पावर इलेक्ट्रॉनिक्स: Difference between revisions

From Vigyanwiki
(text)
 
(190 intermediate revisions by 8 users not shown)
Line 2: Line 2:
[[File:ATX power supply interior-1000px transparent.png|thumb|एक पीसी बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे कैबिनेट के अंदर या बाहर। ]]
[[File:ATX power supply interior-1000px transparent.png|thumb|एक पीसी बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे कैबिनेट के अंदर या बाहर। ]]


'''पावर इलेक्ट्रॉनिक्स'''  इलेक्ट्रॉनिक्स का वह अनुप्रयोग है जिसमे विद्युत शक्ति का  नियंत्रण और परिवर्तन होता है।
'''पावर इलेक्ट्रॉनिक्स'''  वह अनुप्रयोग है, जिसमे विद्युत शक्ति का नियंत्रण और परिवर्तन होता है।


पारा-आर्क वाल्व का उपयोग करके पहले उच्च शक्ति वाले इलेक्ट्रॉनिक उपकरण को बनाया गया था। नयी प्रणालियों में, अर्धचालक स्विचिंग डिवाइस जैसे डायोड, थाइरिस्टर, और पावर ट्रांजिस्टर जैसे पावर एमओएसएफईटी (MOSFET) और आईजीबीटी(IGBT) के साथ रूपांतरण किया जाता है।सिग्नल और डेटा के प्रसारण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा परिवर्तित होती है।एसी/डीसी कनवर्टर ( [[ रेक्टिफायर ]]) कई उपभोक्ता इलेक्ट्रॉनिक उपकरणों में पाया जाने वाला सबसे विशिष्ट बिजली इलेक्ट्रॉनिक्स उपकरण है, उदा।  [[ टेलीविजन ]] सेट, व्यक्तिगत [[ कंप्यूटर ]] एस, [[ बैटरी चार्जर ]] एस, आदि। बिजली की सीमा आम तौर पर [[ वाट ]] एस से लेकर कई सौ वाट तक होती है। उद्योग में, एक सामान्य अनुप्रयोग  [[ एडजस्टेबल-स्पीड ड्राइव | वैरिएबल स्पीड ड्राइव (वीएसडी) ]] है जिसका उपयोग [[ इंडक्शन मोटर ]] को नियंत्रित करने के लिए किया जाता है। वीएसडी की पावर रेंज कुछ सौ वाट से शुरू होती है और  [[ मेगावाट ]] सेकेंड पर समाप्त होती है।
मरकरी (पारा) आर्क वाल्व का उपयोग करके पहले उच्च शक्ति वाले इलेक्ट्रॉनिक उपकरण को बनाया गया था। आधुनिक प्रणालियों में, परिवर्तन अर्धचालक स्विचिंग डिवाइस जैसे डायोड, थाइरिस्टर, और पावर ट्रांजिस्टर जैसे पावर मोसफेट (MOSFET) और आईजीबीटी (IGBT) के साथ किया जाता है। सिग्नल और डेटा के प्रसारण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा परिवर्तित होती है। उपभोक्ता के इलेक्ट्रॉनिक उपकरणों में एसी/डीसी कनवर्टर (रेक्टिफायर) सबसे ज्यादा पाया जाने वाला बिजली इलेक्ट्रॉनिक्स उपकरण है, उदाहरण के लिए [https://en.wikipedia.org/wiki/Television|'''टेलीविजन'''] सेट, व्यक्तिगत [[ कंप्यूटर |कंप्यूटर]], [[ बैटरी चार्जर |बैटरी चार्जर]], आदि। बिजली की सीमा आम तौर पर दस [[ वाट |वाट]] (watt) से लेकर सौ वाट (watt) तक होती है। उद्योग में,[[ एडजस्टेबल-स्पीड ड्राइव | वैरिएबल स्पीड ड्राइव (वीएसडी)]] का उपयोग [[ इंडक्शन मोटर |इंडक्शन मोटर]] को नियंत्रित करने के लिए किया जाता है। वीएसडी की बिजली की सीमा सौ वाट से शुरू होकर [[ मेगावाट |मेगावाट]] सेकेंड पर समाप्त होती है।


बिजली रूपांतरण प्रणालियों को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:
बिजली रूपांतरण प्रणालियों को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:
* एसी से डीसी ( [[ रेक्टिफायर ]])
* एसी (AC) से डीसी (DC) ([[ रेक्टिफायर |रेक्टिफायर]])
* डीसी से एसी ( [[ पावर इन्वर्टर | इन्वर्टर ]])
* डीसी (DC) से एसी (AC) ([[ पावर इन्वर्टर |इन्वर्टर]])
* डीसी से डीसी ( [[ डीसी-टू-डीसी कनवर्टर ]])
* डीसी (DC) से डीसी (DC) ([[ डीसी-टू-डीसी कनवर्टर |डीसी-टू-डीसी कनवर्टर]])
* एसी से एसी ( [[ एसी/एसी कनवर्टर | एसी-टू-एसी कनवर्टर ]])
* एसी (AC) से एसी (AC) ([[ एसी/एसी कनवर्टर |एसी-टू-एसी कनवर्टर]])


== इतिहास ==
== इतिहास ==
पावर इलेक्ट्रॉनिक्स की शुरुआत मरकरी आर्क रेक्टिफायर के विकास के साथ हुई। 1902 में [[ पीटर कूपर हेविट ]] द्वारा आविष्कार किया गया था, इसका उपयोग अल्टरनेटिंग करंट (AC) को डायरेक्ट करंट (DC) में बदलने के लिए किया गया था। 1920 के दशक से, [[ थायराट्रॉन ]] एस और ग्रिड-नियंत्रित पारा चाप वाल्वों को बिजली पारेषण में लागू करने पर अनुसंधान जारी रहा।  [[ यूनो लैम ]] ने ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया जो उन्हें [[ उच्च वोल्टेज प्रत्यक्ष वर्तमान ]] बिजली संचरण के लिए उपयुक्त बनाता है। 1933 में सेलेनियम रेक्टिफायर्स का आविष्कार किया गया था<ref name=Thompson>{{cite web|last=Thompson|first=M.T.|title=Notes 01|url=http://www.thompsonrd.com/NOTES%2001%20INTRODUCTION%20TO%20POWER%20ELECTRONICS.pdf|work=Introduction to Power Electronics|publisher=Thompson Consulting, Inc.}}</ref>
मरकरी आर्क रेक्टिफायर के विकास के साथ पावर इलेक्ट्रॉनिक्स का प्रारम्भ हुआ। प्रत्यावर्ती धारा (AC) को एकदिश धारा (DC) में बदलने के लिए इसका उपयोग किया गया था। 1920 से, विद्युत प्रसारण के लिए थायराट्रॉन और ग्रिड-नियंत्रित पारा चाप वाल्वों पर खोज जारी है। [[ यूनो लैम |यूनो लैम]] ने ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया जो उन्हें [[ उच्च वोल्टेज प्रत्यक्ष वर्तमान |उच्च वोल्टेज प्रत्यक्ष]] धारा (high voltage direct current) बिजली संचरण (पावर ट्रांसमिशन) के लिए उपयुक्त बनाता है। सेलेनियम रेक्टिफायर्स का आविष्कार 1933 में हुआ था।<ref name=Thompson>{{cite web|last=Thompson|first=M.T.|title=Notes 01|url=http://www.thompsonrd.com/NOTES%2001%20INTRODUCTION%20TO%20POWER%20ELECTRONICS.pdf|work=Introduction to Power Electronics|publisher=Thompson Consulting, Inc.}}</ref>


[[ जूलियस एडगर लिलिएनफेल्ड | जूलियस एडगर लिलिएनफेल्ड]] ने 1926 में  [[ क्षेत्र-प्रभाव ट्रांजिस्टर | क्षेत्र-प्रभाव ट्रांजिस्टर]] की अवधारणा का प्रस्ताव रखा था, लेकिन उस समय वास्तव में एक कार्यशील उपकरण का निर्माण संभव नहीं था।<ref>{{cite web |title=1926 – Field Effect Semiconductor Device Concepts Patented |website=Computer History Museum |url=http://www.computerhistory.org/siliconengine/field-effect-semiconductor-device-concepts-patented/ |access-date=March 25, 2016 |url-status=live |archive-url=https://web.archive.org/web/20160322023120/http://www.computerhistory.org/siliconengine/field-effect-semiconductor-device-concepts-patented/ |archive-date=March 22, 2016 |df=mdy-all }}</ref> 1947 में, द्विध्रुवी  [[ बिंदु-संपर्क ट्रांजिस्टर | बिंदु-संपर्क ट्रांजिस्टर]] का आविष्कार  [[ वाल्टर एच. ब्रेटैन | वाल्टर एच. ब्रेटैन]] और [[ जॉन बारडीन | जॉन बारडीन]] द्वारा  [[ बेल लैब्स | बेल लैब्स]] में [[ विलियम शॉक्ले | विलियम शॉक्ले]] के निर्देशन में किया गया था। 1948 में शॉक्ले के [[ बाइपोलर जंक्शन ट्रांजिस्टर | बाइपोलर जंक्शन ट्रांजिस्टर]] (बीजेटी) के आविष्कार ने [[ ट्रांजिस्टर | ट्रांजिस्टर]] की स्थिरता और प्रदर्शन में सुधार किया और लागत में कमी की। 1950 के दशक तक, उच्च शक्ति अर्धचालक  [[ डायोड | डायोड]] एस उपलब्ध हो गए और  [[ वैक्यूम ट्यूब | वैक्यूम ट्यूब]] एस की जगह लेना शुरू कर दिया। 1956 में  [[ सिलिकॉन नियंत्रित दिष्टकारी | सिलिकॉन नियंत्रित दिष्टकारी]] (एससीआर) [[ जनरल इलेक्ट्रिक | जनरल इलेक्ट्रिक]] द्वारा पेश किया गया था, जिससे बिजली इलेक्ट्रॉनिक्स अनुप्रयोगों की सीमा में काफी वृद्धि हुई।<ref name="Kharagpur">{{cite web|last=Kharagpur|title=Power Semiconductor Devices|url=http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Power%20Electronics/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf|work=EE IIT|access-date=25 March 2012|archive-url=https://web.archive.org/web/20080920222959/http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Power%20Electronics/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf|archive-date=20 September 2008|url-status=dead}}</ref> 1960 के दशक तक, द्विध्रुवी जंक्शन ट्रांजिस्टर की बेहतर स्विचिंग गति ने उच्च आवृत्ति डीसी / डीसी कन्वर्टर्स के लिए अनुमति दी थी।
क्षेत्र-प्रभाव ट्रांजिस्टर की अवधारणा का प्रस्ताव जूलियस एडगर लिलिएनफेल्ड ने 1926 में रखा, लेकिन उस समय वास्तव में एक कार्यशील उपकरण का निर्माण संभव नहीं था।<ref>{{cite web |title=1926 – Field Effect Semiconductor Device Concepts Patented |website=Computer History Museum |url=http://www.computerhistory.org/siliconengine/field-effect-semiconductor-device-concepts-patented/ |access-date=March 25, 2016 |url-status=live |archive-url=https://web.archive.org/web/20160322023120/http://www.computerhistory.org/siliconengine/field-effect-semiconductor-device-concepts-patented/ |archive-date=March 22, 2016 |df=mdy-all }}</ref> वाल्टर एच. ब्रैटन और जॉन बार्डीन ने बाइपोलर पॉइंट-कॉन्टैक्ट ट्रांजिस्टर का आविष्कार , बेल लैब्स में, 1947 में  विलियम शॉक्ले के निर्देशन में किया था। कम लागत में 1948 में शॉक्ले के बाइपोलर जंक्शन ट्रांजिस्टर (बीजेटी) के आविष्कार ने ट्रांजिस्टर की स्थिरता और निष्पादन में सुधार किया। 1950 तक, वैक्यूम ट्यूबों की जगह उच्च शक्ति वाले सेमीकंडक्टर डायोड उपलब्ध कराये जाते थे। सिलिकॉन नियंत्रित रेक्टिफायर (SCR) को 1956 में जनरल इलेक्ट्रिक द्वारा शुरू किया गया, जिससे बिजली इलेक्ट्रॉनिक्स अनुप्रयोगों में काफी वृद्धि हुई।<ref name="Kharagpur">{{cite web|last=Kharagpur|title=Power Semiconductor Devices|url=http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Power%20Electronics/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf|work=EE IIT|access-date=25 March 2012|archive-url=https://web.archive.org/web/20080920222959/http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Power%20Electronics/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf|archive-date=20 September 2008|url-status=dead}}</ref> 1960 के दशक तक, द्विध्रुवी जंक्शन ट्रांजिस्टर की बेहतर स्विचिंग गति ने उच्च आवृत्ति डीसी(DC) / डीसी कन्वर्टर्स के लिए अनुमति दी थी।


[[ आरडी मिडलब्रुक | आरडी मिडलब्रुक]] ने बिजली इलेक्ट्रॉनिक्स में महत्वपूर्ण योगदान दिया। 1970 में, उन्होंने  [[ कैलटेक | कैलटेक]] . में पावर इलेक्ट्रॉनिक्स समूह की स्थापना की<ref>{{cite web |title=Dr. R. David Middlebrook 1929 - 2010 |url=https://www.powerelectronics.com/content/dr-r-david-middlebrook-1929-2010 |website=Power Electronics |access-date=29 October 2019 |ref=May 1, 2010 |language=en |date=1 May 2010}}</ref> उन्होंने विश्लेषण की राज्य-अंतरिक्ष औसत पद्धति और आधुनिक बिजली इलेक्ट्रॉनिक्स डिजाइन के लिए महत्वपूर्ण अन्य उपकरण विकसित किए<ref>{{cite web| url = http://www.ieee-pels.org/pels-news/220-professor-r-d-middlebrook-passed-away |title = IEEE Transactions on Transportation Electrification - IEEE Power Electronics Society}}</ref>
1970 में, पावर इलेक्ट्रॉनिक्स समूह की स्थापना की।<ref>{{cite web |title=Dr. R. David Middlebrook 1929 - 2010 |url=https://www.powerelectronics.com/content/dr-r-david-middlebrook-1929-2010 |website=Power Electronics |access-date=29 October 2019 |ref=May 1, 2010 |language=en |date=1 May 2010}}</ref> राज्य-अंतरिक्ष औसत पद्धति की समीक्षा की और आधुनिक बिजली इलेक्ट्रॉनिक्स डिजाइन के लिए महत्वपूर्ण उपकरण विकसित किए गए थे।<ref>{{cite web| url = http://www.ieee-pels.org/pels-news/220-professor-r-d-middlebrook-passed-away |title = IEEE Transactions on Transportation Electrification - IEEE Power Electronics Society}}</ref>


=== पावर MOSFET ===
=== पावर मोसफेट ===
बिजली इलेक्ट्रॉनिक्स में एक सफलता [[ एमओएसएफईटी ]] (धातु-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ [[ मोहम्मद अटाला ]] और  [[ डॉन कहंग ]] द्वारा  [[ बेल लैब्स ]] में 1959 में आई। एमओएसएफईटी ट्रांजिस्टर की पीढ़ी ने बिजली डिजाइनरों को सक्षम किया। प्रदर्शन और घनत्व के स्तर को प्राप्त करने के लिए द्विध्रुवी ट्रांजिस्टर के साथ संभव नहीं है<ref>{{cite news |title=Rethink Power Density with GaN |url=https://www.electronicdesign.com/power/rethink-power-density-gan |access-date=23 July 2019 |work=[[Electronic Design]] |date=21 April 2017}}</ref> MOSFET तकनीक में सुधार के कारण (शुरुआत में  [[ इंटीग्रेटेड सर्किट ]] s का उत्पादन करने के लिए उपयोग किया जाता है),  [[ पावर MOSFET ]] 1970 के दशक में उपलब्ध हो गया।
1959 में बेल लैब्स में बिजली इलेक्ट्रॉनिक्स में एक सफलता मोसफेट (धातु-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ हुई थी। मोसफेट (MOSFET) ट्रांजिस्टर की पीढ़ियों ने बिजली डिजाइनरों को प्रदर्शन और घनत्व के स्तर को प्राप्त करने में सक्षम बनाया जो द्विध्रुवी ट्रांजिस्टर के साथ संभव नहीं है।<ref>{{cite news |title=Rethink Power Density with GaN |url=https://www.electronicdesign.com/power/rethink-power-density-gan |access-date=23 July 2019 |work=[[Electronic Design]] |date=21 April 2017}}</ref> 1970 में मोसफेट (MOSFET) तकनीक में सुधार के कारण (पहले  इंटीग्रेटेड सर्किट का उपयोग उत्पादन करने के लिए किया जाता है) शक्ति मोसफेट (MOSFET) उपलब्ध कराया गया था।


1969 में, [[ हिताची ]] ने पहली ऊर्ध्वाधर शक्ति MOSFET . की शुरुआत की<ref>{{cite book |last1=Oxner |first1=E. S. |title=Fet Technology and Application |date=1988 |publisher=[[CRC Press]] |isbn=9780824780500 |page=18 |url=https://books.google.com/books?id=0AE-0e-sAnsC&pg=PA18}}</ref> जिसे बाद में [[ वीएमओएस ]] (वी-ग्रूव एमओएसएफईटी) के रूप में जाना जाएगा।<ref name="powerelectronics">{{cite journal |title=Advances in Discrete Semiconductors March On |url=https://www.powerelectronics.com/content/advances-discrete-semiconductors-march |journal=Power Electronics Technology |publisher=[[Informa]] |pages=52–6 |access-date=31 July 2019 |date=September 2005 |archive-url=https://web.archive.org/web/200603]]716/http://powerelectronics.com/mag/509PET26.pdf |archive-date=22 March 2006 |url-status=live }}</ref> 1974 से, [[ Yamaha ]], [[ JVC ]], [[ Pioneer Corporation ]], [[ Sony ]] और [[ Toshiba ]] ने पावर MOSFETs के साथ [[ ऑडियो एम्पलीफायर ]] s का निर्माण शुरू किया।<ref name="Duncan177">{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/177 177-8, 406] |url=https://archive.org/details/highperfomanceau0000dunc/page/177 }}</ref> [[ इंटरनेशनल रेक्टिफायर ]] ने 1978 में 25 ए, 400 वी पावर एमओएसएफईटी पेश किया<ref name="DEP">जैक्स अर्नोल्ड, पियरे मेरेल ''पावर इलेक्ट्रॉनिक्स के उपकरण'', एडिशन हर्मेस, {{ISBN|2-86601-306-9}} (फ्रेंच में</ref> यह उपकरण द्विध्रुवी ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालन की अनुमति देता है, लेकिन कम वोल्टेज अनुप्रयोगों तक सीमित है।
1969 में, पहली ऊर्ध्वाधर शक्ति मोसफेट(MOSFET) की शुरुआत गयी थी<ref>{{cite book |last1=Oxner |first1=E. S. |title=Fet Technology and Application |date=1988 |publisher=[[CRC Press]] |isbn=9780824780500 |page=18 |url=https://books.google.com/books?id=0AE-0e-sAnsC&pg=PA18}}</ref> जिसे बाद में [[ वीएमओएस |वीएमओएस]] (वी-ग्रूव मॉसफेट) के रूप में जाना गया था।<ref name="powerelectronics">{{cite journal |title=Advances in Discrete Semiconductors March On |url=https://www.powerelectronics.com/content/advances-discrete-semiconductors-march |journal=Power Electronics Technology |publisher=[[Informa]] |pages=52–6 |access-date=31 July 2019 |date=September 2005 |archive-url=https://web.archive.org/web/200603<nowiki>]]716/http://powerelectronics.com/mag/509PET26.pdf</nowiki> |archive-date=22 March 2006 |url-status=live }}</ref> 1974 से, यमाहा ([[ Yamaha |Yamaha)]] , जेवीसी ([[ JVC |JVC)]], पायनियर कॉर्पोरेशन [[ Pioneer Corporation |(Pioneer Corporation)]],[[ Sony | सोनी (Sony)]] और तोशिबा[[ Toshiba |(Toshiba)]] ने शक्ति मोसफेट (MOSFET) के साथ [[ ऑडियो एम्पलीफायर |ऑडियो प्रवर्धक (एम्पलीफायर)]] का निर्माण शुरू किया था।<ref name="Duncan177">{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/177 177-8, 406] |url=https://archive.org/details/highperfomanceau0000dunc/page/177 }}</ref>[[ इंटरनेशनल रेक्टिफायर |इंटरनेशनल रेक्टिफायर]] ने 1978 में 25ए (A), 400 वी (V) पावर मोसफेट पेश किया था।<ref name="DEP">जैक्स अर्नोल्ड, पियरे मेरेल ''पावर इलेक्ट्रॉनिक्स के उपकरण'', एडिशन हर्मेस, {{ISBN|2-86601-306-9}} (फ्रेंच में</ref> यह द्विध्रुवी ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालन की अनुमति देता है, लेकिन कम वोल्टेज अनुप्रयोगों तक सीमित है।


