[ड्रोसोफिला]] घ्राण प्रणाली द्वारा संचालित सीखने की प्रक्रिया के अनुरूप है। इनपुट गंध रिसेप्टर न्यूरॉन प्रकारों के अनुरूप लगभग 50-आयामी वेक्टर है। एचडी प्रतिनिधित्व ~2,000-आयामों का उपयोग करता है।<ref name=":1" /> | ||
==पारदर्शिता == | ==पारदर्शिता == | ||
[[कृत्रिम तंत्रिका नेटवर्क]] के विपरीत | एचडीसी बीजगणित से यह ज्ञात होता है कि [[कृत्रिम तंत्रिका नेटवर्क|कृत्रिम न्यूरल नेटवर्क]] के विपरीत सिस्टम कैसे और क्यों निर्णय लेता है। भौतिक जगत की वस्तुओं को बीजगणित द्वारा संसाधित करने के लिए हाइपरवेक्टर में मैप किया जा सकता है।<ref name=":0" /> | ||
== प्रदर्शन == | == प्रदर्शन == | ||
एचडीसी "इन-मेमोरी कंप्यूटिंग सिस्टम" के लिए उपयुक्त है, जो डेटा ट्रांसफर देरी से बचने के लिए डेटा को एक चिप पर गणना और संग्रहीत करता है। एनालॉग डिवाइस कम वोल्टेज पर काम करते हैं। वे ऊर्जा-कुशल हैं, लेकिन त्रुटि उत्पन्न करने वाले शोर से ग्रस्त हैं। एचडीसी ऐसी त्रुटियों को सहन कर सकता है।<ref name=":0" /> | एचडीसी "इन-मेमोरी कंप्यूटिंग सिस्टम" के लिए उपयुक्त है, जो डेटा ट्रांसफर देरी से बचने के लिए डेटा को एक चिप पर गणना और संग्रहीत करता है। एनालॉग डिवाइस कम वोल्टेज पर काम करते हैं। वे ऊर्जा-कुशल हैं, लेकिन त्रुटि उत्पन्न करने वाले शोर से ग्रस्त हैं। एचडीसी ऐसी त्रुटियों को सहन कर सकता है।<ref name=":0" /> | ||
Line 18: | Line 14: | ||
गणना करने के लिए नैनोस्केल [[ यादगार ]] उपकरणों का उपयोग किया जा सकता है। एक इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग सिस्टम परिधीय डिजिटल [[सीएमओएस]] सर्किट के साथ दो मेमरिस्टिव क्रॉसबार इंजनों पर संचालन लागू कर सकता है। एनालॉग इन-मेमोरी कंप्यूटिंग करने वाले 760,000 चरण-परिवर्तन मेमोरी उपकरणों का उपयोग करने वाले प्रयोगों ने सॉफ्टवेयर कार्यान्वयन के बराबर सटीकता हासिल की।<ref name=":2">{{Cite journal |last1=Karunaratne |first1=Geethan |last2=Le Gallo |first2=Manuel |last3=Cherubini |first3=Giovanni |last4=Benini |first4=Luca |last5=Rahimi |first5=Abbas |last6=Sebastian |first6=Abu |date=June 2020 |title=इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग|url=https://www.nature.com/articles/s41928-020-0410-3 |journal=Nature Electronics |language=en |volume=3 |issue=6 |pages=327–337 |doi=10.1038/s41928-020-0410-3 |arxiv=1906.01548 |s2cid=174797921 |issn=2520-1131}}</ref> | गणना करने के लिए नैनोस्केल [[ यादगार ]] उपकरणों का उपयोग किया जा सकता है। एक इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग सिस्टम परिधीय डिजिटल [[सीएमओएस]] सर्किट के साथ दो मेमरिस्टिव क्रॉसबार इंजनों पर संचालन लागू कर सकता है। एनालॉग इन-मेमोरी कंप्यूटिंग करने वाले 760,000 चरण-परिवर्तन मेमोरी उपकरणों का उपयोग करने वाले प्रयोगों ने सॉफ्टवेयर कार्यान्वयन के बराबर सटीकता हासिल की।