सममित रूप से निरंतर फलन: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, एक फलन <math>f: \mathbb{R} \to \mathbb{R} </math> एक बिंदु ''x'' पर सममित रूप से निरंतर ह...")
 
No edit summary
Line 1: Line 1:
गणित में, एक फलन <math>f: \mathbb{R} \to \mathbb{R} </math> एक बिंदु ''x'' पर सममित रूप से निरंतर है यदि
गणित में, फलन <math>f: \mathbb{R} \to \mathbb{R} </math> एक बिंदु ''x'' पर सममित रूप से सतत है यदि
:<math>\lim_{h\to 0} f(x+h)-f(x-h) = 0.</math>
:<math>\lim_{h\to 0} f(x+h)-f(x-h) = 0.</math>
सतत फलन की सामान्य परिभाषा सममित निरंतरता को दर्शाती है, लेकिन इसका विपरीत सत्य नहीं है। उदाहरण के लिए, फ़ंक्शन <math>x^{-2}</math> सममित रूप से निरंतर है <math>x=0</math>, लेकिन निरंतर नहीं.
निरंतरता फलन की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए, फ़ंक्शन <math>x^{-2}</math> सममित रूप से <math>x=0</math> पर सतत है, लेकिन निरंतरता नहीं है।


इसके अलावा, सममित व्युत्पन्न सममित निरंतरता को दर्शाता है, लेकिन इसका विपरीत सत्य नहीं है, जैसे सामान्य निरंतरता का मतलब भिन्नता नहीं है।
इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, लेकिन इसके विपरीत सामान्य निरंतरता की तरह ही सही नहीं है।


सामान्य अदिश गुणन के साथ सममित रूप से निरंतर कार्यों के सेट को आसानी से एक [[सदिश स्थल]] की संरचना के रूप में दिखाया जा सकता है <math>\mathbb{R}</math>, आमतौर पर निरंतर कार्यों के समान, जो इसके भीतर एक [[रैखिक उपस्थान]] बनाते हैं।
सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से <math>\mathbb{R}</math> पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक [[रैखिक उपस्थान]] बनाते हैं।


== संदर्भ ==
== संदर्भ ==

Revision as of 00:05, 13 July 2023

गणित में, फलन एक बिंदु x पर सममित रूप से सतत है यदि

निरंतरता फलन की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए, फ़ंक्शन सममित रूप से पर सतत है, लेकिन निरंतरता नहीं है।

इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, लेकिन इसके विपरीत सामान्य निरंतरता की तरह ही सही नहीं है।

सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक रैखिक उपस्थान बनाते हैं।

संदर्भ

  • Thomson, Brian S. (1994). Symmetric Properties of Real Functions. Marcel Dekker. ISBN 0-8247-9230-0.