पावर एमओएसएफईटी दुनिया में सबसे आम  [[ पावर डिवाइस ]] है, इसकी कम गेट ड्राइव पावर, तेज स्विचिंग गति के कारण<ref name="aosmd">{{cite web |title=Power MOSFET Basics |url=http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf |website=Alpha & Omega Semiconductor |access-date=29 July 2019}}</ref> आसान उन्नत समानांतर क्षमता<ref name="aosmd"/><ref name="Duncan178">{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/178 178-81] |url=https://archive.org/details/highperfomanceau0000dunc/page/178 }}</ref> विस्तृत  [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) | बैंडविड्थ ]], कठोरता, आसान ड्राइव, सरल पूर्वाग्रह, आवेदन में आसानी, और मरम्मत में आसानी<ref name="Duncan178"/> इसमें पोर्टेबल [[ सूचना उपकरण ]], पावर इंटीग्रेटेड सर्किट, [[ सेल फोन ]], [[ नोटबुक कंप्यूटर ]], और [[ संचार इंफ्रास्ट्रक्चर ]] जैसे पावर इलेक्ट्रॉनिक अनुप्रयोगों की एक विस्तृत श्रृंखला है जो [[ इंटरनेट ]] को सक्षम बनाती है।<ref>{{उद्धरण पुस्तक |  अंतिम 1=व्हाइटले |  प्रथम 1 = कैरल |  अंतिम 2 = मैकलॉघलिन |  प्रथम 2 = जॉन रॉबर्ट |  शीर्षक = प्रौद्योगिकी, उद्यमी, और सिलिकॉन वैली |  दिनांक = 2002 |  प्रकाशक = प्रौद्योगिकी के इतिहास के लिए संस्थान |  आईएसबीएन = 9780964921719 |  यूआरएल = https://books.google.com/books?id=x9koAQAAIAAJ |  उद्धरण=सिलिकॉनिक्स के ये सक्रिय इलेक्ट्रॉनिक घटक, या पावर सेमीकंडक्टर उत्पाद, स्विच करने और परिवर्तित करने के लिए उपयोग किए जाते हैंपोर्टेबल सूचना उपकरणों से लेकर संचार बुनियादी ढांचे तक जो इंटरनेट को सक्षम बनाता है, सिस्टम की एक विस्तृत श्रृंखला में आरटी पावर। कंपनी के पावर MOSFETs - छोटे सॉलिड-स्टेट स्विच, या मेटल ऑक्साइड सेमीकंडक्टर फील्ड-इफ़ेक्ट ट्रांजिस्टर - और पावर इंटीग्रेटेड सर्किट का व्यापक रूप से सेल फोन और नोटबुक कंप्यूटर में बैटरी पावर को कुशलतापूर्वक प्रबंधित करने के लिए उपयोग किया जाता है}</ref>
शक्ति मोसफेट(MOSFET) दुनिया में सबसे साधारण [[ पावर डिवाइस |पावर डिवाइस]] है, इसकी गेट ड्राइव पावर कम, स्विचिंग गति तेज <ref name="aosmd">{{cite web |title=Power MOSFET Basics |url=http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf |website=Alpha & Omega Semiconductor |access-date=29 July 2019}}</ref> उन्नत समानांतर क्षमता आसान<ref name="aosmd" /><ref name="Duncan178">{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=9780080508047 |pages=[https://archive.org/details/highperfomanceau0000dunc/page/178 178-81] |url=https://archive.org/details/highperfomanceau0000dunc/page/178 }}</ref> [[ बैंडविड्थ (सिग्नल प्रोसेसिंग) |बैंडविड्थ]] विस्तृत, कठोरता, आसान ड्राइव, सरल पूर्वाग्रह, आवेदन में आसानी, और मरम्मत में आसानी से होती है।<ref name="Duncan178" /> इसमें पोर्टेबल [[ सूचना उपकरण |सूचना उपकरण]], पावर इंटीग्रेटेड सर्किट, मोबाइल फ़ोन [[ सेल फोन |(सेल फोन)]], लैपटॉप[[ नोटबुक कंप्यूटर | (नोटबुक कंप्यूटर)]], और [[ संचार इंफ्रास्ट्रक्चर |संचार अवसंरचना (कम्युनिकेशन इंफ्रास्ट्रक्चर)]] जैसे पावर इलेक्ट्रॉनिक अनुप्रयोगों की एक विस्तृत श्रृंखला है जो [[ इंटरनेट |इंटरनेट]] को सक्षम बनाती है।<ref><nowiki>{{उद्धरण पुस्तक |  अंतिम 1=व्हाइटले |  प्रथम 1 = कैरल |  अंतिम 2 = मैकलॉघलिन |  प्रथम 2 = जॉन रॉबर्ट |  शीर्षक = प्रौद्योगिकी, उद्यमी, और सिलिकॉन वैली |  दिनांक = 2002 |  प्रकाशक = प्रौद्योगिकी के इतिहास के लिए संस्थान |  आईएसबीएन = 9780964921719 |  यूआरएल = </nowiki>https://books.google.com/books?id=x9koAQAAIAAJ |  उद्धरण=सिलिकॉनिक्स के ये सक्रिय इलेक्ट्रॉनिक घटक, या पावर सेमीकंडक्टर उत्पाद, स्विच करने और परिवर्तित करने के लिए उपयोग किए जाते हैंपोर्टेबल सूचना उपकरणों से लेकर संचार बुनियादी ढांचे तक जो इंटरनेट को सक्षम बनाता है, सिस्टम की एक विस्तृत श्रृंखला में आरटी पावर। कंपनी के पावर MOSFETs - छोटे सॉलिड-स्टेट स्विच, या मेटल ऑक्साइड सेमीकंडक्टर फील्ड-इफ़ेक्ट ट्रांजिस्टर - और पावर इंटीग्रेटेड सर्किट का व्यापक रूप से सेल फोन और नोटबुक कंप्यूटर में बैटरी पावर को कुशलतापूर्वक प्रबंधित करने के लिए उपयोग किया जाता है}</ref>


1982 में, [[ इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर ]] (IGBT) पेश किया गया था। यह 1990 के दशक में व्यापक रूप से उपलब्ध हो गया। इस घटक में द्विध्रुवी ट्रांजिस्टर की पावर हैंडलिंग क्षमता और पावर एमओएसएफईटी के पृथक गेट ड्राइव के फायदे हैं।
1982 में, [[ इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर |इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर]] (IGBT) पेश किया गया था। यह 1990 के दशक में व्यापक रूप से उपलब्ध हो गया था। इस घटक में द्विध्रुवी ट्रांजिस्टर की पावर हैंडलिंग क्षमता और पावर मोसफेट(MOSFET) के पृथक गेट ड्राइव के फायदे हैं।


== डिवाइस ==
== उपकरण (डिवाइस) ==
पावर इलेक्ट्रॉनिक्स सिस्टम की क्षमताएं और मितव्ययिता उपलब्ध सक्रिय उपकरणों द्वारा निर्धारित की जाती है। पावर इलेक्ट्रॉनिक्स सिस्टम के डिजाइन में उनकी विशेषताएं और सीमाएं एक प्रमुख तत्व हैं। पूर्व में,  [[ पारा चाप वाल्व ]], उच्च-वैक्यूम और गैस से भरे डायोड थर्मिओनिक रेक्टिफायर, और  [[ थायराट्रॉन ]] और  [[ इग्निट्रॉन ]] जैसे ट्रिगर उपकरणों का व्यापक रूप से बिजली इलेक्ट्रॉनिक्स में उपयोग किया जाता था। जैसे-जैसे सॉलिड-स्टेट डिवाइसेज की रेटिंग में वोल्टेज और करंट-हैंडलिंग क्षमता दोनों में सुधार होता है, वैक्यूम डिवाइसेज को सॉलिड-स्टेट डिवाइसेस द्वारा लगभग पूरी तरह से बदल दिया गया है।
यह भी देखें: पावर सेमीकंडक्टर डिवाइस


पावर इलेक्ट्रॉनिक उपकरणों का उपयोग स्विच के रूप में, या एम्पलीफायरों के रूप में किया जा सकता है<ref name=Rashid07>मुहम्मद एच. राशिद, ''पावर इलेक्ट्रॉनिक्स हैंडबुक डिवाइसेस, सर्किट्स, एंड एप्लीकेशन्स'' - तीसरा संस्करण। इस कार्य में पेश की गई संरचना एक बहुस्तरीय इन्वर्टर है, जो अलग डीसी स्रोतों का उपयोग करती है। एसडीसीएस के साथ एक कैस्केड इन्वर्टर का उपयोग करने वाला बहुस्तरीय इन्वर्टर डीसी वोल्टेज के कई स्वतंत्र स्रोतों से वांछित वोल्टेज को संश्लेषित करता है, जो बैटरी, ईंधन सेल या सौर कोशिकाओं से प्राप्त किया जा सकता है। यह कॉन्फ़िगरेशन हाल ही में एसी बिजली की आपूर्ति और समायोज्य गति ड्राइव अनुप्रयोगों में बहुत लोकप्रिय हो गया है। यह नया इन्वर्टर अतिरिक्त क्लैम्पिंग डायोड या वोल्टेज बैलेंसिंग कैपेसिटर से बच सकता है। बटरवर्थ-हेनमैन, 2007 {{ISBN|978-0-12-382036-5}}</ref> एक  [[ आदर्श स्विच ]] या तो खुला है या बंद है और इसलिए कोई शक्ति नहीं है; यह एक लागू वोल्टेज का सामना करता है और कोई करंट पास नहीं करता है या बिना वोल्टेज ड्रॉप के किसी भी मात्रा में करंट पास करता है। स्विच के रूप में उपयोग किए जाने वाले सेमीकंडक्टर डिवाइस इस आदर्श संपत्ति का अनुमान लगा सकते हैं और इसलिए अधिकांश पावर इलेक्ट्रॉनिक एप्लिकेशन स्विचिंग डिवाइस को चालू और बंद करने पर भरोसा करते हैं, जो सिस्टम को बहुत कुशल बनाता है क्योंकि स्विच में बहुत कम बिजली बर्बाद होती है। इसके विपरीत, एम्पलीफायर के मामले में, डिवाइस के माध्यम से करंट एक नियंत्रित इनपुट के अनुसार लगातार बदलता रहता है। डिवाइस टर्मिनलों पर वोल्टेज और करंट [[ लोड लाइन (इलेक्ट्रॉनिक्स) |  लोड लाइन ]] का पालन करते हैं, और डिवाइस के अंदर बिजली अपव्यय लोड को दी गई शक्ति की तुलना में बड़ा है।
पावर इलेक्ट्रॉनिक्स सिस्टम की क्षमताएं और अर्थव्यवस्था उपलब्ध सक्रिय उपकरणों द्वारा निर्धारित की जाती है। पावर इलेक्ट्रॉनिक्स सिस्टम के डिजाइन में उनकी विशेषताएं और सीमाएं एक प्रमुख तत्व हैं। पहले [[ पारा चाप वाल्व |पारा चाप वाल्व]], उच्च-वैक्यूम और गैस से भरे डायोड थर्मिओनिक रेक्टिफायर, और [[ थायराट्रॉन |थायराट्रॉन]] (thyratron) और [[ इग्निट्रॉन |इग्निट्रॉन]] (ignitron) जैसे ट्रिगर उपकरणों का व्यापक रूप से बिजली इलेक्ट्रॉनिक्स में उपयोग किया जाता था। जैसे-जैसे सॉलिड-स्टेट डिवाइसेज के वोल्टेज और करंट-हैंडलिंग दोनों की अनुमतांक (रेटिंग) में सुधार होता है, वैसे वैसे  वैक्यूम डिवाइसेज को सॉलिड-स्टेट डिवाइसेस से पूरी तरह से बदल दिया जाता है।


कई विशेषताएं तय करती हैं कि उपकरणों का उपयोग कैसे किया जाता है। [[ डायोड ]] एस जैसे उपकरण आगे वोल्टेज लागू होने पर आचरण करते हैं और चालन की शुरुआत का कोई बाहरी नियंत्रण नहीं होता है। [[ सिलिकॉन-नियंत्रित रेक्टिफायर |  सिलिकॉन नियंत्रित रेक्टिफायर ]] और [[ थाइरिस्टर ]] एस (साथ ही पारा वाल्व और [[ थायरट्रॉन ]]) जैसे पावर डिवाइस चालन की शुरुआत को नियंत्रित करने की अनुमति देते हैं लेकिन उन्हें बंद करने के लिए वर्तमान प्रवाह के आवधिक उलट पर भरोसा करते हैं। . गेट टर्न-ऑफ थाइरिस्टर, [[ BJT ]] और [[ MOSFET ]] ट्रांजिस्टर जैसे उपकरण पूर्ण स्विचिंग नियंत्रण प्रदान करते हैं और उनके माध्यम से वर्तमान प्रवाह की परवाह किए बिना चालू या बंद किया जा सकता है। ट्रांजिस्टर डिवाइस भी आनुपातिक प्रवर्धन की अनुमति देते हैं, लेकिन इसका उपयोग शायद ही कभी कुछ सौ वाट से अधिक रेट किए गए सिस्टम के लिए किया जाता है। डिवाइस की नियंत्रण इनपुट विशेषताएँ भी डिज़ाइन को महत्वपूर्ण रूप से प्रभावित करती हैं; कभी-कभी, नियंत्रण इनपुट जमीन के संबंध में बहुत अधिक वोल्टेज पर होता है और इसे एक पृथक स्रोत द्वारा संचालित किया जाना चाहिए।
पावर इलेक्ट्रॉनिक उपकरणों का उपयोग स्विच के रूप या एम्पलीफायरों के रूप में किया जाता है। एक स्विच को खोला या बंद किया जा सकता है जिससे इसके द्वारा ऊर्जा का दोहन नहीं होता है, यह एक लागू वोल्टेज का सामना करता है और कोई करंट पास नहीं करता है या बिना वोल्टेज ड्रॉप के किसी भी मात्रा में करंट पास करता है। स्विच के रूप में उपयोग किए जाने वाले सेमीकंडक्टर डिवाइस इसका अनुमान लगा सकते हैं और इसलिए अधिकांश पावर इलेक्ट्रॉनिक एप्लिकेशन स्विचिंग डिवाइस को चालू और बंद करने पर भरोसा करते हैं, जो सिस्टम को बहुत कुशल बनाता है क्योंकि स्विच में बहुत कम बिजली बर्बाद होती है। इसके विपरीत, एम्पलीफायर में, डिवाइस से करंट एक नियंत्रित इनपुट के अनुसार लगातार बदलता रहता है। डिवाइस टर्मिनल पर वोल्टेज और करंट [[लोड लाइन (इलेक्ट्रॉनिक्स)|लोड लाइन]] का पालन करते हैं, और डिवाइस के अंदर बिजली अपव्यय लोड की तुलना में बड़ा होता है।
 
कई गुण निर्देशित करते हैं कि उपकरणों का उपयोग कैसे किया जाता है।[https://en.wikipedia.org/wiki/Diode | '''डायोड (diodes)''']] जैसे उपकरण आगे वोल्टेज लागू होने पर आचरण करते हैं और चालन की शुरुआत का कोई बाहरी नियंत्रण नहीं होता है। बिजली के उपकरण जैसे कि सिलिकॉन नियंत्रित रेक्टिफायर और थाइरिस्टर (साथ ही पारा वाल्व और थायरट्रॉन) चालन की शुरुआत को नियंत्रित करने की अनुमति देते हैं लेकिन उन्हें बंद करने के लिए वर्तमान प्रवाह के आवधिक उलट पर भरोसा करते हैं। गेट टर्न-ऑफ थाइरिस्टर, बीजेटी और एमओएसएफईटी ट्रांजिस्टर जैसे उपकरण पूर्ण स्विचिंग नियंत्रण प्रदान करते हैं और उनके माध्यम से वर्तमान प्रवाह की परवाह किए बिना चालू या बंद किया जा सकता है। ट्रांजिस्टर डिवाइस भी आनुपातिक प्रवर्धन की अनुमति देते हैं, लेकिन इसका उपयोग शायद ही कभी सौ वाट से अधिक रेट किए गए सिस्टम के लिए किया जाता है। डिवाइस की नियंत्रण इनपुट विशेषताएँ भी डिज़ाइन को महत्वपूर्ण रूप से प्रभावित करती हैं कभी-कभी नियंत्रण इनपुट जमीन के संबंध में बहुत अधिक वोल्टेज पर होता है और इसे एक अलग स्रोत द्वारा संचालित किया जाता है।


चूंकि पावर इलेक्ट्रॉनिक कनवर्टर में दक्षता प्रीमियम पर होती है, इसलिए पावर इलेक्ट्रॉनिक डिवाइस द्वारा उत्पन्न नुकसान जितना संभव हो उतना कम होना चाहिए।
चूंकि पावर इलेक्ट्रॉनिक कनवर्टर में दक्षता प्रीमियम पर होती है, इसलिए पावर इलेक्ट्रॉनिक डिवाइस द्वारा उत्पन्न नुकसान जितना संभव हो उतना कम होना चाहिए।