<ref name=":2">{{Cite journal |last1=Karunaratne |first1=Geethan |last2=Le Gallo |first2=Manuel |last3=Cherubini |first3=Giovanni |last4=Benini |first4=Luca |last5=Rahimi |first5=Abbas |last6=Sebastian |first6=Abu |date=June 2020 |title=इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग|url=https://www.nature.com/articles/s41928-020-0410-3 |journal=Nature Electronics |language=en |volume=3 |issue=6 |pages=327–337 |doi=10.1038/s41928-020-0410-3 |arxiv=1906.01548 |s2cid=174797921 |issn=2520-1131}}</ref> | ||
==त्रुटियाँ== | ==त्रुटियाँ== | ||
HDC त्रुटि-सुधार तंत्र द्वारा चूक गई व्यक्तिगत बिट त्रुटि (0 से 1 या इसके विपरीत) जैसी त्रुटियों के लिए मजबूत है। ऐसे त्रुटि-सुधार तंत्र को समाप्त करने से गणना लागत में 25% तक की बचत हो सकती है। यह संभव है क्योंकि ऐसी त्रुटियाँ परिणाम को सही वेक्टर के करीब छोड़ देती हैं। वैक्टर का उपयोग करके तर्क से समझौता नहीं किया जाता है। एचडीसी पारंपरिक कृत्रिम तंत्रिका नेटवर्क की तुलना में कम से कम 10 गुना अधिक त्रुटि सहिष्णु है, जो पहले से ही पारंपरिक कंप्यूटिंग की तुलना में अधिक सहनशील है।<ref name=":0" /> | HDC त्रुटि-सुधार तंत्र द्वारा चूक गई व्यक्तिगत बिट त्रुटि (0 से 1 या इसके विपरीत) जैसी त्रुटियों के लिए मजबूत है। ऐसे त्रुटि-सुधार तंत्र को समाप्त करने से गणना लागत में 25% तक की बचत हो सकती है। यह संभव है क्योंकि ऐसी त्रुटियाँ परिणाम को सही वेक्टर के करीब छोड़ देती हैं। वैक्टर का उपयोग करके तर्क से समझौता नहीं किया जाता है। एचडीसी पारंपरिक कृत्रिम तंत्रिका नेटवर्क की तुलना में कम से कम 10 गुना अधिक त्रुटि सहिष्णु है, जो पहले से ही पारंपरिक कंप्यूटिंग की तुलना में अधिक सहनशील है।<ref name=":0" /> | ||
== उदाहरण == | == उदाहरण == | ||
एक सरल उदाहरण काले वृत्तों और सफेद वर्गों वाली छवियों पर विचार करता है। हाइपरवेक्टर आकार और रंग चर का प्रतिनिधित्व कर सकते हैं और संबंधित मान रख सकते हैं: वृत्त, वर्ग, काला और सफेद। बाउंड हाइपरवेक्टर ब्लैक और सर्कल आदि जोड़ियों को पकड़ सकते हैं।<ref name=":0" /> | एक सरल उदाहरण काले वृत्तों और सफेद वर्गों वाली छवियों पर विचार करता है। हाइपरवेक्टर आकार और रंग चर का प्रतिनिधित्व कर सकते हैं और संबंधित मान रख सकते हैं: वृत्त, वर्ग, काला और सफेद। बाउंड हाइपरवेक्टर ब्लैक और सर्कल आदि जोड़ियों को पकड़ सकते हैं।<ref name=":0" /> | ||
== ऑर्थोगोनैलिटी == | == ऑर्थोगोनैलिटी == | ||
