सममित रूप से निरंतर फलन: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:सममित_रूप_से_निरंतर_कार्य) |
(No difference)
|
Revision as of 06:36, 25 August 2023
गणित में, फलन एक बिंदु x पर सममित रूप से सतत है यदि
निरंतरता फलन की सामान्य परिभाषा में सममित निरंतरता निहित है, लेकिन इसके विपरीत सत्य नहीं है। उदाहरण के लिए फलन सममित रूप से पर सतत है, लेकिन निरंतरता नहीं है।
इसके अतिरिक्त, सममित विभेदकता का अर्थ सममित निरंतरता होता है, हालांकि यह धारणा सही नहीं है, क्योंकि सामान्य निरंतरता भिन्न नहीं होती है।
सामान्य अदिश गुणन के साथ सममित रूप से फलनों के समूह को आसानी से पर एक सदिश समष्टि की संरचना के रूप में प्रदर्शित किया जा सकता है, सामान्यतः सतत फलनों के समान, जो इसके अन्तर्गत एक रैखिक उपस्थान बनाते हैं।
संदर्भ
- Thomson, Brian S. (1994). Symmetric Properties of Real Functions. Marcel Dekker. ISBN 0-8247-9230-0.