डिवाइस स्विचिंग गति में भिन्न होते हैं। कुछ डायोड और थाइरिस्टर अपेक्षाकृत धीमी गति के लिए उपयुक्त हैं और [[ उपयोगिता आवृत्ति | बिजली आवृत्ति ]] स्विचिंग और नियंत्रण के लिए उपयोगी हैं; कुछ थाइरिस्टर कुछ किलोहर्ट्ज़ पर उपयोगी होते हैं। MOSFETS और BJTs जैसे उपकरण बिजली अनुप्रयोगों में दसियों किलोहर्ट्ज़ पर कुछ मेगाहर्ट्ज़ तक स्विच कर सकते हैं, लेकिन बिजली के स्तर में कमी के साथ। वैक्यूम ट्यूब उपकरण बहुत उच्च आवृत्ति (सैकड़ों या हजारों मेगाहर्ट्ज़) अनुप्रयोगों पर उच्च शक्ति (सैकड़ों किलोवाट) पर हावी होते हैं। तेज़ स्विचिंग डिवाइस चालू से बंद और पीछे संक्रमण में खोई हुई ऊर्जा को कम करते हैं लेकिन आरए के साथ समस्याएँ पैदा कर सकते हैंविद्युत चुम्बकीय हस्तक्षेप। गेट ड्राइव (या समकक्ष) सर्किट को डिवाइस के साथ संभव पूर्ण स्विचिंग गति प्राप्त करने के लिए पर्याप्त ड्राइव चालू करने के लिए डिज़ाइन किया जाना चाहिए। तेजी से स्विच करने के लिए पर्याप्त ड्राइव के बिना एक उपकरण अतिरिक्त हीटिंग से नष्ट हो सकता है।
डिवाइस स्विचिंग गति से भिन्न होते हैं। कुछ डायोड और थाइरिस्टर अपेक्षाकृत धीमी गति के लिए उपयुक्त हैं और[[ उपयोगिता आवृत्ति | बिजली आवृत्ति]] स्विचिंग और नियंत्रण के लिए उपयोगी हैं, कुछ थाइरिस्टर कुछ किलोहर्ट्ज़ (KHz) पर उपयोगी होते हैं। मोसफेट(MOSFET) और बिजेटी (BJT) जैसे बिजली उपकरण अनुप्रयोगों में दस किलोहर्ट्ज़ (KHz) पर कुछ मेगाहर्ट्ज़ (MHz) तक स्विच कर सकते हैं, लेकिन बिजली के स्तर में कमी के साथ। वैक्यूम ट्यूब उपकरण बहुत उच्च आवृत्ति (सैकड़ों या हजारों मेगाहर्ट्ज़) अनुप्रयोगों पर उच्च शक्ति (सैकड़ों किलोवाट) पर हावी होते हैं। तेजी से स्विच करने वाले उपकरण चालू से बंद और पीछे संक्रमण में खोई हुई ऊर्जा को कम करते हैं लेकिन विकिरणित विद्युत चुम्बकीय हस्तक्षेप के साथ समस्याएं पैदा कर सकते हैं। गेट ड्राइव (या समकक्ष) सर्किट को डिवाइस के साथ संभव पूर्ण स्विचिंग गति प्राप्त करने के लिए पर्याप्त ड्राइव चालू करने के लिए डिज़ाइन किया जाना चाहिए। उपकरण में  तेजी से स्विच करने पर पर्याप्त ड्राइव न होतो  ज्यादा हीटिंग से वह नष्ट हो सकता है।
 
प्रायोगिक उपकरणों में एक गैर-शून्य वोल्टेज ड्रॉप होता है और चालू होने पर शक्ति को नष्ट कर देता है, और एक सक्रिय क्षेत्र से गुजरने में कुछ समय लगता है जब तक कि वे "चालू" या "बंद" स्थिति तक नहीं पहुंच जाते। ये नुकसान एक कनवर्टर में कुल खोई हुई शक्ति का एक महत्वपूर्ण हिस्सा हैं।
 
उपकरणों की डिजाइन में पावर हैंडलिंग और अपव्यय भी महत्वपूर्ण कारक है। पावर इलेक्ट्रॉनिक उपकरणों को दसियों या सैकड़ों वाट अपशिष्ट गर्मी को नष्ट करना पड़ सकता है, यहां तक ​​​​कि संचालन और गैर-संचालन राज्यों के बीच जितना संभव हो उतना कुशलता से स्विच करना चाहिए। स्विचिंग मोड में, नियंत्रित शक्ति स्विच में नष्ट होने वाली शक्ति से बहुत बड़ी होती है। संवाहक अवस्था में आगे की वोल्टेज ड्रॉप गर्मी में तब्दील हो जाती है जिसे समाप्त किया जाना चाहिए। उच्च शक्ति अर्धचालकों को अपने जंक्शन [[ तापमान |तापमान]] को प्रबंधित करने के लिए विशेष [[ हीट सिंक |हीट सिंक]] या सक्रिय कूलिंग सिस्टम की आवश्यकता होती है,[[ सिलिकॉन कार्बाइड | सिलिकॉन कार्बाइड]] जैसे विदेशी अर्धचालकों का इस संबंध में सीधे सिलिकॉन पर फायदा है, और जर्मेनियम, एक बार ठोस-राज्य इलेक्ट्रॉनिक्स का मुख्य-स्थल अब इसके प्रतिकूल उच्च तापमान गुणों के कारण बहुत कम उपयोग किया जाता है।
 
सेमीकंडक्टर डिवाइस में कुछ किलोवोल्ट (Kilovolt) मौजूद होते हैं। जहां बहुत अधिक वोल्टेज को नियंत्रित किया जाता है, सभी उपकरणों में वोल्टेज को बराबर करने के लिए नेटवर्क के साथ श्रृंखला में कई उपकरणों का उपयोग किया जाना चाहिए। फिर से, स्विचिंग गति एक महत्वपूर्ण कारक है क्योंकि सबसे धीमी-स्विचिंग डिवाइस को समग्र वोल्टेज के अनुपातहीन हिस्से का सामना करना पड़ेगा। पारा वाल्व एक बार एक इकाई में 100 केवी रेटिंग के साथ उपलब्ध थे, [[ हाई-वोल्टेज प्रत्यक्ष वर्तमान |एचवीडीसी (HVDC)]] प्रणालियों में उनके अनुप्रयोग को सरल बनाते हैं।
 
सेमीकंडक्टर डिवाइस की वर्तमान रेटिंग मरने के भीतर उत्पन्न गर्मी और इंटरकनेक्टिंग लीड के प्रतिरोध में विकसित गर्मी से सीमित होती है। सेमीकंडक्टर उपकरणों को इस तरह से डिजाइन किया जाना चाहिए कि करंट को डिवाइस के भीतर उसके आंतरिक जंक्शनों (या चैनलों) में समान रूप से वितरित किया जाए, एक बार एक हॉट स्पॉट विकसित हो जाने पर, ब्रेकडाउन प्रभाव डिवाइस को तेजी से नष्ट कर सकता है। कुछ एससीआर (SCR) एक इकाई में 3000 एम्पीयर (Ampere) की वर्तमान रेटिंग के साथ उपलब्ध हैं।
 
 
 


व्यावहारिक उपकरणों में एक गैर-शून्य वोल्टेज ड्रॉप होता है और चालू होने पर शक्ति को नष्ट कर देता है, और एक सक्रिय क्षेत्र से गुजरने में कुछ समय लगता है जब तक कि वे चालू या बंद स्थिति तक नहीं पहुंच जाते। ये नुकसान एक कनवर्टर में कुल खोई हुई शक्ति का एक महत्वपूर्ण हिस्सा हैं।


उपकरणों की पावर हैंडलिंग और अपव्यय भी डिजाइन में महत्वपूर्ण कारक है। पावर इलेक्ट्रॉनिक उपकरणों को दसियों या सैकड़ों वाट अपशिष्ट गर्मी को नष्ट करना पड़ सकता है, यहां तक ​​​​कि संचालन और गैर-संचालन राज्यों के बीच जितना संभव हो उतना कुशलता से स्विच करना। स्विचिंग मोड में, नियंत्रित शक्ति स्विच में नष्ट होने वाली शक्ति से बहुत बड़ी होती है। संवाहक अवस्था में आगे की वोल्टेज ड्रॉप गर्मी में तब्दील हो जाती है जिसे समाप्त किया जाना चाहिए। उच्च शक्ति अर्धचालकों को अपने जंक्शन  [[ तापमान ]] को प्रबंधित करने के लिए विशेष  [[ हीट सिंक ]] एस या सक्रिय कूलिंग सिस्टम की आवश्यकता होती है;  [[ सिलिकॉन कार्बाइड ]] जैसे विदेशी अर्धचालकों का इस संबंध में सीधे सिलिकॉन पर एक फायदा है, और जर्मेनियम, एक बार ठोस-राज्य इलेक्ट्रॉनिक्स का मुख्य-स्थल अब इसके प्रतिकूल उच्च तापमान गुणों के कारण बहुत कम उपयोग किया जाता है।


सेमीकंडक्टर डिवाइस एक डिवाइस में कुछ किलोवोल्ट तक की रेटिंग के साथ मौजूद होते हैं। जहां बहुत अधिक वोल्टेज को नियंत्रित किया जाना चाहिए, सभी उपकरणों में वोल्टेज को बराबर करने के लिए नेटवर्क के साथ श्रृंखला में कई उपकरणों का उपयोग किया जाना चाहिए। फिर से, स्विचिंग गति एक महत्वपूर्ण कारक है क्योंकि सबसे धीमी-स्विचिंग डिवाइस को समग्र वोल्टेज के अनुपातहीन हिस्से का सामना करना पड़ेगा। पारा वाल्व एक बार एक इकाई में 100 केवी रेटिंग के साथ उपलब्ध थे,  [[ हाई-वोल्टेज प्रत्यक्ष वर्तमान |  एचवीडीसी ]] सिस्टम में उनके आवेदन को सरल बनाते हैं।


सेमीकंडक्टर डिवाइस की वर्तमान रेटिंग मरने के भीतर उत्पन्न गर्मी और इंटरकनेक्टिंग लीड के प्रतिरोध में विकसित गर्मी से सीमित होती है। सेमीकंडक्टर उपकरणों को इस तरह से डिजाइन किया जाना चाहिए कि करंट को डिवाइस के भीतर उसके आंतरिक जंक्शनों (या चैनलों) में समान रूप से वितरित किया जाए; एक बार एक हॉट स्पॉट विकसित हो जाने पर, ब्रेकडाउन प्रभाव डिवाइस को तेजी से नष्ट कर सकता है। कुछ एससीआर एक इकाई में 3000 एम्पीयर की वर्तमान रेटिंग के साथ उपलब्ध हैं।


== डीसी/एसी कन्वर्टर्स (इनवर्टर) ==
== डीसी/एसी कन्वर्टर्स (इनवर्टर) ==


डीसी से एसी कन्वर्टर्स डीसी स्रोत से एसी आउटपुट तरंग उत्पन्न करते हैं। अनुप्रयोगों में [[ एडजस्टेबल स्पीड ड्राइव ]] एस (एएसडी), [[ अनइंटरप्टिबल पावर सप्लाई ]] (यूपीएस), [[ फ्लेक्सिबल एसी ट्रांसमिशन सिस्टम ]] एस (फैक्ट्स), वोल्टेज कम्पेसाटर और [[ फोटोवोल्टिक | फोटोवोल्टिक ]] [[ पावर इन्वर्टर | इनवर्टर ]] शामिल हैं। इन कन्वर्टर्स के लिए टोपोलॉजी को दो अलग-अलग श्रेणियों में विभाजित किया जा सकता है: वोल्टेज स्रोत इनवर्टर और वर्तमान स्रोत इनवर्टर। वोल्टेज स्रोत इनवर्टर (वीएसआई) का नाम इसलिए रखा गया है क्योंकि स्वतंत्र रूप से नियंत्रित आउटपुट एक वोल्टेज तरंग है। इसी तरह, करंट सोर्स इनवर्टर (CSI) इस मायने में अलग हैं कि नियंत्रित एसी आउटपुट एक करंट वेवफॉर्म है।
डीसी (DC) से एसी (AC) कन्वर्टर्स डीसी (DC) स्रोत से एसी (AC) आउटपुट तरंग उत्पन्न करते हैं। अनुप्रयोगों में[[ एडजस्टेबल स्पीड ड्राइव ]](एएसडी), [[ अनइंटरप्टिबल पावर सप्लाई |अनइंटरप्टिबल पावर सप्लाई]] (यूपीएस),[[ फ्लेक्सिबल एसी ट्रांसमिशन सिस्टम | फ्लेक्सिबल एसी ट्रांसमिशन सिस्टम]] (फैक्ट्स), वोल्टेज कम्पेसाटर और [[ फोटोवोल्टिक |फोटोवोल्टिक]][[ पावर इन्वर्टर | इनवर्टर]] शामिल हैं। इन कन्वर्टर्स के लिए टोपोलॉजी को दो अलग-अलग श्रेणियों में विभाजित किया जाता है, वोल्टेज स्रोत इनवर्टर और वर्तमान स्रोत इनवर्टर। वोल्टेज स्रोत इनवर्टर (वीएसआई) (VSI) का नाम इसलिए रखा गया है क्योंकि स्वतंत्र रूप से नियंत्रित आउटपुट एक वोल्टेज तरंग है। इसी तरह, धारा स्रोत इनवर्टर (CSI) इस मायने में अलग हैं कि नियंत्रित एसी (AC) आउटपुट एक करंट तरंगरूप (वेवफॉर्म) है।


डीसी से एसी बिजली रूपांतरण बिजली स्विचिंग उपकरणों का परिणाम है, जो आमतौर पर पूरी तरह से नियंत्रित अर्धचालक पावर स्विच होते हैं। इसलिए आउटपुट वेवफॉर्म असतत मूल्यों से बने होते हैं, जो चिकने लोगों के बजाय तेजी से संक्रमण पैदा करते हैं। कुछ अनुप्रयोगों के लिए, एसी शक्ति के साइनसोइडल तरंग का एक मोटा अनुमान भी पर्याप्त है। जहां एक निकट साइनसॉइडल तरंग की आवश्यकता होती है, स्विचिंग डिवाइस वांछित आउटपुट आवृत्ति की तुलना में बहुत तेजी से संचालित होते हैं, और किसी भी राज्य में खर्च किए जाने वाले समय को नियंत्रित किया जाता है, इसलिए औसत आउटपुट लगभग साइनसॉइडल होता है। सामान्य मॉड्यूलेशन तकनीकों में वाहक-आधारित तकनीक, या [[ पल्स-चौड़ाई मॉडुलन ]], [[ स्पेस वेक्टर मॉड्यूलेशन | स्पेस-वेक्टर तकनीक ]], और चयनात्मक-हार्मोनिक तकनीक शामिल हैं।<ref name=Rashid3>{{cite book|last=Rashid|first=M.H.|title=Power Electronics Handbook|year=2001|publisher=Academic Press|pages=225–250}}</ref>
डीसी (DC) से एसी (AC) विद्युत् परिवर्तन बिजली स्विचिंग उपकरणों का परिणाम है, जोकि नियंत्रित अर्धचालक पावर स्विच होते हैं। इसलिए वाह्य तरंगरूप उत्पाद (आउटपुट वेवफॉर्म) अलग मूल्यों से बने होते हैं, जो स्थिरता के बजाय तेजी से संक्रमण पैदा करते हैं। कुछ अनुप्रयोगों के लिए, एसी (AC) विद्युत् के साइनसोइडल तरंग का अनुमान भी पर्याप्त है। जहां एक निकट साइनसॉइडल तरंग की आवश्यकता होती है, स्विचिंग डिवाइस आउटपुट आवृत्ति की तुलना में बहुत तेजी से संचालित होते हैं, और किसी भी राज्य में खर्च किए जाने वाले समय को नियंत्रित किया जाता है, इसलिए औसत आउटपुट लगभग साइनसॉइडल होता है। सामान्य मॉड्यूलेशन तकनीकों में वाहक-आधारित तकनीक या [[ पल्स-चौड़ाई मॉडुलन |पल्स-चौड़ाई मॉडुलन]],[[ स्पेस वेक्टर मॉड्यूलेशन | स्पेस-वेक्टर तकनीक]] और चयनात्मक-हार्मोनिक तकनीक शामिल हैं।<ref name=Rashid3>{{cite book|last=Rashid|first=M.H.|title=Power Electronics Handbook|year=2001|publisher=Academic Press|pages=225–250}}</ref>


वोल्टेज स्रोत इनवर्टर का एकल-चरण और तीन-चरण दोनों अनुप्रयोगों में व्यावहारिक उपयोग होता है। सिंगल-फेज वीएसआई हाफ-ब्रिज और फुल-ब्रिज कॉन्फ़िगरेशन का उपयोग करते हैं, और व्यापक रूप से बिजली की आपूर्ति, एकल-चरण यूपीएस और मल्टीसेल कॉन्फ़िगरेशन में उपयोग किए जाने पर उच्च-शक्ति टोपोलॉजी के लिए उपयोग किए जाते हैं। तीन-चरण वीएसआई का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए साइनसॉइडल वोल्टेज तरंगों की आवश्यकता होती है, जैसे कि एएसडी, यूपीएस, और कुछ प्रकार के FACTS डिवाइस जैसे कि  [[ STATCOM ]]। उनका उपयोग उन अनुप्रयोगों में भी किया जाता है जहां मनमानी वोल्टेज की आवश्यकता होती है, जैसे सक्रिय पावर फिल्टर और वोल्टेज कम्पेसाटर के मामले में<ref name="Rashid3" />
वोल्टेज स्रोत इनवर्टर का एकल-चरण और तीन-चरण दोनों अनुप्रयोगों में उपयोग होता है। सिंगल-फेज वीएसआई (VSI) हाफ-ब्रिज और फुल-ब्रिज कॉन्फ़िगरेशन का उपयोग करते हैं, और व्यापक रूप से बिजली की आपूर्ति, एकल-चरण यूपीएस (UPS) और मल्टीसेल कॉन्फ़िगरेशन में उपयोग किए जाने पर उच्च-शक्ति टोपोलॉजी के लिए उपयोग किए जाते हैं। तीन-चरण वीएसआई (VSI) का उपयोग साइनसॉइडल वोल्टेज तरंगों की आवश्यकता के लिए किया जाता है, जैसे एएसडी (ASD), यूपीएस (UPS), और कुछ प्रकार के फैक्ट्स (FACTS) उपकरण जैसे स्टैटकॉम (STATCOM) में किया जाता है। उनका उपयोग उन अनुप्रयोगों में भी किया जाता है जहां मनमानी वोल्टेज की आवश्यकता होती है, जैसे सक्रिय पावर फिल्टर और वोल्टेज कम्पेसाटर।<ref name="Rashid3" />


करंट सोर्स इनवर्टर का उपयोग डीसी करंट सप्लाई से एसी आउटपुट करंट उत्पन्न करने के लिए किया जाता है। इस प्रकार का इन्वर्टर तीन-चरण अनुप्रयोगों के लिए व्यावहारिक है जिसमें उच्च-गुणवत्ता वाले वोल्टेज तरंगों की आवश्यकता होती है।
धारा स्रोत इनवर्टर का उपयोग डीसी (DC) करंट सप्लाई से एसी (AC) आउटपुट करंट उत्पन्न करने के लिए किया जाता है। तीन-चरण अनुप्रयोगों के लिए यह इन्वर्टर के लिए उपयोगी है जिसमें उच्च-गुणवत्ता वाले वोल्टेज तरंगों की आवश्यकता होती है।


एक अपेक्षाकृत नए वर्ग के इनवर्टर, जिसे बहुस्तरीय इनवर्टर कहा जाता है, ने व्यापक रुचि प्राप्त की है। सीएसआई और वीएसआई के सामान्य संचालन को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है, इस तथ्य के कारण कि बिजली स्विच सकारात्मक या नकारात्मक डीसी बस से जुड़ते हैं। यदि इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज स्तर उपलब्ध थे, तो एसी आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है। यही कारण है कि बहुस्तरीय इनवर्टर, हालांकि अधिक जटिल और महंगे हैं, उच्च प्रदर्शन प्रदान करते हैं<ref name=Trzynadlowski>{{cite book|last=Trzynadlowski|first=A.M.|title=Introduction to Modern Power Electronics|year=2010|publisher=Wiley|pages=269–341}}</ref>
बहुस्तरीय इनवर्टर एक नए वर्ग का इनवर्टर है, जिसमे व्यापक रुचि प्राप्त की गयी  है। सीएसआई (CSI) और वीएसआई (VSI) को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है, इस तथ्य के कारण बिजली स्विच सकारात्मक या नकारात्मक डीसी (DC) बस से जुड़ते हैं। इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज पर एसी (AC)आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है। इसलिए बहुस्तरीय इनवर्टर, अधिक जटिल और महंगे हैं, और उच्च प्रदर्शन करते हैं।<ref name=Trzynadlowski>{{cite book|last=Trzynadlowski|first=A.M.|title=Introduction to Modern Power Electronics|year=2010|publisher=Wiley|pages=269–341}}</ref>