उच्च-आयामी स्थान कई परस्पर [[ ओर्थोगोनल ]] वैक्टर की अनुमति देता है। हालाँकि, यदि इसके बजाय वैक्टर को लगभग ऑर्थोगोनल होने की अनुमति दी जाती है, तो उच्च-आयामी अंतरिक्ष में अलग-अलग वैक्टर की संख्या बहुत बड़ी है।<ref name=":0" /> | उच्च-आयामी स्थान कई परस्पर [[ ओर्थोगोनल ]] वैक्टर की अनुमति देता है। हालाँकि, यदि इसके बजाय वैक्टर को लगभग ऑर्थोगोनल होने की अनुमति दी जाती है, तो उच्च-आयामी अंतरिक्ष में अलग-अलग वैक्टर की संख्या बहुत बड़ी है।<ref name=":0" /> | ||
एचडीसी वितरित अभ्यावेदन की अवधारणा का उपयोग करता है, जिसमें एक वस्तु/अवलोकन को एक स्थिरांक के बजाय कई आयामों में मूल्यों के एक पैटर्न द्वारा दर्शाया जाता है।<ref name=":1" /> | एचडीसी वितरित अभ्यावेदन की अवधारणा का उपयोग करता है, जिसमें एक वस्तु/अवलोकन को एक स्थिरांक के बजाय कई आयामों में मूल्यों के एक पैटर्न द्वारा दर्शाया जाता है।<ref name=":1" /> | ||
==संचालन == | ==संचालन == | ||
एचडीसी अच्छी तरह से परिभाषित [[ सदिश स्थल ]] ऑपरेशंस का उपयोग करके हाइपरवेक्टर को नए हाइपरवेक्टर में जोड़ सकता है। | एचडीसी अच्छी तरह से परिभाषित [[ सदिश स्थल ]] ऑपरेशंस का उपयोग करके हाइपरवेक्टर को नए हाइपरवेक्टर में जोड़ सकता है। | ||
Line 46: | Line 34: | ||
बंडलिंग H में तत्वों के एक सेट को फ़ंक्शन ⊕ : H ×H → H के रूप में जोड़ती है। इनपुट H में दो बिंदु है और आउटपुट एक तीसरा बिंदु है जो दोनों के समान है।<ref name=":1" /> | बंडलिंग H में तत्वों के एक सेट को फ़ंक्शन ⊕ : H ×H → H के रूप में जोड़ती है। इनपुट H में दो बिंदु है और आउटपुट एक तीसरा बिंदु है जो दोनों के समान है।<ref name=":1" /> | ||
== इतिहास == | == इतिहास == | ||
वेक्टर प्रतीकात्मक आर्किटेक्चर (वीएसए) ने संबंध स्थापित करने जैसे संचालन का समर्थन करने के लिए उच्च-आयामी प्रतीक प्रतिनिधित्व के लिए एक व्यवस्थित दृष्टिकोण प्रदान किया है। प्रारंभिक उदाहरणों में होलोग्राफिक कम प्रतिनिधित्व, बाइनरी स्पैटर कोड और एडिटिव शब्दों के मैट्रिक्स बाइंडिंग शामिल हैं। एचडी कंप्यूटिंग ने इन मॉडलों को उन्नत किया, विशेष रूप से हार्डवेयर दक्षता पर जोर दिया।<ref name=":1" /> | वेक्टर प्रतीकात्मक आर्किटेक्चर (वीएसए) ने संबंध स्थापित करने जैसे संचालन का समर्थन करने के लिए उच्च-आयामी प्रतीक प्रतिनिधित्व के लिए एक व्यवस्थित दृष्टिकोण प्रदान किया है। प्रारंभिक उदाहरणों में होलोग्राफिक कम प्रतिनिधित्व, बाइनरी स्पैटर कोड और एडिटिव शब्दों के मैट्रिक्स बाइंडिंग शामिल हैं। एचडी कंप्यूटिंग ने इन मॉडलों को उन्नत किया, विशेष रूप से हार्डवेयर दक्षता पर जोर दिया।<ref name=":1" /> | ||
Line 54: | Line 40: | ||