प्रत्येक इन्वर्टर प्रकार उपयोग किए गए डीसी लिंक में भिन्न होता है, और इसमें  [[ फ्लाईबैक डायोड |  फ्रीव्हीलिंग डायोड ]] की आवश्यकता होती है या नहीं। या तो इसके इच्छित उपयोग के आधार पर स्क्वायर-वेव या पल्स-चौड़ाई मॉडुलन (पीडब्लूएम) मोड में संचालित करने के लिए बनाया जा सकता है। स्क्वायर-वेव मोड सरलता प्रदान करता है, जबकि पीडब्लूएम को कई अलग-अलग तरीकों से लागू किया जा सकता है और उच्च गुणवत्ता वाले तरंगों का उत्पादन करता है<ref name="Rashid3" />
प्रत्येक इन्वर्टर उपयोग किए गए डीसी (DC) लिंक में भिन्न होता है, चाहे उन्हें फ्रीव्हीलिंग डायोड की जरुरत हो या न हो। या तो स्क्वायर-वेव में संचालित करने के लिए या पल्स-चौड़ाई मॉडुलन (पीडब्लूएम) मोड में संचालित करने के लिए बनाया जा सकता है। स्क्वायर-वेव मोड सरलता प्रदान करता है, जबकि पीडब्लूएम को कई अलग-अलग तरीकों से लागू किया जा सकता है और उच्च गुणवत्ता वाले तरंगों का उत्पादन करता है। <ref name="Rashid3" />


वोल्टेज स्रोत इनवर्टर (वीएसआई) लगभग स्थिर-वोल्टेज स्रोत से आउटपुट इन्वर्टर अनुभाग को खिलाते हैं<ref name=Rashid3 />
वोल्टेज स्रोत इनवर्टर (वीएसआई)(VSI) लगभग स्थिर-वोल्टेज स्रोत से आउटपुट इन्वर्टर अनुभाग को सिंचित करते हैं।<ref name=Rashid3 />


वर्तमान आउटपुट तरंग की वांछित गुणवत्ता निर्धारित करती है कि किसी दिए गए एप्लिकेशन के लिए कौन सी मॉड्यूलेशन तकनीक का चयन किया जाना चाहिए। VSI का आउटपुट असतत मूल्यों से बना होता है। एक चिकनी वर्तमान तरंग प्राप्त करने के लिए,लोड को चुनिंदा हार्मोनिक आवृत्तियों पर आगमनात्मक होना चाहिए। स्रोत और लोड के बीच किसी प्रकार के आगमनात्मक फ़िल्टरिंग के बिना, एक कैपेसिटिव लोड लोड को बड़े और लगातार वर्तमान स्पाइक्स के साथ एक चंचल वर्तमान तरंग प्राप्त करने का कारण बनता है<ref name=Rashid3 />
वर्तमान आउटपुट तरंग की गुणवत्ता यह निर्धारित करती है कि दिए गए उपकरण के लिए कौन सी मॉड्यूलेशन तकनीक का चयन किया जाना चाहिए। वीएसआई (VSI) का आउटपुट असतत मूल्यों से बना होता है। एक चिकनी वर्तमान तरंग प्राप्त करने के लिए,लोड को चुनिंदा हार्मोनिक आवृत्तियों पर आगमनात्मक होना चाहिए। स्रोत और लोड के बीच बिना किसी आगमनात्मक फ़िल्टरिंग के, एक कैपेसिटिव लोड लोड को बड़े और लगातार वर्तमान स्पाइक्स के साथ एक गतिमान वर्तमान तरंग प्राप्त करने का कारण बनता है।<ref name=Rashid3 />


वीएसआई के तीन मुख्य प्रकार हैं:
वीएसआई (VSI) के तीन मुख्य प्रकार हैं:


# सिंगल-फेज हाफ-ब्रिज इन्वर्टर
# सिंगल-फेज हाफ-ब्रिज इन्वर्टर
Line 71: Line 80:
# तीन चरण वोल्टेज स्रोत इन्वर्टर
# तीन चरण वोल्टेज स्रोत इन्वर्टर


=== सिंगल-फेज हाफ-ब्रिज इन्वर्टर ===
=== सिंगल-फेज हाफ-ब्रिज इन्वर्टर: ===
सिंगल-फेज वोल्टेज स्रोत हाफ-ब्रिज इनवर्टर कम वोल्टेज अनुप्रयोगों के लिए हैं और आमतौर पर बिजली की आपूर्ति में उपयोग किए जाते हैं<ref name="Rashid3" /> चित्र 9 इस इन्वर्टर के सर्किट को दिखाता है।
सिंगल-फेज वोल्टेज स्रोत हाफ-ब्रिज इनवर्टर कम वोल्टेज पर बिजली की आपूर्ति के लिए उपयोग किए जाते हैं।<ref name="Rashid3" /> चित्र 9 इस इन्वर्टर के सर्किट को दिखाता है।
 
इन्वर्टर के संचालन से सोर्स वोल्टेज में लो-ऑर्डर करंट हार्मोनिक्स को  वापस अंत : क्षिप्त किया जाता है। इसका मतलब है कि इस डिज़ाइन में फ़िल्टरिंग के लिए दो बड़े कैपेसिटर की आवश्यकता होती है।<ref name=Rashid3 /> जैसा कि चित्र 9 दिखाता है, इन्वर्टर के प्रत्येक चरण में एक समय में केवल एक स्विच चालू हो सकता है। यदि प्रत्येक चरण में दो स्विच एक ही समय पर चालू करते हैं, तो डीसी (DC) स्रोत छोटा हो जाएगा।
 
मॉड्यूलेशन तकनीकों का उपयोग कर के इनवर्टर अपनी स्विचिंग योजनाओं को नियंत्रित कर सकते हैं। कैरियर-आधारित पीडब्लूएम (PWM) तकनीक, (AC) एसी आउटपुट वेवफ़ॉर्म, वीसी (v<sub>c</sub> ) की तुलना कैरियर वोल्टेज सिग्नल (v<sub>Δ )</sub> से करती है। जब v<sub>c</sub> बड़ा हो v<sub>Δ</sub> से, तो S+ चालू होता है और जब v<sub>c</sub> कम होता है <sub>,</sub> v<sub>Δ</sub> से, तो S- चालू है। जब एसी (AC) आउटपुट आवृत्ति (frequency) fc पर होता है जिसका आयाम (Amplitude) v<sub>c</sub> होता है, और त्रिकोणीय वाहक सिग्नल आवृत्ति (frequency) f<sub>Δ</sub> पर होता है, जिसका आयाम (Amplitude) v<sub>Δ  पर होता है तब पीडब्लूएम (PWM) वाहक आधारित पीडब्लूएम (PWM) का एक विशेष साइनसोइडल केस बन जाता है।<ref name="Rashid3" /> इस को साइनसॉइडल पल्स-चौड़ाई मॉड्यूलेशन (SPWM) कहा गया है। इस को, मॉड्यूलेशन इंडेक्स, या आयाम-मॉड्यूलेशन अनुपात के रूप में परिभाषित किया गया है।


इन्वर्टर के संचालन से लो-ऑर्डर करंट हार्मोनिक्स को सोर्स वोल्टेज में वापस इंजेक्ट किया जाता है। इसका मतलब है कि इस डिज़ाइन में फ़िल्टरिंग उद्देश्यों के लिए दो बड़े कैपेसिटर की आवश्यकता होती है<ref name=Rashid3 /> जैसा कि चित्र 9 दिखाता है, इन्वर्टर के प्रत्येक पैर में एक समय में केवल एक स्विच चालू हो सकता है। यदि एक लेग में दोनों स्विच एक ही समय पर चालू होते हैं, तो DC स्रोत छोटा हो जाएगा।
'''{{math|m<sub>a</sub> {{=}} v<sub>c</sub>/v<sub>∆</sub> }}'''


इनवर्टर अपनी स्विचिंग योजनाओं को नियंत्रित करने के लिए कई मॉड्यूलेशन तकनीकों का उपयोग कर सकते हैं। कैरियर-आधारित PWM तकनीक, AC आउटपुट वेवफ़ॉर्म, v<sub>c</sub> की तुलना कैरियर वोल्टेज सिग्नल, v<sub>Δ</sub> से करती है। जब v<sub>c</sub>, v<sub>Δ</sub> से बड़ा हो, तो S+ चालू होता है और जब v<sub>c</sub> v<sub>Δ</sub> से कम होता है , एस- चालू है। जब एसी आउटपुट आवृत्ति fc पर होता है जिसका आयाम v<sub>c</sub> होता है, और त्रिकोणीय वाहक सिग्नल आवृत्ति f<sub>Δ</sub> पर होता है, जिसका आयाम v<sub>Δ</ पर होता है। उप>, PWM वाहक आधारित PWM का एक विशेष साइनसोइडल केस बन जाता है<ref name=Rashid3 /> इस मामले को साइनसॉइडल पल्स-चौड़ाई मॉड्यूलेशन (SPWM) करार दिया गया है। इसके लिए, मॉड्यूलेशन इंडेक्स, या आयाम-मॉड्यूलेशन अनुपात, को '' के रूप में परिभाषित किया गया है।{{math|m<sub>a</sub> {{=}} v<sub>c</sub>/v<sub>∆</sub> }}'''.
सामान्यीकृत वाहक आवृत्ति, या आवृत्ति-मॉड्यूलेशन अनुपात की गणना इस समीकरण से की जाती है,


सामान्यीकृत वाहक आवृत्ति, या आवृत्ति-मॉड्यूलेशन अनुपात, समीकरण '' का उपयोग करके गणना की जाती है{{math|m<sub>f</sub> {{=}} f<sub>∆</sub>/f<sub>c</sub> }}'''<ref>{{Cite book|last=Kiruthiga|first=Murugeshan R. & Sivaprasath|url=https://books.google.com/books?id=KDRlDwAAQBAJ&q=mf+%3D+f%E2%88%86%2Ffc&pg=PA918|title=Modern Physics, 18th Edition|date=2017|publisher=S. Chand Publishing|isbn=978-93-5253-310-7|language=en}}</ref>
'''''{{math|m<sub>f</sub> {{=}} f<sub>∆</sub>/f<sub>c</sub> }}'''<nowiki/>'<nowiki/>''<ref>{{Cite book|last=Kiruthiga|first=Murugeshan R. & Sivaprasath|url=https://books.google.com/books?id=KDRlDwAAQBAJ&q=mf+%3D+f%E2%88%86%2Ffc&pg=PA918|title=Modern Physics, 18th Edition|date=2017|publisher=S. Chand Publishing|isbn=978-93-5253-310-7|language=en}}</ref>


यदि ओवर-मॉड्यूलेशन क्षेत्र, एमए, एक से अधिक है, तो एक उच्च मौलिक एसी आउटपुट वोल्टेज देखा जाएगा, लेकिन संतृप्ति की कीमत पर। SPWM के लिए, आउटपुट तरंग के हार्मोनिक्स अच्छी तरह से परिभाषित आवृत्तियों और आयामों पर हैं। यह इन्वर्टर के संचालन से निम्न-क्रम के वर्तमान हार्मोनिक इंजेक्शन के लिए आवश्यक फ़िल्टरिंग घटकों के डिज़ाइन को सरल करता है। ऑपरेशन के इस मोड में अधिकतम आउटपुट आयाम स्रोत वोल्टेज का आधा है। यदि अधिकतम आउटपुट आयाम, m<sub>a</sub>, 3.24 से अधिक है, तो इन्वर्टर का आउटपुट तरंग एक वर्ग तरंग बन जाता है<ref name=Rashid3 />
यदि ओवर-मॉड्यूलेशन क्षेत्र, m<sub>a</sub> एक से अधिक है, तो एक उच्च मौलिक एसी (AC) आउटपुट वोल्टेज दिखेगा, लेकिन संतृप्ति की कीमत पर। एसपीडब्लूएम (SPWM) के लिए, आउटपुट तरंग की गुणवृत्ति अच्छी तरह से परिभाषित आवृत्तियों और आयामों (Amplitude) पर होती हैं। इन्वर्टर के संचालन से निम्न-क्रम के वर्तमान हार्मोनिक इंजेक्शन के लिए आवश्यक फ़िल्टरिंग घटकों के डिज़ाइन को सरल रताक है। संचालन के इस तरीके मेंअधिकतम आउटपुट आयाम (Amplitude) स्रोत वोल्टेज का आधा होता है। यदि अधिकतम आउटपुट आयाम (Amplitude), m<sub>a</sub>, 3.24 से अधिक है, तो इन्वर्टर का आउटपुट तरंग एक वर्ग तरंग बन जाता है।<ref name=Rashid3 />


जैसा कि पल्स-चौड़ाई मॉड्यूलेशन (PWM) के लिए सही था, स्क्वायर वेव मॉड्यूलेशन के लिए एक लेग में दोनों स्विच एक ही समय में चालू नहीं किए जा सकते, क्योंकि इससे वोल्टेज स्रोत में शॉर्ट हो जाएगा। स्विचिंग योजना के लिए आवश्यक है कि S+ और S- दोनों AC आउटपुट अवधि के आधे चक्र के लिए चालू रहें<ref name=Rashid3 /> मौलिक एसी आउटपुट आयाम '' के बराबर है{{math|v<sub>o1</sub> {{=}} v<sub>aN</sub> {{=}} 2v<sub>i</sub>/π }}'''.
जैसा कि पल्स-चौड़ाई मॉड्यूलेशन (PWM) के लिए सही था, स्क्वायर वेव मॉड्यूलेशन के लिए एक चरण में दोनों स्विच एक ही समय में चालू नहीं किए जा सकते, क्योंकि इससे वोल्टेज स्रोत में शॉर्ट हो जाएगा। स्विचिंग योजना के लिए आवश्यक है कि S+ और S- दोनों AC आउटपुट अवधि के आधे चक्र के लिए चालू रहें।<ref name=Rashid3 />  


इसके हार्मोनिक्स का आयाम है ''{{math|v<sub>oh</sub> {{=}} v<sub>o1</sub>/h}}'''.
मौलिक एसी (AC)आउटपुट आयाम (Amplitude)  है''     {{math|v<sub>o1</sub> {{=}} v<sub>aN</sub> {{=}} 2v<sub>i</sub>/π }}''


इसलिए, एसी आउटपुट वोल्टेज को इन्वर्टर द्वारा नियंत्रित नहीं किया जाता है, बल्कि इन्वर्टर के डीसी इनपुट वोल्टेज के परिमाण द्वारा नियंत्रित किया जाता है<ref name=Rashid3 />
इसके हार्मोनिक्स का आयाम (Amplitude) है           ''{{math|v<sub>oh</sub> {{=}} v<sub>o1</sub>/h}}'''.


मॉड्यूलेशन तकनीक के रूप में सेलेक्टिव हार्मोनिक एलिमिनेशन (एसएचई) का उपयोग करने से इन्वर्टर के स्विचिंग को चुनिंदा आंतरिक हार्मोनिक्स को खत्म करने की अनुमति मिलती है। एसी आउटपुट वोल्टेज के मूलभूत घटक को एक वांछनीय सीमा के भीतर भी समायोजित किया जा सकता है। चूंकि इस मॉड्यूलेशन तकनीक से प्राप्त एसी आउटपुट वोल्टेज में विषम आधा और विषम क्वार्टर-वेव समरूपता है, यहां तक ​​​​कि हार्मोनिक्स भी मौजूद नहीं हैं<ref name=Rashid3 /> आउटपुट तरंग से कोई भी अवांछनीय विषम (N-1) आंतरिक हार्मोनिक्स eli . हो सकता हैमनोनीत।
इसलिए इन्वर्टर के एसी (AC) आउटपुट वोल्टेज से नियंत्रित नहीं किया जाता है, बल्कि इन्वर्टर के डीसी (DC) इनपुट वोल्टेज से नियंत्रित किया जाता है।<ref name=Rashid3 />
 
मॉड्यूलेशन तकनीक के रूप में सेलेक्टिव हार्मोनिक एलिमिनेशन (एसएचई) का उपयोग करने से इन्वर्टर के स्विचिंग को चुनिंदा आंतरिक हार्मोनिक्स को खत्म करने की अनुमति मिलती है। एसी (AC) आउटपुट वोल्टेज के मूलभूत घटक को एक वांछनीय सीमा के भीतर भी समायोजित किया जा सकता है। चूंकि इस मॉड्यूलेशन तकनीक से प्राप्त एसी (AC) आउटपुट वोल्टेज में विषम आधा और विषम क्वार्टर-वेव समरूपता है, यहां तक ​​कि हार्मोनिक्स भी मौजूद नहीं हैं। [15] आउटपुट तरंग से किसी भी अवांछनीय विषम (N-1) आंतरिक हार्मोनिक्स को समाप्त किया जा सकता है।


=== सिंगल-फेज फुल-ब्रिज इन्वर्टर ===
=== सिंगल-फेज फुल-ब्रिज इन्वर्टर ===
फुल-ब्रिज इन्वर्टर हाफ ब्रिज-इन्वर्टर के समान है, लेकिन इसमें न्यूट्रल पॉइंट को लोड से जोड़ने के लिए एक अतिरिक्त लेग है<ref name="Rashid3" /> चित्रा 3 एकल-चरण वोल्टेज स्रोत पूर्ण-पुल इन्वर्टर के सर्किट योजनाबद्ध को दर्शाता है।
फुल-ब्रिज इन्वर्टर हाफ ब्रिज-इन्वर्टर के समान है, लेकिन इसमें न्यूट्रल पॉइंट को लोड से जोड़ने के लिए एक अलग चरण है।<ref name="Rashid3" /> चित्रा 3 एकल-चरण वोल्टेज स्रोत पूर्ण-पुल इन्वर्टर के सर्किट योजनाबद्ध को दर्शाता है।


वोल्टेज स्रोत को छोटा करने से बचने के लिए, S1+ और S1- एक ही समय पर चालू नहीं हो सकते हैं, और S2+ और S2- भी एक ही समय पर चालू नहीं हो सकते हैं। फुल-ब्रिज कॉन्फ़िगरेशन के लिए उपयोग की जाने वाली किसी भी मॉड्यूलेटिंग तकनीक में किसी भी समय प्रत्येक लेग के ऊपर या नीचे का स्विच होना चाहिए। अतिरिक्त लेग के कारण, आउटपुट वेवफॉर्म का अधिकतम आयाम वीआई है, और हाफ-ब्रिज कॉन्फ़िगरेशन के लिए अधिकतम प्राप्त करने योग्य आउटपुट आयाम से दोगुना बड़ा है।<ref name=Rashid3 />
वोल्टेज स्रोत को छोटा करने से बचने के लिए, S1 और S1- एक ही समय में चालू नहीं कर सकते हैं, और S2 और S2- भी एक ही समय पे  चालू नहीं हो सकते हैं। फुल-ब्रिज कॉन्फ़िगरेशन में उपयोग होने वाली मॉड्यूलेटिंग तकनीक को किसी भी समय में प्रत्येक चरण के ऊपर या नीचे का स्विच ही होना चाहिए। अतिरिक्त चरण के कारण, वाह्य तरंगरूप (आउटपुट वेवफॉर्म) का अधिकतम आयाम (Amplitude) वीआई है, और हाफ-ब्रिज कॉन्फ़िगरेशन के लिए अधिकतम प्राप्त करने योग्य आउटपुट आयाम (Amplitude) दोगुना से बड़ा है।<ref name=Rashid3 />


तालिका 2 से राज्यों 1 और 2 का उपयोग द्विध्रुवी SPWM के साथ एसी आउटपुट वोल्टेज उत्पन्न करने के लिए किया जाता है। एसी आउटपुट वोल्टेज केवल दो मान ले सकता है, या तो वीआई या -वीआई। हाफ-ब्रिज कॉन्फ़िगरेशन का उपयोग करके इन समान अवस्थाओं को उत्पन्न करने के लिए, एक वाहक आधारित तकनीक का उपयोग किया जा सकता है। आधे पुल के लिए S+ चालू होना S1+ और S2- पूर्ण-पुल के लिए चालू होने के अनुरूप है। इसी तरह, आधे पुल के लिए S- चालू होना S1- और S2+ के पूर्ण पुल के लिए होने के अनुरूप है। इस मॉड्यूलेशन तकनीक के लिए आउटपुट वोल्टेज कम या ज्यादा साइनसॉइडल है, जिसमें एक मौलिक घटक होता है जिसका रैखिक क्षेत्र में आयाम से कम या बराबर होता है<ref name=Rashid3 /> ''{{math|v<sub>o1</sub> {{=}}v<sub>ab1</sub{{=}} v<उप>मैं</sub{{*}}मी<उप>ए</उप>}}'''.
तालिका 2 (table 2) में राज्य 1 और 2 का उपयोग द्विध्रुवी एसपीडब्लूऍम (SPWM) के साथ एसी (AC) आउटपुट वोल्टेज उत्पन्न करने के लिए किया जाता है। एसी (AC)आउटपुट वोल्टेज केवल दो मान (values) ले सकता है, या तो वीआई (Vi) या -वीआई (-Vi)। हाफ-ब्रिज कॉन्फ़िगरेशन का उपयोग करके इन समान अवस्थाओं को उत्पन्न करने के लिए, एक तकनीक का उपयोग किया जा सकता है। हाफ-ब्रिज के लिए S+ चालू होना S1+ और S2- फुल-ब्रिज के लिए चालू होने के अनुरूप है। इसी तरह, हाफ-ब्रिज के लिए S- चालू होना S1- और S2+ के फुल-ब्रिज के लिए होने के अनुरूप है। इस मॉड्यूलेशन तकनीक के लिए आउटपुट वोल्टेज कम या ज्यादा साइनसॉइडल है, जिसमें एक मौलिक घटक होता है जिसका रैखिक क्षेत्र में आयाम (Amplitude) से कम या बराबर होता है<ref name=Rashid3 />  


द्विध्रुवी पीडब्लूएम तकनीक के विपरीत, एकध्रुवीय दृष्टिकोण अपने एसी आउटपुट वोल्टेज को उत्पन्न करने के लिए तालिका 2 से 1, 2, 3 और 4 राज्यों का उपयोग करता है। इसलिए, एसी आउटपुट वोल्टेज वीआई, 0 या -वी [1]i मान ले सकता है। इन अवस्थाओं को उत्पन्न करने के लिए, दो साइनसोइडल मॉड्यूलेटिंग सिग्नल, Vc और -Vc की आवश्यकता होती है, जैसा कि चित्र 4 में देखा गया है।
'''''v<sub>o1</sub> =v<sub>ab1</sub>= v<sub>i</sub> • m<sub>a</sub>'''.''


Vc का उपयोग VaN उत्पन्न करने के लिए किया जाता है, जबकि -Vc का उपयोग VbN उत्पन्न करने के लिए किया जाता है। निम्नलिखित संबंध को एकध्रुवीय वाहक-आधारित SPWM'' कहा जाता है{{math|v<sub>o1</sub> {{=}}{{*}}<sub> an1 </sub/sub . में{{=}} v<उप>मैं</sub{{*}}मी<उप>ए</उप>}}'''.
द्विध्रुवी पीडब्लूएम तकनीक के विपरीत, एकध्रुवीय दृष्टिकोण अपने एसी (AC) आउटपुट वोल्टेज को उत्पन्न करने के लिए तालिका 2 (table 2) से 1, 2, 3 और 4 राज्यों का उपयोग करता है। इसलिए, एसी (AC) आउटपुट वोल्टेज Vi, 0 or –V [1]i मान (values) ले सकता है। इन अवस्थाओं को उत्पन्न करने के लिए, दो साइनसोइडल मॉड्यूलेटिंग सिग्नल, Vc और -Vc की आवश्यकता होती है, जैसा कि चित्र 4 में देखा गया है।


चरण वोल्टेज VaN और VbN समान हैं, लेकिन 180 डिग्री एक दूसरे के साथ चरण से बाहर हैं। आउटपुट वोल्टेज दो-चरण वोल्टेज के अंतर के बराबर है, और इसमें कोई भी हार्मोनिक्स नहीं है। इसलिए, यदि एमएफ लिया जाता है, तो एसी आउटपुट वोल्टेज हार्मोनिक्स भी सामान्यीकृत विषम आवृत्तियों पर दिखाई देगा, एफएच। ये आवृत्तियाँ सामान्यीकृत वाहक आवृत्ति के दोगुने मान पर केंद्रित होती हैं। उच्च गुणवत्ता आउटपुट तरंग प्राप्त करने का प्रयास करते समय यह विशेष सुविधा छोटे फ़िल्टरिंग घटकों की अनुमति देती है<ref name=Rashid3 />
Vc का उपयोग VaN उत्पन्न करने के लिए, जबकि -Vc का उपयोग VbN उत्पन्न करने के लिए किया जाता है। निम्नलिखित संबंध को एकध्रुवीय वाहक-आधारित एसपीडब्लूऍम (SPWM) कहा जाता है


जैसा कि हाफ-ब्रिज एसएचई के मामले में था, एसी आउटपुट वोल्टेज में इसके विषम आधे और विषम क्वार्टर-वेव समरूपता के कारण कोई भी हार्मोनिक्स नहीं होता है<ref name=Rashid3 />
'''v<sub>o1</sub> =2 • v<sub>aN1</sub>= v<sub>i</sub> • m<sub>a</sub>'''.'.
 
वोल्टेज  रूप VaN और VbN समान हैं, लेकिन 180 डिग्री एक दूसरे के साथ चरण से बाहर हैं। आउटपुट वोल्टेज दो-चरण वोल्टेज के अंतर के बराबर है, और इसमें कोई भी हार्मोनिक्स नहीं है। इसलिए, यदि एमएफ (mf) लिया जाता है, तो एसी (AC) आउटपुट वोल्टेज हार्मोनिक्स भी सामान्यीकृत विषम आवृत्तियों एफएच (fh) पर दिखाई देगा। ये आवृत्तियाँ सामान्यीकृत वाहक आवृत्ति के दोगुने मान (values) पर केंद्रित होती हैं। उच्च गुणवत्ता आउटपुट तरंग पाने के प्रयास के समय यह विशेष सुविधा छोटे फ़िल्टरिंग घटकों की अनुमति देता है।<ref name=Rashid3 />
 
जैसा कि हाफ-ब्रिज एसएचई में था, एसी (AC) आउटपुट वोल्टेज में इसके आधे  विषम और क्वार्टर-वेव विषम समरूपता के कारण कोई भी हार्मोनिक्स नहीं होता है।<ref name=Rashid3 />


=== तीन चरण वोल्टेज स्रोत इन्वर्टर ===
=== तीन चरण वोल्टेज स्रोत इन्वर्टर ===


सिंगल-फेज वीएसआई मुख्य रूप से कम पावर रेंज अनुप्रयोगों के लिए उपयोग किया जाता है, जबकि तीन-चरण वीएसआई मध्यम और उच्च पावर रेंज दोनों अनुप्रयोगों को कवर करता है।<ref name=Rashid3 /> चित्रा 5 तीन चरण वीएसआई के लिए सर्किट योजनाबद्ध दिखाता है।
सिंगल-फेज वीएसआई का उपयोग काम पावर रेंज अनुप्रयोगों के लिए जाता है, जबकि तीन-चरण वीएसआई मध्यम और उच्च पावर रेंज दोनों अनुप्रयोगों को कवर करता है।<ref name=Rashid3 /> चित्रा 5 तीन चरण वीएसआई के लिए सर्किट योजनाबद्ध दिखाता है।


इन्वर्टर के तीनों पैरों में से किसी में भी स्विच एक साथ बंद नहीं किया जा सकता है, जिसके परिणामस्वरूप वोल्टेज संबंधित लाइन करंट की ध्रुवता पर निर्भर होता है। राज्य 7 और 8 शून्य एसी लाइन वोल्टेज उत्पन्न करते हैं, जिसके परिणामस्वरूप एसी लाइन धाराएं ऊपरी या निचले घटकों के माध्यम से फ्रीव्हीलिंग करती हैं। हालांकि, 1 से 6 राज्यों के लिए लाइन वोल्टेज एक एसी लाइन वोल्टेज उत्पन्न करते हैं जिसमें वीआई, 0 या -वी के असतत मान होते हैं।<ref name=Rashid3 />
इन्वर्टर के तीनों चरणों में से किसी में भी स्विच को एक साथ बंद नहीं किया जा सकता है, जिसके परिणामस्वरूप वोल्टेज संबंधित लाइन करंट की ध्रुवता पर निर्भर होता है। राज्य 7 और 8 शून्य एसी (AC) लाइन वोल्टेज उत्पन्न करते हैं, जिसके परिणामस्वरूप एसी (AC) लाइन धाराएं ऊपरी या निचले घटकों के माध्यम से फ्रीव्हीलिंग करती हैं। हालांकि, 1 से 6 राज्यों के लिए लाइन वोल्टेज एक एसी (AC) लाइन वोल्टेज उत्पन्न करते हैं जिसमें वीआई, 0 या -वी के अलग मान (values) होते हैं।<ref name=Rashid3 />


तीन-चरण एसपीडब्लूएम के लिए, तीन मॉड्यूलेटिंग सिग्नल जो एक दूसरे के साथ चरण से 120 डिग्री बाहर हैं, आउट-ऑफ-फेज लोड वोल्टेज का उत्पादन करने के लिए उपयोग किया जाता है। एकल वाहक संकेत के साथ PWM सुविधाओं को संरक्षित करने के लिए, सामान्यीकृत वाहक आवृत्ति, mf, को तीन का गुणज होना चाहिए। यह चरण वोल्टेज के परिमाण को समान रखता है, लेकिन एक दूसरे के साथ चरण से बाहर 120 डिग्री<ref name=Rashid3 /> रैखिक क्षेत्र में अधिकतम प्राप्य चरण वोल्टेज आयाम, एक से कम या उसके बराबर, है ''{{math|v<sub>phase</sub> {{=}} v<उप>मैं</sub{{\}}2}}'''. अधिकतम प्राप्य लाइन वोल्टेज आयाम है ''{{math|V<sub>ab1</sub> {{=}} व्<सुब>अब</सुब{{*}}{{radic|3}}{{\}}2}}'''
तीन-चरण एसपीडब्लूएम (SPWM) के लिए, तीन मॉड्यूलेटिंग सिग्नल जो एक दूसरे के साथ चरण से 120 डिग्री बाहर हैं, आउट-ऑफ-फेज लोड वोल्टेज का उत्पादन करने के लिए उपयोग किया जाता है। एकल वाहक संकेत के साथ पीडब्लूएम (PWM) सुविधाओं को संरक्षित करने के लिए, सामान्यीकृत वाहक आवृत्ति, mf, को तीन का गुणज (multiple) होना चाहिए। यह चरण वोल्टेज के परिमाण को समान रखता है, लेकिन 120 डिग्री तक एक दूसरे के साथ चरण से बाहर होता है।<ref name=Rashid3 /> रैखिक क्षेत्र में अधिकतम प्राप्य चरण वोल्टेज आयाम, एक से कम या उसके बराबर है,


लोड वोल्टेज को नियंत्रित करने का एकमात्र तरीका इनपुट डीसी वोल्टेज को बदलना है।
'''vphase = vi / 2'''


=== वर्तमान स्रोत इनवर्टर ===
अधिकतम प्राप्य लाइन वोल्टेज आयाम है  '''Vab1 = vab • 3 / 2'''
 
लोड वोल्टेज को नियंत्रित करने का एकमात्र तरीका इनपुट डीसी (DC) वोल्टेज को बदलना है।
 
=== धारा स्रोत इनवर्टर ===


[[File:Three-Phase Current Source Inverter.jpg|thumb|right|'''फिगर 7:''' थ्री-फेज करंट सोर्स इन्वर्टर ]]
[[File:Three-Phase Current Source Inverter.jpg|thumb|right|'''फिगर 7:''' थ्री-फेज करंट सोर्स इन्वर्टर ]]
Line 121: Line 144:
[[File:Space-Vector Representation in Current Source Inverters.jpg|thumb|right|''' चित्र 9:''' वर्तमान स्रोत इनवर्टर में अंतरिक्ष-वेक्टर प्रतिनिधित्व ]]
[[File:Space-Vector Representation in Current Source Inverters.jpg|thumb|right|''' चित्र 9:''' वर्तमान स्रोत इनवर्टर में अंतरिक्ष-वेक्टर प्रतिनिधित्व ]]


करंट सोर्स इनवर्टर डीसी करंट को एसी करंट वेवफॉर्म में बदलते हैं। साइनसॉइडल एसी तरंगों की आवश्यकता वाले अनुप्रयोगों में, परिमाण, आवृत्ति और चरण सभी को नियंत्रित किया जाना चाहिए। सीएसआई में वर्तमान समय में उच्च परिवर्तन होते हैं, इसलिए कैपेसिटर आमतौर पर एसी की तरफ नियोजित होते हैं, जबकि डीसी पक्ष पर आमतौर पर इंडक्टर्स कार्यरत होते हैं<ref name=Rashid3 /> फ्रीव्हीलिंग डायोड की अनुपस्थिति के कारण, पावर सर्किट आकार और वजन में कम हो जाता है, और वीएसआई की तुलना में अधिक विश्वसनीय हो जाता है।<ref name=Trzynadlowski /> हालांकि एकल-चरण टोपोलॉजी संभव है, तीन-चरण सीएसआई अधिक व्यावहारिक हैं।
धारा स्रोत इनवर्टर डीसी (DC) करंट को एसी (AC) करंट तरंगरूप (वेवफॉर्म) में बदलते हैं। साइनसॉइडल एसी (AC) तरंगों की आवश्यकता वाले अनुप्रयोगों में, जटिलता, आवृत्ति और चरण सभी को नियंत्रित किया जाना चाहिए। सीएसआई (CSI) में वर्तमान समय में उच्च परिवर्तन होते हैं, इसलिए कैपेसिटर आमतौर पर एसी (AC) की तरफ लगाए जाते हैं, जबकि इंडक्टर्स आमतौर पर डीसी (DC) साइड पर लगाए जाते हैं।<ref name=Rashid3 /> फ्रीव्हीलिंग डायोड की अनुपस्थिति के कारण, पावर सर्किट आकार और वजन में कम हो जाता है, और वीएसआई (VSI) की तुलना में अधिक विश्वसनीय हो जाता है।<ref name=Trzynadlowski /> हालांकि एकल-चरण टोपोलॉजी संभव है, तीन-चरण सीएसआई (CSI) अधिक व्यावहारिक हैं।


अपने सबसे सामान्यीकृत रूप में, एक तीन-चरण सीएसआई छह-पल्स रेक्टिफायर के समान चालन अनुक्रम को नियोजित करता है। किसी भी समय, केवल एक सामान्य-कैथोड स्विच और एक सामान्य-एनोड स्विच चालू होता है<ref name=Trzynadlowski />
अपने सबसे सामान्यीकृत रूप में, एक तीन-चरण सीएसआई (CSI) छह-पल्स रेक्टिफायर के समान चालन अनुक्रम को नियोजित करता है। किसी भी समय, केवल एक कॉमन-कैथोड स्विच और एक कॉमन-एनोड स्विच चालू होता है।<ref name=Trzynadlowski />


परिणामस्वरूप, रेखा धाराएं -ii, 0 और ii के असतत मान लेती हैं। राज्यों को इस तरह चुना जाता है कि एक वांछित तरंग आउटपुट होता है और केवल वैध राज्यों का उपयोग किया जाता है। यह चयन मॉड्यूलेटिंग तकनीकों पर आधारित है, जिसमें वाहक-आधारित PWM, चयनात्मक हार्मोनिक उन्मूलन और अंतरिक्ष-वेक्टर तकनीक शामिल हैं।<ref name=Rashid3 />
परिणामस्वरूप, रेखा धाराएं -ii, 0 और ii अलग मान (values) लेती हैं। राज्यों को इस तरह चुना जाता है कि एक वांछित तरंग आउटपुट हो और केवल वैध राज्यों का उपयोग किया जाता हो। यह चयन मॉड्यूलेटिंग तकनीकों पर आधारित है, जिसमें वाहक-आधारित पीडब्लूएम (PWM), चयनात्मक हार्मोनिक उन्मूलन और अंतरिक्ष-वेक्टर तकनीक शामिल हैं।<ref name=Rashid3 />


वीएसआई के लिए उपयोग की जाने वाली कैरियर-आधारित तकनीकों को सीएसआई के लिए भी लागू किया जा सकता है, जिसके परिणामस्वरूप सीएसआई लाइन धाराएं वीएसआई लाइन वोल्टेज के समान व्यवहार करती हैं। संकेतों को मॉड्यूलेट करने के लिए उपयोग किए जाने वाले डिजिटल सर्किट में एक स्विचिंग पल्स जनरेटर, एक शॉर्टिंग पल्स जनरेटर, एक शॉर्टिंग पल्स डिस्ट्रीब्यूटर और एक स्विचिंग और शॉर्टिंग पल्स कॉम्बिनर होता है। एक वाहक वर्तमान और तीन मॉड्यूलेटिंग संकेतों के आधार पर एक गेटिंग सिग्नल उत्पन्न होता है<ref name=Rashid3 />
वीएसआई (VSI) के लिए उपयोग की जाने वाली कैरियर-आधारित तकनीकों को सीएसआई (CSI) के लिए भी लागू किया जा सकता है, जिसके परिणामस्वरूप सीएसआई (CSI) लाइन धाराएं वीएसआई (VSI) लाइन वोल्टेज के समान व्यवहार करती हैं। संकेतों को मॉड्यूलेट करने के लिए उपयोग किए जाने वाले डिजिटल सर्किट में एक स्विचिंग पल्स जनरेटर, एक शॉर्टिंग पल्स जनरेटर, एक शॉर्टिंग पल्स डिस्ट्रीब्यूटर और एक स्विचिंग और शॉर्टिंग पल्स कॉम्बिनर होता है। एक वाहक वर्तमान और तीन मॉड्यूलेटिंग संकेतों के आधार पर एक गेटिंग सिग्नल उत्पन्न होता है।<ref name=Rashid3 />