2023 में, अब्बास रहीमी और अन्य ने रेवेन के प्रोग्रेसिव मैट्रिसेस|रेवेन के प्रोग्रेसिव मैट्रिसेस को हल करने के लिए तंत्रिका नेटवर्क के साथ एचडीसी का उपयोग किया।<ref name=":0" /> | 2023 में, अब्बास रहीमी और अन्य ने रेवेन के प्रोग्रेसिव मैट्रिसेस|रेवेन के प्रोग्रेसिव मैट्रिसेस को हल करने के लिए तंत्रिका नेटवर्क के साथ एचडीसी का उपयोग किया।<ref name=":0" /> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
Line 68: | Line 52: | ||
दी गई क्वेरी x<sub>q</sub> ∈ X के साथ सबसे समान प्रोटोटाइप पाया जा सकता है <math>k^* = _{k \in 1,...,K}^{argmax} \ p(\phi(x_{q})), \phi(c_{k}))</math>. समानता मीट्रिक ρ आमतौर पर डॉट-उत्पाद है।<ref name=":1" /> | दी गई क्वेरी x<sub>q</sub> ∈ X के साथ सबसे समान प्रोटोटाइप पाया जा सकता है <math>k^* = _{k \in 1,...,K}^{argmax} \ p(\phi(x_{q})), \phi(c_{k}))</math>. समानता मीट्रिक ρ आमतौर पर डॉट-उत्पाद है।<ref name=":1" /> | ||
=== तर्क === | === तर्क === | ||
हाइपरवेक्टर का उपयोग तर्क-वितर्क के लिए भी किया जा सकता है। रेवेन के प्रगतिशील मैट्रिक्स एक ग्रिड में वस्तुओं की छवियां प्रस्तुत करते हैं। ग्रिड में एक स्थान रिक्त है. परीक्षण में उम्मीदवार की छवियों में से वह चुनना है जो सबसे उपयुक्त हो।<ref name=":0" /> | हाइपरवेक्टर का उपयोग तर्क-वितर्क के लिए भी किया जा सकता है। रेवेन के प्रगतिशील मैट्रिक्स एक ग्रिड में वस्तुओं की छवियां प्रस्तुत करते हैं। ग्रिड में एक स्थान रिक्त है. परीक्षण में उम्मीदवार की छवियों में से वह चुनना है जो सबसे उपयुक्त हो।<ref name=":0" /> | ||
Line 78: | Line 60: | ||
इस दृष्टिकोण ने एक समस्या सेट पर 88% सटीकता हासिल की, और तंत्रिका नेटवर्क-केवल समाधानों को पछाड़ दिया जो 61% सटीक थे। 3-बाय-3 ग्रिड के लिए, संबंधित नियम पुस्तिका के आकार के कारण, सिस्टम तर्क के लिए [[प्रतीकात्मक तर्क]] का उपयोग करने वाली विधि की तुलना में 250 गुना तेज था।<ref name=":0" /> | इस दृष्टिकोण ने एक समस्या सेट पर 88% सटीकता हासिल की, और तंत्रिका नेटवर्क-केवल समाधानों को पछाड़ दिया जो 61% सटीक थे। 3-बाय-3 ग्रिड के लिए, संबंधित नियम पुस्तिका के आकार के कारण, सिस्टम तर्क के लिए [[प्रतीकात्मक तर्क]] का उपयोग करने वाली विधि की तुलना में 250 गुना तेज था।<ref name=":0" /> | ||
=== अन्य === | === अन्य === | ||
अन्य अनुप्रयोगों में बायो-सिग्नल प्रोसेसिंग, प्राकृतिक भाषा प्रसंस्करण और रोबोटिक्स शामिल हैं।<ref name=":1" /> | अन्य अनुप्रयोगों में बायो-सिग्नल प्रोसेसिंग, प्राकृतिक भाषा प्रसंस्करण और रोबोटिक्स शामिल हैं।<ref name=":1" /> | ||
== यह भी देखें == | == यह भी देखें == | ||
Revision as of 21:31, 9 August 2023