इस सिग्नल में एक शॉर्टिंग पल्स जोड़ा जाता है जब कोई शीर्ष स्विच और कोई निचला स्विच गेट नहीं होता है, जिससे आरएमएस धाराएं सभी पैरों में बराबर हो जाती हैं। प्रत्येक चरण के लिए समान विधियों का उपयोग किया जाता है, हालांकि, स्विचिंग चर एक दूसरे के सापेक्ष चरण से 120 डिग्री बाहर होते हैं, और वर्तमान दालों को आउटपुट धाराओं के संबंध में आधा चक्र द्वारा स्थानांतरित किया जाता है। यदि एक त्रिकोणीय वाहक का उपयोग साइनसॉइडल मॉड्यूलेटिंग सिग्नल के साथ किया जाता है, तो सीएसआई को सिंक्रनाइज़-पल्स-चौड़ाई-मॉड्यूलेशन (एसपीडब्लूएम) का उपयोग करने के लिए कहा जाता है। यदि एसपीडब्लूएम के साथ संयोजन में पूर्ण ओवर-मॉड्यूलेशन का उपयोग किया जाता है तो इन्वर्टर को स्क्वायर-वेव ऑपरेशन में कहा जाता है<ref name=Rashid3 />
शॉर्टिंग पल्स को इस सिग्नल में तब जोड़ा जाता है जब कोई टॉप स्विच और कोई बॉटम स्विच गेट नहीं होता है, जिससे आरएमएस (RMS) करंट सभी चरण में बराबर हो जाता है। प्रत्येक चरण के लिए समान विधियों का उपयोग किया जाता है, हालांकि, स्विचिंग चर एक दूसरे के सापेक्ष चरण से 120 डिग्री बाहर होते हैं, और वर्तमान दालों को आउटपुट धाराओं के संबंध में आधा चक्र द्वारा स्थानांतरित किया जाता है। यदि एक त्रिकोणीय वाहक का उपयोग साइनसॉइडल मॉड्यूलेटिंग सिग्नल के साथ किया जाता है, तो सीएसआई (CSI) को सिंक्रोनाइज्ड-पल्स-चौड़ाई-मॉड्यूलेशन (एसपीडब्लूएम) का उपयोग करने के लिए कहा जाता है।<ref name=Rashid3 />


दूसरी सीएसआई मॉडुलन श्रेणी, एसएचई भी अपने वीएसआई समकक्ष के समान है। वीएसआई के लिए विकसित किए गए गेटिंग सिग्नल और साइनसॉइडल करंट सिग्नल को सिंक्रोनाइज़ करने के एक सेट का उपयोग करने से, सममित रूप से वितरित शॉर्टिंग पल्स और इसलिए, सममित गेटिंग पैटर्न का परिणाम होता है। यह किसी भी मनमानी संख्या में हार्मोनिक्स को समाप्त करने की अनुमति देता है<ref name=Rashid3 /> यह प्राथमिक स्विचिंग कोणों के उचित चयन के माध्यम से मौलिक लाइन करंट को नियंत्रित करने की भी अनुमति देता है। इष्टतम स्विचिंग पैटर्न में क्वार्टर-वेव और हाफ-वेव समरूपता, साथ ही समरूपता लगभग 30 डिग्री और 150 डिग्री होनी चाहिए। 60 डिग्री और 120 डिग्री के बीच स्विचिंग पैटर्न की अनुमति कभी नहीं दी जाती है। बड़े आउटपुट कैपेसिटर के उपयोग के साथ या स्विचिंग पल्स की संख्या में वृद्धि करके वर्तमान तरंग को और कम किया जा सकता है<ref name=Trzynadlowski />
दूसरी सीएसआई (CSI) मॉडुलन श्रेणी, एसएचई भी अपने वीएसआई (VSI) समकक्ष के समान है। वीएसआई (VSI) के लिए विकसित किए गए गेटिंग सिग्नल और साइनसॉइडल करंट सिग्नल को सिंक्रोनाइज़ करने के एक सेट का उपयोग करने से, सममित रूप से वितरित शॉर्टिंग पल्स और इसलिए, सममित गेटिंग पैटर्न का परिणाम होता है। यह किसी भी मनमानी संख्या में हार्मोनिक्स को समाप्त करने की अनुमति देता है।<ref name=Rashid3 /> यह प्राथमिक स्विचिंग कोणों के उचित चयन के माध्यम से मौलिक लाइन करंट को नियंत्रित करने की भी अनुमति देता है। इष्टतम स्विचिंग पैटर्न में क्वार्टर-वेव और हाफ-वेव समरूपता, साथ ही समरूपता लगभग 30 डिग्री और 150 डिग्री होनी चाहिए। 60 डिग्री और 120 डिग्री के बीच स्विचिंग पैटर्न की अनुमति कभी नहीं दी जाती है। वर्तमान तरंग को बड़े आउटपुट कैपेसिटर के उपयोग से या स्विचिंग दालों की संख्या में वृद्धि करके और कम किया जा सकता है।<ref name=Trzynadlowski />


तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉडुलन, पीडब्लूएम लोड लाइन धाराएं उत्पन्न करती है जो औसत लोड लाइन धाराओं के बराबर होती है। वैध स्विचिंग राज्य और समय चयनs को डिजिटल रूप से अंतरिक्ष वेक्टर परिवर्तन पर आधारित बनाया गया है। परिवर्तन समीकरण का उपयोग करके मॉड्यूलेटिंग संकेतों को एक जटिल वेक्टर के रूप में दर्शाया जाता है। संतुलित तीन-चरण साइनसॉइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो आवृत्ति पर घूमता है, । इन अंतरिक्ष वैक्टरों का उपयोग मॉड्यूलेटिंग सिग्नल को अनुमानित करने के लिए किया जाता है। यदि संकेत मनमाना वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर I7, I8, या I9 के साथ जोड़ा जाता है<ref name=Rashid3 /> निम्नलिखित समीकरणों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि उत्पन्न धाराएं और वर्तमान वैक्टर औसत समकक्ष हैं।
तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉडुलन, पीडब्लूएम लोड लाइन धाराएं उत्पन्न करती है जो औसत लोड लाइन धाराओं के बराबर होती है। अंतरिक्ष वेक्टर परिवर्तन के आधार पर वैध स्विचिंग राज्य और समय चयन डिजिटल रूप से किए जाते हैं। परिवर्तन समीकरण का उपयोग करके मॉड्यूलेटिंग संकेतों को एक जटिल वेक्टर के रूप में दर्शाया जाता है। संतुलित तीन-चरण साइनसॉइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो आवृत्ति(frequency) <math>\omega</math> पर घूमता है। इन अंतरिक्ष सदिशों का उपयोग मॉड्यूलेटिंग सिग्नल का अनुमान लगाने के लिए किया जाता है। यदि संकेत मनमाना वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर I7, I8, या I9 के साथ जोड़ दिया जाता है।<ref name=Rashid3 /> निम्नलिखित समीकरणों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि उत्पन्न धाराएं और वर्तमान वैक्टर औसत समकक्ष हैं।


=== मल्टीलेवल इनवर्टर ===
=== मल्टीलेवल इनवर्टर ===


बहुस्तरीय इनवर्टर नामक एक अपेक्षाकृत नए वर्ग ने व्यापक रुचि प्राप्त की है। सीएसआई और वीएसआई के सामान्य संचालन को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है क्योंकि पावर स्विच सकारात्मक या नकारात्मक डीसी बस से जुड़ते हैं<ref name=Trzynadlowski /> यदि इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज स्तर उपलब्ध थे, तो एसी आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है<ref name=Rashid3 /> इस कारण से बहुस्तरीय इनवर्टर, हालांकि अधिक जटिल और महंगे हैं, उच्च प्रदर्शन प्रदान करते हैं<ref name=Trzynadlowski /> चित्र 10 में एक तीन-स्तरीय न्यूट्रल-क्लैम्प्ड इन्वर्टर दिखाया गया है।
बहुस्तरीय इनवर्टर अपेक्षाकृत नए वर्ग ने बहुत दूर तक रुचि प्राप्त की है। सीएसआई (CSI) और वीएसआई (VSI) को दो-स्तरीय इनवर्टर के रूप में बाटा जा सकता है क्योंकि पावर स्विच सकारात्मक या नकारात्मक डीसी (DC) बस से जुड़ते हैं।<ref name=Trzynadlowski /> यदि इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज उपलब्ध थे, तो एसी (AC) आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है।<ref name=Rashid3 /> इस लिए बहुस्तरीय इनवर्टर, अधिक जटिल और महंगे हैं, और उच्च प्रदर्शन प्रदान करते हैं।<ref name=Trzynadlowski /> चित्र 10 में एक तीन-स्तरीय न्यूट्रल-क्लैम्प्ड इन्वर्टर दिखाया गया है।


तीन-स्तरीय इन्वर्टर के लिए नियंत्रण विधियां केवल प्रत्येक चरण में चार स्विच के दो स्विच को एक साथ चालन राज्यों को बदलने की अनुमति देती हैं। यह सुगम आवागमन की अनुमति देता है और केवल वैध राज्यों का चयन करके शूट थ्रू से बचा जाता है<ref name=Trzynadlowski /> यह भी ध्यान दिया जा सकता है कि चूंकि डीसी बस वोल्टेज कम से कम दो पावर वाल्व द्वारा साझा किया जाता है, इसलिए उनकी वोल्टेज रेटिंग दो-स्तरीय समकक्ष से कम हो सकती है।
तीन-स्तरीय इन्वर्टर की नियंत्रण विधि में प्रत्येक चरण में चार स्विच के दो स्विच को एक साथ बदलने की अनुमति देता हैं। यह सुचारू रूप से आवागमन की अनुमति देता है और केवल वैध राज्यों का चयन करके शूट थ्रू से बचा जाता है।<ref name=Trzynadlowski /> इसपे भी ध्यान दे सकते है चूंकि डीसी (DC) बस वोल्टेज कम से कम दो पावर वाल्व द्वारा साझा किया जाता है, इसलिए इसकी वोल्टेज रेटिंग दो-स्तरीय समकक्ष से कम हो सकती है।


बहुस्तरीय टोपोलॉजी के लिए कैरियर-आधारित और अंतरिक्ष-वेक्टर मॉड्यूलेशन तकनीकों का उपयोग किया जाता है। इन तकनीकों के लिए विधियां क्लासिक इनवर्टर का अनुसरण करती हैं, लेकिन अतिरिक्त जटिलता के साथ। स्पेस-वेक्टर मॉड्यूलेशन मॉड्यूलेशन सिग्नल को अनुमानित करने में उपयोग किए जाने वाले निश्चित वोल्टेज वैक्टर की एक बड़ी संख्या प्रदान करता है, और इसलिए अधिक विस्तृत एल्गोरिदम की कीमत पर अधिक प्रभावी स्पेस वेक्टर पीडब्लूएम रणनीतियों को पूरा करने की अनुमति देता है। अतिरिक्त जटिलता और अर्धचालक उपकरणों की संख्या के कारण, बहुस्तरीय इनवर्टर वर्तमान में उच्च-शक्ति वाले उच्च-वोल्टेज अनुप्रयोगों के लिए अधिक उपयुक्त हैं।<ref name=Trzynadlowski />
बहुस्तरीय टोपोलॉजी के लिए कैरियर-आधारित और अंतरिक्ष-वेक्टर मॉड्यूलेशन तकनीकों का उपयोग किया जाता है। इन तकनीकों के लिए विधियां क्लासिक इनवर्टर का अनुसरण जटिलता के साथ करती हैं। स्पेस-वेक्टर मॉड्यूलेशन, मॉड्यूलेशन सिग्नल को अनुमानित करने में उपयोग किए जाने वाले निश्चित वोल्टेज वैक्टर की एक बड़ी संख्या प्रदान करता है, और इसलिए अधिक विस्तृत एल्गोरिदम की कीमत पर अधिक प्रभावी स्पेस वेक्टर पीडब्लूएम (PWM) रणनीतियों को पूरा करने की अनुमति देता है। अतिरिक्त जटिलता और अर्धचालक उपकरणों की संख्या के कारण, बहुस्तरीय इनवर्टर वर्तमान में उच्च-शक्ति वाले उच्च-वोल्टेज अनुप्रयोगों के लिए अधिक उपयुक्त हैं।<ref name=Trzynadlowski />यह तकनीक हार्मोनिक्स को कम करके योजना की समस्त दक्षता में सुधार करती है।
यह तकनीक हार्मोनिक्स को कम करती है इसलिए योजना की समग्र दक्षता में सुधार करती है।


== एसी/एसी कन्वर्टर्स ==
== एसी (AC)/ एसी (AC) कन्वर्टर्स ==


एसी पावर को एसी पावर में कनवर्ट करने से आपूर्ति एसी सिस्टम से लोड पर लागू तरंग के वोल्टेज, आवृत्ति और चरण के नियंत्रण की अनुमति मिलती है<ref name=Rashid>{{cite book|last=Rahsid|first=M.H.|title=Power Electronics Handbook: Devices, Circuits, and Applications|year=2010|publisher=Elsevier|isbn= 978-0-12-382036-5|pages=147–564}}</ref> कन्वर्टर्स के प्रकारों को अलग करने के लिए जिन दो मुख्य श्रेणियों का उपयोग किया जा सकता है, वे हैं कि क्या तरंग की आवृत्ति बदल जाती है<ref name=Skvarenina>{{cite book|last=Skvarenina|first=T.L.|title=The power electronics handbook Industrial electronics series|year=2002|publisher=CRC Press|isbn= 978-0-8493-7336-7|pages=94–140}}</ref> [[ एसी/एसी कनवर्टर ]] जो उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है उसे एसी वोल्टेज नियंत्रक या एसी नियामक के रूप में जाना जाता है। एसी कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति बदलने की अनुमति देते हैं, उन्हें एसी से एसी रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में संदर्भित किया जाता है। फ़्रीक्वेंसी कन्वर्टर्स के तहत तीन अलग-अलग प्रकार के कन्वर्टर्स होते हैं जो आमतौर पर उपयोग किए जाते हैं: साइक्लोकोनवर्टर, मैट्रिक्स कन्वर्टर, डीसी लिंक कन्वर्टर (उर्फ एसी/डीसी/एसी कन्वर्टर)
एसी (AC) पावर को एसी (AC) पावर में बदलने से आपूर्ति एसी (AC) सिस्टम से लोड पर लागू तरंग के वोल्टेज, आवृत्ति और चरण के नियंत्रण की अनुमति मिलती है।<ref name=Rashid>{{cite book|last=Rahsid|first=M.H.|title=Power Electronics Handbook: Devices, Circuits, and Applications|year=2010|publisher=Elsevier|isbn= 978-0-12-382036-5|pages=147–564}}</ref> कन्वर्टर्स के प्रकारों को अलग करने के लिए दो मुख्य श्रेणियों का उपयोग किया जा सकता है, या तरंग की आवृत्ति बदल जाती है।<ref name=Skvarenina>{{cite book|last=Skvarenina|first=T.L.|title=The power electronics handbook Industrial electronics series|year=2002|publisher=CRC Press|isbn= 978-0-8493-7336-7|pages=94–140}}</ref> एसी (AC) वोल्टेज नियंत्रक, या एसी (AC) नियामक में एसी (AC) /एसी कनवर्टर उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है। एसी (AC) कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति बदलने की अनुमति देते हैं, उन्हें एसी (AC) से एसी (AC) रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में जाना जाता है। आवृति कन्वर्टर्स में तीन अलग-अलग प्रकार के कन्वर्टर्स होते हैं जो साइक्लोकन्वर्टर, मैट्रिक्स कन्वर्टर, डीसी लिंक कन्वर्टर (उर्फ एसी/डीसी/एसी कन्वर्टर) में उपयोग किए जाते हैं।


'''एसी वोल्टेज नियंत्रक:''' एक एसी वोल्टेज नियंत्रक, या एसी नियामक का उद्देश्य, एक स्थिर आवृत्ति पर आरएमएस वोल्टेज को पूरे लोड में बदलना है<ref name=Rashid /> आम तौर पर स्वीकार की जाने वाली तीन नियंत्रण विधियां चालू/बंद नियंत्रण, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर कंट्रोल (पीडब्लूएम एसी चॉपर कंट्रोल) हैं।<ref name=Rashid2>{{cite book|last=Rashid|first=M.H.|title=Digital power electronics and applications Electronics & Electrical|year=2005|publisher=Academic Press|isbn= 978-0-12-088757-6}}</ref> इन तीनों विधियों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।
'''एसी वोल्टेज नियंत्रक:''' एसी (AC) वोल्टेज नियंत्रक, या एसी (AC) नियामक का उद्देश्य एक स्थिर आवृत्ति पर आरएमएस (RMS) वोल्टेज को पूरे लोड में बदलना है<ref name=Rashid /> तीन नियंत्रण विधियां जो आमतौर पर स्वीकार की जाती है वो है चालू/बंद नियंत्रण, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर कंट्रोल (पीडब्लूएम एसी चॉपर कंट्रोल)<ref name=Rashid2>{{cite book|last=Rashid|first=M.H.|title=Digital power electronics and applications Electronics & Electrical|year=2005|publisher=Academic Press|isbn= 978-0-12-088757-6}}</ref> इन तीनों विधियों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।
* चालू / बंद नियंत्रण: आमतौर पर हीटिंग लोड या मोटर्स के गति नियंत्रण के लिए उपयोग किया जाता है, इस नियंत्रण विधि में एन इंटीग्रल साइकिल के लिए स्विच चालू करना और एम इंटीग्रल साइकिल के लिए स्विच को बंद करना शामिल है। क्योंकि स्विच को चालू और बंद करने से अवांछनीय हार्मोनिक्स का निर्माण होता है, शून्य-वोल्टेज और शून्य-वर्तमान स्थितियों (शून्य-क्रॉसिंग) के दौरान स्विच चालू और बंद होते हैं, विरूपण को प्रभावी ढंग से कम करते हैं<ref name=Rashid2 />
* '''चालू / बंद नियंत्रण:''' आमतौर पर हीटिंग लोड या मोटर्स के गति नियंत्रण के लिए उपयोग किया जाता है, इस नियंत्रण विधि में एन इंटीग्रल साइकिल के लिए स्विच चालू करना और एम इंटीग्रल साइकिल के लिए स्विच को बंद करना शामिल है। क्योंकि स्विच को चालू और बंद करने से अवांछनीय हार्मोनिक्स का निर्माण होता है, शून्य-वोल्टेज और शून्य-वर्तमान स्थितियों (शून्य-क्रॉसिंग) के दौरान स्विच चालू और बंद होते हैं, विरूपण को प्रभावी ढंग से कम करते हैं।<ref name=Rashid2 />
* चरण-कोण नियंत्रण: विभिन्न तरंगों पर चरण-कोण नियंत्रण को लागू करने के लिए विभिन्न सर्किट मौजूद हैं, जैसे कि आधा-लहर या पूर्ण-लहर वोल्टेज नियंत्रण। आमतौर पर उपयोग किए जाने वाले बिजली इलेक्ट्रॉनिक घटक डायोड, एससीआर और ट्राइक हैं। इन घटकों के उपयोग के साथ, उपयोगकर्ता एक लहर में फायरिंग कोण में देरी कर सकता है, जिससे लहर का केवल एक हिस्सा आउटपुट में होगा<ref name=Rashid />
* '''चरण-कोण नियंत्रण:''' विभिन्न तरंगों पर चरण-कोण नियंत्रण को लागू करने के लिए विभिन्न सर्किट मौजूद हैं, जैसे कि आधा-लहर (half-wave) या पूर्ण-लहर (full-wave) वोल्टेज नियंत्रण। आमतौर पर बिजली इलेक्ट्रॉनिक में उपयोग किए जाने वाले घटक डायोड, एससीआर (SCR)और ट्राइक (Traics) हैं। इन घटकों के उपयोग के साथ, उपयोगकर्ता एक लहर में फायरिंग कोण में देरी कर सकता है, जिससे लहर का केवल एक हिस्सा आउटपुट में होता है।<ref name=Rashid />
* पीडब्लूएम एसी चॉपर कंट्रोल: अन्य दो नियंत्रण विधियों में अक्सर खराब हार्मोनिक्स, आउटपुट करंट क्वालिटी और इनपुट पावर फैक्टर होता है। इन मूल्यों को सुधारने के लिए अन्य तरीकों के बजाय पीडब्लूएम का उपयोग किया जा सकता है। पीडब्लूएम एसी चॉपर में ऐसे स्विच होते हैं जो इनपुट वोल्टेज के वैकल्पिक आधे चक्र के भीतर कई बार चालू और बंद होते हैं<ref name=Rashid2 />
* '''पीडब्लूएम एसी चॉपर कंट्रोल:''' दोनो अन्य नियंत्रण विधियों में अक्सर खराब हार्मोनिक्स, आउटपुट वर्तमान गुणवत्ता और इनपुट पावर फैक्टर होता है। अन्य तरीकों के बजाय पीडब्लूएम (PWM) का उपयोग इन मूल्यों को सुधारने के लिए किया जाता है। पीडब्लूएम एसी (AC) चॉपर में ऐसे स्विच होते हैं जो इनपुट वोल्टेज के हर आधे चक्र के अंदर कई बार चालू और बंद होते हैं।<ref name=Rashid2 />