हाइपरडायमेंशनल कंप्यूटिंग (एचडीसी) गणना के लिए एक दृष्टिकोण है, विशेष रूप से कृत्रिम बुद्धिमत्ता, जहां जानकारी को हाइपरडायमेंशनल (लंबे) वेक्टर (गणित और भौतिकी), संख्याओं की एक श्रृंखला के रूप में दर्शाया जाता है। एक हाइपरडायमेंशनल वेक्टर (हाइपरवेक्टर) में हजारों संख्याएं शामिल हो सकती हैं जो हजारों आयामों वाले स्थान में एक बिंदु का प्रतिनिधित्व करती हैं।[1] वेक्टर सिम्बोलिक आर्किटेक्चर उसी व्यापक दृष्टिकोण का पुराना नाम है।[1]
प्रक्रिया
डेटा को एक एन्कोडिंग फ़ंक्शन के तहत इनपुट स्पेस से विरल एचडी स्पेस में मैप किया जाता है φ: शोर/दूषित एचडी प्रस्तुतिकरण अभी भी सीखने, वर्गीकरण आदि के लिए इनपुट के रूप में काम कर सकते हैं। इनपुट डेटा को पुनर्प्राप्त करने के लिए उन्हें डिकोड भी किया जा सकता है। H आमतौर पर सीमा-सीमित पूर्णांकों (-v-v) तक ही सीमित है[2] यह ड्रोसोफिला घ्राण प्रणाली द्वारा संचालित सीखने की प्रक्रिया के अनुरूप है। इनपुट गंध रिसेप्टर न्यूरॉन प्रकारों के अनुरूप लगभग 50-आयामी वेक्टर है। एचडी प्रतिनिधित्व ~2,000-आयामों का उपयोग करता है।[2]
पारदर्शिता
एचडीसी बीजगणित से यह ज्ञात होता है कि कृत्रिम न्यूरल नेटवर्क के विपरीत सिस्टम कैसे और क्यों निर्णय लेता है। भौतिक जगत की वस्तुओं को बीजगणित द्वारा संसाधित करने के लिए हाइपरवेक्टर में मैप किया जा सकता है।[1]
प्रदर्शन
एचडीसी "इन-मेमोरी कंप्यूटिंग सिस्टम" के लिए उपयुक्त है, जो डेटा ट्रांसफर देरी से बचने के लिए डेटा को एक चिप पर गणना और संग्रहीत करता है। एनालॉग डिवाइस कम वोल्टेज पर काम करते हैं। वे ऊर्जा-कुशल हैं, लेकिन त्रुटि उत्पन्न करने वाले शोर से ग्रस्त हैं। एचडीसी ऐसी त्रुटियों को सहन कर सकता है।[1]
विभिन्न टीमों ने कम-शक्ति वाले एचडीसी हार्डवेयर त्वरक विकसित किए हैं।[2]
गणना करने के लिए नैनोस्केल यादगार उपकरणों का उपयोग किया जा सकता है। एक इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग सिस्टम परिधीय डिजिटल सीएमओएस सर्किट के साथ दो मेमरिस्टिव क्रॉसबार इंजनों पर संचालन लागू कर सकता है। एनालॉग इन-मेमोरी कंप्यूटिंग करने वाले 760,000 चरण-परिवर्तन मेमोरी उपकरणों का उपयोग करने वाले प्रयोगों ने सॉफ्टवेयर कार्यान्वयन के बराबर सटीकता हासिल की।[3]
त्रुटियाँ
HDC त्रुटि-सुधार तंत्र द्वारा चूक गई व्यक्तिगत बिट त्रुटि (0 से 1 या इसके विपरीत) जैसी त्रुटियों के लिए मजबूत है। ऐसे त्रुटि-सुधार तंत्र को समाप्त करने से गणना लागत में 25% तक की बचत हो सकती है। यह संभव है क्योंकि ऐसी त्रुटियाँ परिणाम को सही वेक्टर के करीब छोड़ देती हैं। वैक्टर का उपयोग करके तर्क से समझौता नहीं किया जाता है। एचडीसी पारंपरिक कृत्रिम तंत्रिका नेटवर्क की तुलना में कम से कम 10 गुना अधिक त्रुटि सहिष्णु है, जो पहले से ही पारंपरिक कंप्यूटिंग की तुलना में अधिक सहनशील है।[1]