'''मैट्रिक्स कन्वर्टर्स और साइक्लोकॉनवर्टर:'''  [[ साइक्लोकोनवर्टर ]] एस का व्यापक रूप से एसी से एसी रूपांतरण के लिए उद्योग में उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम हैं। वे कम्यूटेड डायरेक्ट फ़्रीक्वेंसी कन्वर्टर्स हैं जो एक सप्लाई लाइन द्वारा सिंक्रोनाइज़ किए जाते हैं। साइक्लोकोनवर्टर आउटपुट वोल्टेज तरंगों में जटिल हार्मोनिक्स होते हैं जिनमें उच्च-क्रम वाले हार्मोनिक्स को मशीन इंडक्शन द्वारा फ़िल्टर किया जाता है। जिससे मशीन के करंट में कम हार्मोनिक्स होते हैं, जबकि शेष हार्मोनिक्स में नुकसान और टॉर्क स्पंदन होता है। ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स के विपरीत, कोई इंडक्टर्स या कैपेसिटर नहीं होते हैं, यानी कोई स्टोरेज डिवाइस नहीं होता है। इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर बराबर हैं<ref name=Tolbert>{{उद्धरण वेब |  अंतिम = टॉलबर्ट |  प्रथम = एल.एम. |  शीर्षक = साइक्लोकॉनवर्टर |  यूआरएल = https://www.scribd.com/sagar%20jaiswal/d/18197288-Cycloconverters |  प्रकाशक = दस विश्वविद्यालयनेसी |  पहुंच-तिथि = 23 मार्च 2012}</ref>
'''मैट्रिक्स कन्वर्टर्स और साइक्लोकॉनवर्टर:'''  उद्योग में एसी (AC) से एसी (AC) रूपांतरण के लिए साइक्लोकॉनवर्टर का व्यापक रूप से उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम हैं। ये कम्यूटेड डायरेक्ट फ़्रीक्वेंसी कन्वर्टर्स हैं जो एक सप्लाई लाइन द्वारा सिंक्रोनाइज़ किए जाते हैं। साइक्लोकॉनवर्टर आउटपुट वोल्टेज तरंगों में जटिल हार्मोनिक्स होते हैं जिनमें उच्च-क्रम वाले हार्मोनिक्स मशीन इंडक्शन द्वारा फ़िल्टर किए जाते हैं। जिससे मशीन के करंट में कम हार्मोनिक्स होते हैं, जबकि शेष हार्मोनिक्स में नुकसान और टॉर्क स्पंदन होता है। ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स से भिन्न, कोई इंडक्टर्स या कैपेसिटर नहीं होते हैं, यानी कोई स्टोरेज डिवाइस नहीं होता है। इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर बराबर होते हैं।<ref name=Tolbert>{{उद्धरण वेब |  अंतिम = टॉलबर्ट |  प्रथम = एल.एम. |  शीर्षक = साइक्लोकॉनवर्टर |  यूआरएल = https://www.scribd.com/sagar%20jaiswal/d/18197288-Cycloconverters |  प्रकाशक = दस विश्वविद्यालयनेसी |  पहुंच-तिथि = 23 मार्च 2012}</ref>
* सिंगल-फेज से सिंगल-फेज [[ साइक्लोकॉनवर्टर ]] एस: सिंगल-फेज से सिंगल-फेज साइक्लोकोनवर्टर्स ने हाल ही में अधिक रुचि आकर्षित करना शुरू किया {{when|date=March 2012}} बिजली इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण। एकल-चरण उच्च आवृत्ति एसी वोल्टेज या तो साइनसोइडल या ट्रेपोजॉइडल हो सकता है। ये नियंत्रण उद्देश्य या शून्य वोल्टेज कम्यूटेशन के लिए शून्य वोल्टेज अंतराल हो सकते हैं।
* सिंगल-फेज से सिंगल-फेज [[ साइक्लोकॉनवर्टर |साइक्लोकॉनवर्टर]] : पावर इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण सिंगल-फेज से सिंगल-फेज साइक्लोकॉनवर्टर्स ने हाल ही में [कब?] अधिक रुचि लेना शुरू किया है। एकल-चरण उच्च आवृत्ति एसी (AC) वोल्टेज या तो साइनसोइडल या ट्रेपोजॉइडल हो सकता है। ये नियंत्रण उद्देश्य के लिए शून्य वोल्टेज अंतराल या शून्य वोल्टेज कम्यूटेशन हो सकते हैं।
* तीन-चरण से एकल-चरण [[ साइक्लोकॉनवर्टर ]] एस: एकल-चरण साइक्लोकॉनवर्टर के लिए तीन-चरण दो प्रकार के होते हैं: 3φ से 1φ आधा तरंग साइक्लोकॉनवर्टर और 3φ से 1φ ब्रिज साइक्लोकॉनवर्टर। दोनों सकारात्मक और नकारात्मक कन्वर्टर्स किसी भी ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक वर्तमान की आपूर्ति करता है, और नकारात्मक कनवर्टर केवल नकारात्मक वर्तमान की आपूर्ति करता है।
* तीन-चरण से एकल-चरण [[ साइक्लोकॉनवर्टर |साइक्लोकॉनवर्टर]] : तीन-चरण से एकल-चरण [[ साइक्लोकॉनवर्टर |साइक्लोकॉनवर्टर]] दो प्रकार के होते हैं, 3φ से 1φ आधा तरंग साइक्लोकॉनवर्टर और 3φ से 1φ ब्रिज साइक्लोकॉनवर्टर। सकारात्मक और नकारात्मक दोनों कन्वर्टर्स किसी भी ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक वर्तमान की और नकारात्मक कनवर्टर केवल नकारात्मक वर्तमान की आपूर्ति करता है।


हाल ही में डिवाइस की प्रगति के साथ, साइक्लोकोनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे मैट्रिक्स कन्वर्टर्स। पहला बदलाव जो पहली बार देखा गया है वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग करते हैं। सिंगल फेज से सिंगल फेज मैट्रिक्स कन्वर्टर में 9 स्विच का मैट्रिक्स होता है जो तीन इनपुट फेज को ट्री आउटपुट फेज से जोड़ता है। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किन्हीं दो स्विचों को जोड़े बिना किसी भी समय एक साथ जोड़ा जा सकता है; अन्यथा यह इनपुट चरणों के शॉर्ट सर्किट का कारण बनेगा। मैट्रिक्स कन्वर्टर्स अन्य कनवर्टर समाधानों की तुलना में हल्के, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे उच्च स्तर के एकीकरण, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक बिजली प्रवाह प्राप्त करने में सक्षम हैं जो ऊर्जा को उपयोगिता में वापस लाने के लिए उपयुक्त हैं।
हाल ही में डिवाइस की प्रगति के साथ, साइक्लोकोनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे मैट्रिक्स कन्वर्टर्स। पहला बदलाव जो पहली बार देखा गया है वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग किया जाता हैं। सिंगल फेज से सिंगल फेज मैट्रिक्स कन्वर्टर में 9 स्विच का मैट्रिक्स होता है जो तीन इनपुट फेज को ट्री आउटपुट फेज से जोड़ता है। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किन्हीं दो स्विचों को जोड़े बिना एक साथ जोड़ा जा सकता है अन्यथा यह इनपुट चरणों के शॉर्ट सर्किट का कारण बन जाएगा। मैट्रिक्स कनवर्टर अन्य कनवर्टर समाधानों की तुलना में हल्का, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे एकीकरण के उच्च स्तर, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक बिजली प्रवाह को प्राप्त कर ऊर्जा को उपयोगिता में वापस लाने के लिए उपयुक्त हैं।


मैट्रिक्स कन्वर्टर्स को दो प्रकारों में विभाजित किया जाता है: प्रत्यक्ष और अप्रत्यक्ष कन्वर्टर्स। तीन-चरण इनपुट और तीन-चरण आउटपुट के साथ एक प्रत्यक्ष मैट्रिक्स कनवर्टर, मैट्रिक्स कनवर्टर में स्विच द्वि-दिशात्मक होना चाहिए, अर्थात, वे किसी भी ध्रुवता के वोल्टेज को अवरुद्ध करने और किसी भी दिशा में वर्तमान का संचालन करने में सक्षम होना चाहिए। यह स्विचिंग रणनीति उच्चतम संभव आउटपुट वोल्टेज की अनुमति देती है और प्रतिक्रियाशील लाइन-साइड करंट को कम करती है। इसलिए, कनवर्टर के माध्यम से बिजली का प्रवाह प्रतिवर्ती है। इसकी कम्यूटेशन समस्या और जटिल नियंत्रण के कारण इसे उद्योग में व्यापक रूप से उपयोग करने से रोकता है।
मैट्रिक्स कन्वर्टर्स दो प्रकारों में विभाजित किया जाता हैं प्रत्यक्ष और अप्रत्यक्ष कन्वर्टर्स। तीन-चरण इनपुट और तीन-चरण आउटपुट प्रत्यक्ष मैट्रिक्स के साथ कनवर्टर तीन-चरण इनपुट और तीन-चरण आउटपुट होते है, मैट्रिक्स कनवर्टर में स्विच द्वि-दिशात्मक होना चाहिए अर्थात, वे किसी भी ध्रुवता के वोल्टेज को रोकने और किसी भी दिशा में वर्तमान का संचालन करने में सक्षम होना चाहिए। यह स्विचिंग रणनीति उच्चतम संभावित आउटपुट वोल्टेज की अनुमति दे कर  प्रतिक्रियाशील लाइन-साइड करंट को कम करती है। इसलिए, कनवर्टर से बिजली का प्रवाह प्रतिवर्ती होता है। इसकी कम्यूटेशन समस्या और जटिल नियंत्रण के कारण इसे उद्योग में उपयोग करने से रोकता है।


डायरेक्ट मैट्रिक्स कन्वर्टर्स के विपरीत, इनडायरेक्ट मैट्रिक्स कन्वर्टर्स की कार्यक्षमता समान होती है, लेकिन अलग-अलग इनपुट और आउटपुट सेक्शन का उपयोग करते हैं जो स्टोरेज एलिमेंट्स के बिना डीसी लिंक के माध्यम से जुड़े होते हैं। डिजाइन में चार-चतुर्थांश वर्तमान स्रोत शुद्ध करने वाला और वोल्टेज स्रोत इन्वर्टर शामिल है। इनपुट अनुभाग में द्वि-दिशात्मक द्विध्रुवी स्विच होते हैं। कम्यूटेशन रणनीति को इनपुट सेक्शन की स्विचिंग स्थिति को बदलकर लागू किया जा सकता है, जबकि आउटपुट सेक्शन फ्रीव्हीलिंग मोड में है। यह कम्यूटेशन एल्गोरिदम काफी कम जटिल है, और पारंपरिक प्रत्यक्ष मैट्रिक्स कनवर्टर की तुलना में उच्च विश्वसनीयता है<ref name=Klumpner>{{cite web|last=Klumpner|first=C.|title=Power Electronics 2|url=http://hermes.eee.nott.ac.uk/teaching/h5cpe2/|access-date=23 March 2012|archive-url=https://web.archive.org/web/20140927105049/http://hermes.eee.nott.ac.uk/teaching/h5cpe2/|archive-date=27 September 2014|url-status=dead}}</ref>
डायरेक्ट मैट्रिक्स कन्वर्टर्स के विपरीत, इनडायरेक्ट मैट्रिक्स कन्वर्टर्स की कार्यक्षमता समान होती है, लेकिन अलग-अलग इनपुट और आउटपुट सेक्शन का उपयोग करते हैं जो स्टोरेज एलिमेंट्स के बिना डीसी (DC) लिंक के से जुड़े होते हैं। डिजाइन में चार-चतुर्थांश वर्तमान स्रोत सुधारक और एक वोल्टेज स्रोत इन्वर्टर शामिल है। इनपुट अनुभाग में द्वि-दिशात्मक द्विध्रुवी स्विच होते हैं। जब आउटपुट सेक्शन फ्रीव्हीलिंग मोड में हो तो कम्यूटेशन रणनीति को इनपुट सेक्शन की स्विचिंग स्थिति को बदलकर लागू किया जा सकता है। यह कम्यूटेशन एल्गोरिदम काफी कम जटिल है, और पारंपरिक प्रत्यक्ष मैट्रिक्स कनवर्टर की तुलना में अधिक विश्वासयोग्य है।<ref name=Klumpner>{{cite web|last=Klumpner|first=C.|title=Power Electronics 2|url=http://hermes.eee.nott.ac.uk/teaching/h5cpe2/|access-date=23 March 2012|archive-url=https://web.archive.org/web/20140927105049/http://hermes.eee.nott.ac.uk/teaching/h5cpe2/|archive-date=27 September 2014|url-status=dead}}</ref>


'''डीसी लिंक कन्वर्टर्स:''' डीसी लिंक कन्वर्टर्स, जिन्हें एसी/डीसी/एसी कन्वर्टर्स भी कहा जाता है, बीच में डीसी लिंक के उपयोग के साथ एसी इनपुट को एसी आउटपुट में कनवर्ट करते हैं। मतलब कि कन्वर्टर में पावर को रेक्टिफायर के इस्तेमाल से एसी से डीसी में बदला जाता है, और फिर इन्वर्टर के इस्तेमाल से डीसी से एसी में वापस कन्वर्ट किया जाता है। अंतिम परिणाम कम वोल्टेज और चर (उच्च या निम्न) आवृत्ति वाला आउटपुट है<ref name=Rashid2 /> उनके व्यापक अनुप्रयोग क्षेत्र के कारण, एसी/डीसी/एसी कन्वर्टर्स सबसे आम समकालीन समाधान हैं। एसी/डीसी/एसी कन्वर्टर्स के अन्य लाभ यह है कि वे स्थिर हैंओवरलोड और नो-लोड की स्थिति, साथ ही उन्हें बिना नुकसान के लोड से हटाया जा सकता है<ref name=Vodovozov>{{cite book|last=Vodovozov|first=V|title=Electronic engineering|year=2006|isbn= 978-9985-69-039-0}}</ref>
'''डीसी लिंक कन्वर्टर्स:''' डीसी लिंक कन्वर्टर्स को एसी (AC)/ डीसी (DC)/ एसी (AC) कन्वर्टर्स के रूप में भी जानते है, बीच में डीसी लिक के उपयोग से एसी (AC) इनपुट को एसी (AC) आउटपुट में परिवर्तित करते हैं। मतलब कि कन्वर्टर में पावर को रेक्टिफायर के इस्तेमाल से एसी (AC) से डीसी (DC) में बदला जाता है, और फिर इन्वर्टर से डीसी (DC) से एसी (AC) में वापस कन्वर्ट किया जाता है। कम वोल्टेज और चर (उच्च या निम्न) आवृत्ति वाला आउटपुट है इसका अंतिम परिणाम है ।<ref name=Rashid2 /> एसी (AC)/ डीसी (DC)/ एसी (AC) कन्वर्टर्स सबसे आम समकालीन समाधान हैं इसके अन्य लाभ यह है कि वे ओवरलोड और नो-लोड की स्थिति में स्थिर होते हैं, साथ ही उन्हें बिना किसी नुकसान के लोड से हटाया जा सकता है।<ref name=Vodovozov>{{cite book|last=Vodovozov|first=V|title=Electronic engineering|year=2006|isbn= 978-9985-69-039-0}}</ref>


'''हाइब्रिड मैट्रिक्स कनवर्टर:'''एसी/एसी कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स अपेक्षाकृत नए हैं। ये कन्वर्टर्स एसी/डीसी/एसी डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, एक उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है; डीसी-लिंक के लिए आवश्यक कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स से दो उप-श्रेणियां मौजूद हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) नाम दिया गया है। एचडीएमसी वोल्टेज और करंट को एक चरण में परिवर्तित करता है, जबकि एचआईएमसी अलग-अलग चरणों का उपयोग करता है, जैसे एसी/डीसी/एसी कनवर्टर, लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना<ref name=Lipo>{{cite journal|last=Lipo|author2=Kim, Sul|title=AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches|journal=IEEE Transactions on Industry Applications|volume=36|issue=1|pages=139–145|doi=10.1109/28.821808|year=2000}}</ref><ref name=Wheeler>{{cite journal|last=Wheeler|author2=Wijekoon, Klumpner|title=Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio|journal=IEEE Transactions on Power Electronics|date=July 2008|volume=23|issue=4|pages=1918–1986|doi=10.1109/tpel.2008.924601|s2cid=25517304|url=http://eprints.nottingham.ac.uk/34835/1/TPEL-_Thiwanka_hybrid%20acac%20unity.pdf}}</ref>
'''हाइब्रिड मैट्रिक्स कनवर्टर:''' एसी (AC)/ एसी (AC) कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स नए हैं। ये कन्वर्टर्स एसी (AC)/ डीसी (DC)/ एसी (AC) डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, इसका उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है डीसी-लिंक के लिए कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स की दो उप-श्रेणियां हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) कहते है। एक चरण में एचडीएमसी (HDMC) वोल्टेज और करंट को बदलता है, जबकि एचआईएमसी (HIMC) अलग-अलग चरणों का उपयोग करता है लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना, जैसे एसी (AC)/ डीसी (DC)/ एसी (AC) कनवर्टर।<ref name=Lipo>{{cite journal|last=Lipo|author2=Kim, Sul|title=AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches|journal=IEEE Transactions on Industry Applications|volume=36|issue=1|pages=139–145|doi=10.1109/28.821808|year=2000}}</ref><ref name=Wheeler>{{cite journal|last=Wheeler|author2=Wijekoon, Klumpner|title=Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio|journal=IEEE Transactions on Power Electronics|date=July 2008|volume=23|issue=4|pages=1918–1986|doi=10.1109/tpel.2008.924601|s2cid=25517304|url=http://eprints.nottingham.ac.uk/34835/1/TPEL-_Thiwanka_hybrid%20acac%20unity.pdf}}</ref>