उदाहरण
एक सरल उदाहरण काले वृत्तों और सफेद वर्गों वाली छवियों पर विचार करता है। हाइपरवेक्टर आकार और रंग चर का प्रतिनिधित्व कर सकते हैं और संबंधित मान रख सकते हैं: वृत्त, वर्ग, काला और सफेद। बाउंड हाइपरवेक्टर ब्लैक और सर्कल आदि जोड़ियों को पकड़ सकते हैं।[1]
ऑर्थोगोनैलिटी
उच्च-आयामी स्थान कई परस्पर ओर्थोगोनल वैक्टर की अनुमति देता है। हालाँकि, यदि इसके बजाय वैक्टर को लगभग ऑर्थोगोनल होने की अनुमति दी जाती है, तो उच्च-आयामी अंतरिक्ष में अलग-अलग वैक्टर की संख्या बहुत बड़ी है।[1]
एचडीसी वितरित अभ्यावेदन की अवधारणा का उपयोग करता है, जिसमें एक वस्तु/अवलोकन को एक स्थिरांक के बजाय कई आयामों में मूल्यों के एक पैटर्न द्वारा दर्शाया जाता है।[2]
संचालन
एचडीसी अच्छी तरह से परिभाषित सदिश स्थल ऑपरेशंस का उपयोग करके हाइपरवेक्टर को नए हाइपरवेक्टर में जोड़ सकता है।
हाइपरवेक्टर पर समूह (गणित), रिंग (गणित), और फ़ील्ड (गणित) आदिम कंप्यूटिंग संचालन के रूप में जोड़, गुणा, क्रमपरिवर्तन, मानचित्रण और व्युत्क्रम के साथ अंतर्निहित कंप्यूटिंग संरचनाएं बन जाते हैं।[3]सभी कम्प्यूटेशनल कार्य तत्व-वार परिवर्धन और डॉट उत्पादों जैसे सरल संचालन का उपयोग करके उच्च-आयामी स्थान में किए जाते हैं।[2]
बाइंडिंग क्रमबद्ध बिंदु टुपल्स बनाता है और यह एक फ़ंक्शन ⊗ : H × H → H भी है। इनपुट में दो बिंदु हैं H, जबकि आउटपुट एक असमान बिंदु है। SHAPE वेक्टर को CIRCLE से गुणा करने पर दोनों आपस में जुड़ जाते हैं, जो इस विचार को दर्शाता है कि "SHAPE वृत्त है"। यह वेक्टर SHAPE और CIRCLE के लगभग ओर्थोगोनल है। घटक वेक्टर से पुनर्प्राप्त करने योग्य हैं (उदाहरण के लिए, प्रश्न का उत्तर दें कि क्या आकार एक वृत्त है?)।[2]
जोड़ एक वेक्टर बनाता है जो अवधारणाओं को जोड़ता है। उदाहरण के लिए, "रंग लाल है" में "आकार वृत्त है" जोड़ने से एक वेक्टर बनता है जो लाल वृत्त का प्रतिनिधित्व करता है।
क्रमपरिवर्तन वेक्टर तत्वों को पुनर्व्यवस्थित करता है। उदाहरण के लिए, x, y और z लेबल वाले मानों वाले त्रि-आयामी वेक्टर को क्रमपरिवर्तित करने से x को y, y से z और z से x में बदला जा सकता है। हाइपरवेक्टर ए और बी द्वारा प्रस्तुत घटनाओं को जोड़ा जा सकता है, जिससे एक वेक्टर बनता है, लेकिन इससे घटना क्रम समाप्त हो जाएगा। क्रमपरिवर्तन के साथ जोड़ को जोड़ने से क्रम सुरक्षित रहता है; संचालन को उलट कर घटना क्रम को पुनः प्राप्त किया जा सकता है।
बंडलिंग H में तत्वों के एक सेट को फ़ंक्शन ⊕ : H ×H → H के रूप में जोड़ती है। इनपुट H में दो बिंदु है और आउटपुट एक तीसरा बिंदु है जो दोनों के समान है।[2]
इतिहास
वेक्टर प्रतीकात्मक आर्किटेक्चर (वीएसए) ने संबंध स्थापित करने जैसे संचालन का समर्थन करने के लिए उच्च-आयामी प्रतीक प्रतिनिधित्व के लिए एक व्यवस्थित दृष्टिकोण प्रदान किया है। प्रारंभिक उदाहरणों में होलोग्राफिक कम प्रतिनिधित्व, बाइनरी स्पैटर कोड और एडिटिव शब्दों के मैट्रिक्स बाइंडिंग शामिल हैं। एचडी कंप्यूटिंग ने इन मॉडलों को उन्नत किया, विशेष रूप से हार्डवेयर दक्षता पर जोर दिया।[2]
2018 में, एरिक वीस ने दिखाया कि हाइपरवेक्टर के रूप में एक छवि को पूरी तरह से कैसे प्रस्तुत किया जाए। एक वेक्टर में छवि में सभी वस्तुओं के बारे में जानकारी हो सकती है, जिसमें रंग, स्थिति और आकार जैसे गुण शामिल हैं।[1]
2023 में, अब्बास रहीमी और अन्य ने रेवेन के प्रोग्रेसिव मैट्रिसेस|रेवेन के प्रोग्रेसिव मैट्रिसेस को हल करने के लिए तंत्रिका नेटवर्क के साथ एचडीसी का उपयोग किया।[1]
अनुप्रयोग
छवि पहचान
एचडीसी एल्गोरिदम गहरे तंत्रिका नेटवर्क द्वारा लंबे समय तक पूरे किए गए कार्यों को दोहरा सकता है, जैसे छवियों को वर्गीकृत करना।[1]
हस्तलिखित अंकों के एक एनोटेटेड सेट को वर्गीकृत करने से प्रत्येक छवि की विशेषताओं का विश्लेषण करने के लिए एक एल्गोरिदम का उपयोग किया जाता है, जिससे प्रति छवि एक हाइपरवेक्टर प्राप्त होता है। फिर एल्गोरिदम शून्य की अवधारणा के लिए एक प्रोटोटाइप हाइपरवेक्टर बनाने के लिए, उदाहरण के लिए, शून्य की सभी लेबल छवियों के लिए हाइपरवेक्टर जोड़ता है और अन्य अंकों के लिए इसे दोहराता है।[1]
एक बिना लेबल वाली छवि को वर्गीकृत करने में इसके लिए एक हाइपरवेक्टर बनाना और संदर्भ हाइपरवेक्टरों से इसकी तुलना करना शामिल है। यह तुलना उस अंक की पहचान करती है जिससे नई छवि सबसे अधिक मिलती जुलती है।[1]
दिए गए लेबल वाले उदाहरण सेट एक विशेष x का वर्ग हैi.[2]
दी गई क्वेरी xq ∈ X के साथ सबसे समान प्रोटोटाइप पाया जा सकता है . समानता मीट्रिक ρ आमतौर पर डॉट-उत्पाद है।[2]
तर्क
हाइपरवेक्टर का उपयोग तर्क-वितर्क के लिए भी किया जा सकता है। रेवेन के प्रगतिशील मैट्रिक्स एक ग्रिड में वस्तुओं की छवियां प्रस्तुत करते हैं। ग्रिड में एक स्थान रिक्त है. परीक्षण में उम्मीदवार की छवियों में से वह चुनना है जो सबसे उपयुक्त हो।[1]
हाइपरवेक्टरों का एक शब्दकोश व्यक्तिगत वस्तुओं का प्रतिनिधित्व करता है। प्रत्येक हाइपरवेक्टर अपनी विशेषताओं के साथ एक वस्तु अवधारणा का प्रतिनिधित्व करता है। प्रत्येक परीक्षण छवि के लिए एक तंत्रिका नेटवर्क एक बाइनरी हाइपरवेक्टर उत्पन्न करता है (मान +1 या -1 हैं) जो शब्दकोश हाइपरवेक्टर के कुछ सेट के जितना संभव हो उतना करीब है। इस प्रकार उत्पन्न हाइपरवेक्टर छवि में सभी वस्तुओं और उनकी विशेषताओं का वर्णन करता है।[1]
एक अन्य एल्गोरिदम प्रत्येक छवि में वस्तुओं की संख्या और उनकी विशेषताओं के लिए संभाव्यता वितरण बनाता है। ये संभाव्यता वितरण संदर्भ और उम्मीदवार छवियों दोनों की संभावित विशेषताओं का वर्णन करते हैं। वे भी हाइपरवेक्टर में तब्दील हो जाते हैं, फिर बीजगणित स्लॉट को भरने के लिए सबसे संभावित उम्मीदवार छवि की भविष्यवाणी करता है।[1]
इस दृष्टिकोण ने एक समस्या सेट पर 88% सटीकता हासिल की, और तंत्रिका नेटवर्क-केवल समाधानों को पछाड़ दिया जो 61% सटीक थे। 3-बाय-3 ग्रिड के लिए, संबंधित नियम पुस्तिका के आकार के कारण, सिस्टम तर्क के लिए प्रतीकात्मक तर्क का उपयोग करने वाली विधि की तुलना में 250 गुना तेज था।[1]
अन्य
अन्य अनुप्रयोगों में बायो-सिग्नल प्रोसेसिंग, प्राकृतिक भाषा प्रसंस्करण और रोबोटिक्स शामिल हैं।[2]
यह भी देखें
संदर्भ
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 Ananthaswamy, Anan (April 13, 2023). "गणना के लिए एक नया दृष्टिकोण आर्टिफिशियल इंटेलिजेंस की पुनर्कल्पना करता है". Quanta Magazine.
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Thomas, Anthony; Dasgupta, Sanjoy; Rosing, Tajana (2021-10-05). "हाइपरडायमेंशनल कंप्यूटिंग पर एक सैद्धांतिक परिप्रेक्ष्य" (PDF). Journal of Artificial Intelligence Research (in English). 72: 215–249. doi:10.1613/jair.1.12664. ISSN 1076-9757. S2CID 239007517.
- ↑ 3.0 3.1 Karunaratne, Geethan; Le Gallo, Manuel; Cherubini, Giovanni; Benini, Luca; Rahimi, Abbas; Sebastian, Abu (June 2020). "इन-मेमोरी हाइपरडायमेंशनल कंप्यूटिंग". Nature Electronics (in English). 3 (6): 327–337. arXiv:1906.01548. doi:10.1038/s41928-020-0410-3. ISSN 2520-1131. S2CID 174797921.
बाहरी संबंध
- "HD/VSA". www.hd-computing.com (in English). Retrieved 2023-04-15.
- Neubert, Peer; Schubert, Stefan; Protzel, Peter (2019-12-01). "An Introduction to Hyperdimensional Computing for Robotics". KI - Künstliche Intelligenz (in English). 33 (4): 319–330. doi:10.1007/s13218-019-00623-z. ISSN 1610-1987. S2CID 202642163.
- Neubert, Peer; Schubert, Stefan (2021-01-19). "Hyperdimensional computing as a framework for systematic aggregation of image descriptors" (in English). arXiv:2101.07720v1 [cs.CV].
- Kanerva, Pentti (2009-06-01). "Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors". Cognitive Computation (in English). 1 (2): 139–159. doi:10.1007/s12559-009-9009-8. ISSN 1866-9964. S2CID 733980.
- Ananthaswamy, Anil. "Hyperdimensional Computing Reimagines Artificial Intelligence". Wired (in English). ISSN 1059-1028. Retrieved 2023-06-13.