'''अनुप्रयोग:''' नीचे उन सामान्य अनुप्रयोगों की सूची दी गई है जिनमें प्रत्येक कनवर्टर का उपयोग किया जाता है।
'''अनुप्रयोग:''' नीचे उन सामान्य अनुप्रयोगों की सूची दी गई है जिनमें प्रत्येक कनवर्टर का उपयोग किया जाता है।
* एसी वोल्टेज नियंत्रक: प्रकाश नियंत्रण; घरेलू और औद्योगिक हीटिंग; पंखे, पंप या लहरा ड्राइव का गति नियंत्रण, प्रेरण मोटर्स की नरम शुरुआत, स्थिर एसी स्विच<ref name=Rashid /> (तापमान नियंत्रण, ट्रांसफार्मर नल बदलना, आदि)
* '''एसी (AC) वोल्टेज नियंत्रक:''' प्रकाश नियंत्रण, घरेलू और औद्योगिक हीटिंग, पंखे, पंप या लहरा ड्राइव का गति नियंत्रण, प्रेरण मोटर्स की नरम शुरुआत, स्थिर एसी (AC) स्विच<ref name=Rashid /> (तापमान नियंत्रण, ट्रांसफार्मर नल बदलना, आदि)
* साइक्लोकॉनवर्टर: हाई-पावर लो-स्पीड रिवर्सिबल एसी मोटर ड्राइव; चर इनपुट आवृत्ति के साथ निरंतर आवृत्ति बिजली की आपूर्ति; पावर फैक्टर सुधार के लिए नियंत्रणीय VAR जनरेटर; दो स्वतंत्र बिजली प्रणालियों को जोड़ने वाली एसी प्रणाली इंटरटीज<ref name=Rashid />
* साइक्लोकॉनवर्टर: हाई-पावर लो-स्पीड रिवर्सिबल एसी (AC) मोटर ड्राइव, चर इनपुट आवृत्ति के साथ निरंतर आवृत्ति बिजली की आपूर्ति; पावर फैक्टर सुधार के लिए नियंत्रणीय वीएआर (VAR) जनरेटर, दो स्वतंत्र बिजली प्रणालियों को जोड़ने वाली एसी (AC) प्रणाली इंटरटीज।<ref name=Rashid />
* मैट्रिक्स कनवर्टर: वर्तमान में मैट्रिक्स कन्वर्टर्स के अनुप्रयोग उच्च आवृत्ति, जटिल नियंत्रण कानून कार्यान्वयन, कम्यूटेशन और अन्य कारणों से संचालन करने में सक्षम द्विपक्षीय मोनोलिथिक स्विच की अनुपलब्धता के कारण सीमित हैं। इन विकासों के साथ, मैट्रिक्स कन्वर्टर्स कई क्षेत्रों में साइक्लोकोनवर्टर की जगह ले सकते हैं<ref name=Rashid />
* मैट्रिक्स कनवर्टर: वर्तमान में मैट्रिक्स कन्वर्टर्स के अनुप्रयोग उच्च आवृत्ति, जटिल नियंत्रण कानून कार्यान्वयन, कम्यूटेशन और अन्य कारणों से संचालन करने में सक्षम द्विपक्षीय मोनोलिथिक स्विच की अनुपलब्धता के कारण सीमित हैं। इन विकासों के साथ, मैट्रिक्स कन्वर्टर्स कई क्षेत्रों में साइक्लोकोनवर्टर की जगह ले सकते हैं।<ref name=Rashid />
* डीसी लिंक: मशीन निर्माण और निर्माण के व्यक्तिगत या एकाधिक लोड अनुप्रयोगों के लिए इस्तेमाल किया जा सकता है<ref name="Vodovozov" />
* डीसी (DC) लिंक: मशीन निर्माण और निर्माण के व्यक्तिगत या एकाधिक लोड अनुप्रयोगों के लिए इस्तेमाल किया जाता है।<ref name="Vodovozov" />


== बिजली इलेक्ट्रॉनिक सिस्टम के सिमुलेशन ==
== बिजली इलेक्ट्रॉनिक सिस्टम के सिमुलेशन ==


[[File:Regulated rectifier.gif|thumb|right|नियंत्रित थाइरिस्टर ]] PLECS, PSIM, SPICE, और MATLAB/simulink जैसे कंप्यूटर सिमुलेशन प्रोग्राम का उपयोग करके पावर इलेक्ट्रॉनिक सर्किट का अनुकरण किया जाता है। सर्किट कुछ शर्तों के तहत कैसे प्रतिक्रिया करते हैं, इसका परीक्षण करने के लिए उत्पादन से पहले सर्किट का अनुकरण किया जाता है। साथ ही, परीक्षण के लिए उपयोग करने के लिए एक प्रोटोटाइप बनाने की तुलना में सिमुलेशन बनाना सस्ता और तेज दोनों है।
[[File:Regulated rectifier.gif|thumb|right|नियंत्रित थाइरिस्टर ]] कंप्यूटर सिमुलेशन प्रोग्राम जैसे खण्डशः रैखिक विद्युत सर्किट सिमुलेशन (PLECS), PSIM, स्पाइस (SPICE), और मैटलैब (MATLAB) /simulink का उपयोग करके पावर इलेक्ट्रॉनिक सर्किट का अनुकरण किया जाता है। सर्किट कुछ शर्तों पर कैसे प्रतिक्रिया देते  हैं, इसका परीक्षण करने के लिए सर्किट का अनुकरण उत्पादन से पहले  किया जाता है।


== अनुप्रयोग ==
== अनुप्रयोग ==
[[ एसी एडॉप्टर | एसी एडॉप्टर]] में  [[ स्विच्ड मोड पावर सप्लाई | स्विच्ड मोड पावर सप्लाई]] , बैटरी चार्जर, ऑडियो एम्पलीफायर, [[ फ्लोरोसेंट लैंप | फ्लोरोसेंट लैंप]] रोड़े, [[ वेरिएबल फ़्रीक्वेंसी ड्राइव | वेरिएबल फ़्रीक्वेंसी ड्राइव]] एस और डीसी मोटर ड्राइव के माध्यम से पंप संचालित करने के लिए पावर इलेक्ट्रॉनिक्स रेंज के अनुप्रयोग आकार में हैं। पंखे, और विनिर्माण मशीनरी, गीगावाट-स्केल तक  [[ उच्च वोल्टेज प्रत्यक्ष वर्तमान | उच्च वोल्टेज प्रत्यक्ष वर्तमान]] विद्युत पारेषण प्रणाली विद्युत ग्रिड को आपस में जोड़ने के लिए उपयोग की जाती है। पावर इलेक्ट्रॉनिक सिस्टम लगभग हर इलेक्ट्रॉनिक डिवाइस में पाए जाते हैं। उदाहरण के लिए:
पावर इलेक्ट्रॉनिक्स के अनुप्रयोग आकार में एक एसी (AC) एडाप्टर, बैटरी चार्जर, ऑडियो एम्पलीफायर, फ्लोरोसेंट लैंप रोड़े, परिवर्तनीय आवृत्ति ड्राइव और पंप, प्रशंसकों और विनिर्माण मशीनरी को संचालित करने के लिए उपयोग किए जाने वाले डीसी मोटर ड्राइव के माध्यम से गीगावाट तक बिजली की आपूर्ति से लेकर आकार में होते हैं। गीगावाट -स्केल हाई वोल्टेज डायरेक्ट करंट पॉवर ट्रांसमिशन सिस्टम का इस्तेमाल इलेक्ट्रिकल ग्रिड को इंटरकनेक्ट करने के लिए किया जाता है। पावर इलेक्ट्रॉनिक सिस्टम लगभग हर इलेक्ट्रॉनिक उपकरण में पाए जाते हैं। उदाहरण के लिए:
* [[ डीसी-टू-डीसी कनवर्टर | डीसी/डीसी कन्वर्टर्स ]] का उपयोग अधिकांश मोबाइल उपकरणों (मोबाइल फोन, पीडीए आदि) में वोल्टेज को एक निश्चित मूल्य पर बनाए रखने के लिए किया जाता है, चाहे बैटरी का वोल्टेज स्तर कुछ भी हो। इन कन्वर्टर्स का उपयोग इलेक्ट्रॉनिक अलगाव और [[ पावर फैक्टर ]] सुधार के लिए भी किया जाता है। [[ पावर ऑप्टिमाइज़र ]] एक प्रकार का डीसी/डीसी कनवर्टर है जिसे [[ पीवी सिस्टम | सौर फोटोवोल्टिक ]] या [[ विंड टर्बाइन ]] सिस्टम से ऊर्जा फसल को अधिकतम करने के लिए विकसित किया गया है।
*  डीसी (DC) /डीसी (DC) कन्वर्टर्स का उपयोग अधिकांश मोबाइल उपकरणों (मोबाइल फोन, पीडीए आदि) में किया जाता है ताकि वोल्टेज को एक निश्चित मूल्य पर बनाए रखा जा सके, चाहे बैटरी का वोल्टेज स्तर कुछ भी हो। इन कन्वर्टर्स का उपयोग इलेक्ट्रॉनिक आइसोलेशन और पावर फैक्टर करेक्शन के लिए भी किया जाता है। [[ पावर ऑप्टिमाइज़र |पावर ऑप्टिमाइज़र]] एक डीसी/डीसी कनवर्टर है जिसे [[ पीवी सिस्टम |सौर फोटोवोल्टिक]] या[[ विंड टर्बाइन | विंड टर्बाइ]] सिस्टम से ऊर्जा फसल को अधिकतम करने के लिए किया गया है।
* एसी/डीसी कन्वर्टर्स ( [[ रेक्टिफायर ]] एस) का उपयोग हर बार एक इलेक्ट्रॉनिक उपकरण को मेन्स (कंप्यूटर, टेलीविजन आदि) से जोड़ा जाता है। ये बस एसी को डीसी में बदल सकते हैं या अपने ऑपरेशन के हिस्से के रूप में वोल्टेज स्तर को भी बदल सकते हैं।
* एसी (AC) /डीसी (DC) कन्वर्टर्स ([[ रेक्टिफायर |'''रेक्टिफायर''']]) का उपयोग हर बार एक इलेक्ट्रॉनिक उपकरण को मेन्स (कंप्यूटर, टेलीविजन आदि) से जोड़ने क लिए किया जाता है। ये बस एसी (AC) को डीसी (DC) में बदलते हैं या अपने ऑपरेशन के हिस्से के रूप में वोल्टेज स्तर को भी बदल सकते हैं।
* एसी/एसी कन्वर्टर्स का उपयोग वोल्टेज स्तर या आवृत्ति (अंतर्राष्ट्रीय पावर एडेप्टर, लाइट डिमर) को बदलने के लिए किया जाता है। बिजली वितरण नेटवर्क में, एसी/एसी कन्वर्टर्स का उपयोग [[ उपयोगिता आवृत्ति ]] 50 हर्ट्ज और 60 हर्ट्ज पावर ग्रिड के बीच बिजली का आदान-प्रदान करने के लिए किया जा सकता है।
* एसी (AC) /एसी (AC) कन्वर्टर्स का उपयोग वोल्टेज स्तर या आवृत्ति (अंतर्राष्ट्रीय पावर एडेप्टर, लाइट डिमर) को बदलने के लिए किया जाता है। बिजली वितरण नेटवर्क में, एसी (AC) / एसी (AC) कन्वर्टर्स का उपयोग [[ उपयोगिता आवृत्ति |उपयोगिता आवृत्ति]] 50 हर्ट्ज (Hz) और 60 हर्ट्ज (Hz) पावर ग्रिड के बीच बिजली का आदान-प्रदान करने के लिए किया जाता है।
* डीसी/एसी कन्वर्टर्स ( [[ पावर इन्वर्टर | इनवर्टर ]]) मुख्य रूप से [[ अनइंटरप्टिबल पावर सप्लाई | यूपीएस ]] या रिन्यूएबल एनर्जी सिस्टम या [[ इमरजेंसी लाइट ]] आईएनजी सिस्टम में उपयोग किए जाते हैं। मेन्स पावर डीसी बैटरी को चार्ज करती है। यदि मेन फेल हो जाता है, तो एक इन्वर्टर डीसी बैटरी से मेन वोल्टेज पर एसी बिजली पैदा करता है। [[ सोलर इन्वर्टर ]], छोटे स्ट्रिंग और बड़े सेंट्रल इनवर्टर दोनों, साथ ही [[ सोलर माइक्रो-इन्वर्टर ]] का उपयोग [[ फोटोवोल्टिक ]] में पीवी सिस्टम के एक घटक के रूप में किया जाता है।
* डीसी (DC) /एसी AC) कन्वर्टर्स ([[ पावर इन्वर्टर |इनवर्टर]]) का इस्तेमाल मुख्य रूप से[[ अनइंटरप्टिबल पावर सप्लाई | यूपीएस]] या अक्षय ऊर्जा प्रणालियों या आपातकालीन प्रकाश ([[ इमरजेंसी लाइट |इमरजेंसी लाइट)]] व्यवस्था में किया जाता है। मेन्स पावर डीसी(DC) बैटरी को चार्ज करती है। यदि मेन फेल हो जाता है, तो इन्वर्टर डीसी(DC) बैटरी से मेन वोल्टेज पर एसी (AC) बिजली पैदा करता है। [[ सोलर इन्वर्टर |सोलर इन्वर्टर]], दोनों छोटे स्ट्रिंग और बड़े सेंट्रल इनवर्टर, साथ ही सोलर माइक्रो-इन्वर्टर का उपयोग फोटोवोल्टिक्स में पीवी सिस्टम के एक घटक के रूप में किया जाता है।


कपड़ा, कागज, सीमेंट और ऐसी अन्य सुविधाओं के लिए पंप, ब्लोअर और मिल ड्राइव में मोटर ड्राइव पाए जाते हैं। ड्राइव का उपयोग बिजली रूपांतरण और गति नियंत्रण के लिए किया जा सकता है<ref name=Bose_गति नियंत्रण{{cite journal|last=Bose|first=Bimal K.|title=Power Electronics and Motion Control – Technology Status and Recent Trends|date=September–October 1993}}</ref> एसी मोटर्स के लिए, अनुप्रयोगों में [[ चर-आवृत्ति ड्राइव ]] एस, [[ मोटर सॉफ्ट स्टार्टर ]] एस और उत्तेजना प्रणाली शामिल हैं।<ref name=Bose_मोटर_ड्राइव{{cite journal|last=Bose|first=Bimal K.|title=Power Electronics and Motor Drives Recent Progress and Perspective|date=February 2009}}</ref>
मोटर ड्राइव टेक्सटाइल, पेपर, सीमेंट और ऐसी अन्य सुविधाओं के लिए पंप, ब्लोअर और मिल ड्राइव में पाए जाते हैं। ड्राइव का उपयोग बिजली रूपांतरण और गति नियंत्रण के लिए किया जा सकता है।<ref name=Bose_गति नियंत्रण>{{cite journal|last=Bose|first=Bimal K.|title=Power Electronics and Motion Control – Technology Status and Recent Trends|date=September–October 1993}}</ref> एसी (AC) मोटर्स केअनुप्रयोगों में [[ चर-आवृत्ति ड्राइव |चर-आवृत्ति ड्राइव]], [[ मोटर सॉफ्ट स्टार्टर |मोटर सॉफ्ट स्टार्टर]] और उत्तेजना प्रणाली शामिल हैं।


[[ हाइब्रिड इलेक्ट्रिक वाहन | हाइब्रिड इलेक्ट्रिक वाहन]] एस (एचईवी) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो स्वरूपों में किया जाता है: श्रृंखला संकर और समानांतर संकर। श्रृंखला हाइब्रिड और समानांतर हाइब्रिड के बीच का अंतर इलेक्ट्रिक मोटर का  [[ आंतरिक दहन इंजन | आंतरिक दहन इंजन]] (ICE) से संबंध है। इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी/डीसी कन्वर्टर्स और प्रोपल्शन मोटर को पावर देने के लिए डीसी/एसी कन्वर्टर्स होते हैं। [[ इलेक्ट्रिक मल्टीपल यूनिट | इलेक्ट्रिक ट्रेनें]] बिजली प्राप्त करने के लिए बिजली इलेक्ट्रॉनिक उपकरणों का उपयोग करती हैं, साथ ही [[ पल्स-चौड़ाई मॉड्यूलेशन | पल्स-चौड़ाई मॉड्यूलेशन]] (पीडब्लूएम) रेक्टिफायर का उपयोग करके वेक्टर नियंत्रण के लिए। ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं। पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग एलेवेटर सिस्टम में है। ये सिस्टम [[ थाइरिस्टर | थाइरिस्टर]] एस, इनवर्टर, [[ स्थायी चुंबक | स्थायी चुंबक]] मोटर्स, या पीडब्लूएम सिस्टम और मानक मोटर्स को शामिल करने वाले विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं।<ref name="Yano_पावर_इलेक्ट्रॉनिक्स_जापान{{cite journal|last=Yano|first=Masao|author2=Shigery Abe |author3=Eiichi Ohno |title=History of Power Electronics for Motor Drives in Japan|year=2004}}</ref"></ref>
[[ हाइब्रिड इलेक्ट्रिक वाहन |हाइब्रिड इलेक्ट्रिक वाहन]] (एचईवी) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो स्वरूपों में किया जाता है, श्रृंखला संकर और समानांतर संकर। श्रृंएक श्रृंखला संकर और एक समानांतर संकर के बीच के अंतर का संबंध विद्युत मोटर के [[ आंतरिक दहन इंजन |आंतरिक दहन इंजन]] (ICE) के साथ है। इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी (DC) /डीसी (DC) कन्वर्टर्स और प्रोपल्शन मोटर को पावर देने के लिए डीसी (DC) /एसी (AC) कन्वर्टर्स होते हैं। [[ इलेक्ट्रिक मल्टीपल यूनिट |इलेक्ट्रिक ट्रेनें]] बिजली प्राप्त करने के लिए बिजली इलेक्ट्रॉनिक उपकरणों का, और साथ ही [[ पल्स-चौड़ाई मॉड्यूलेशन |पल्स-चौड़ाई मॉड्यूलेशन]] (पीडब्लूएम) रेक्टिफायर का उपयोग करके वेक्टर नियंत्रण के लिए उपयोग करती हैं। ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं। पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग एलेवेटर सिस्टम में है। ये सिस्टम [[ थाइरिस्टर |थाइरिस्टर]], इनवर्टर, [[ स्थायी चुंबक |स्थायी चुंबक]] मोटर्स, या पीडब्लूएम (PWM) सिस्टम और मानक मोटर्स को शामिल करने वाले विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं।<ref name=Yano_Power_Electronics_Japan>{{cite journal|last=Yano|first=Masao|author2=Shigery Abe |author3=Eiichi Ohno |title=History of Power Electronics for Motor Drives in Japan|year=2004}}</ref>


'''इनवर्टर'''


=== इनवर्टर ===
सामान्य तौर पर, इनवर्टर का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए डीसी (DC) से एसी (AC) में विद्युत ऊर्जा के प्रत्यक्ष रूपांतरण या एसी (AC) से एसी (AC) में अप्रत्यक्ष रूपांतरण की आवश्यकता होती है। डीसी (DC) से एसी (AC) रूपांतरण कई क्षेत्रों के लिए उपयोगी है, जिसमें पावर कंडीशनिंग, हार्मोनिक क्षतिपूर्ति, मोटर ड्राइव, अक्षय ऊर्जा ग्रिड एकीकरण और अंतरिक्ष यान सौर ऊर्जा प्रणाली शामिल हैं।


सामान्य तौर पर, इनवर्टर का उपयोग डीसी से एसी में विद्युत ऊर्जा के प्रत्यक्ष रूपांतरण या एसी से एसी में अप्रत्यक्ष रूपांतरण की आवश्यकता वाले अनुप्रयोगों में किया जाता है। डीसी से एसी रूपांतरण कई क्षेत्रों के लिए उपयोगी है, जिसमें पावर कंडीशनिंग, हार्मोनिक मुआवजा, मोटर ड्राइव, अक्षय ऊर्जा ग्रिड एकीकरण, और अंतरिक्ष यान |  अंतरिक्ष यान सौर ऊर्जा ]] सिस्टम पर  [[ सौर पैनल शामिल हैं।
विद्युत प्रणालियों में अक्सर विद्युत् में पाए जाने वाले गुणावृत्ति अंश (हार्मोनिक कंटेंट) को समाप्त करने की इच्छा होती है। इसको प्रदान करने के लिए वीएसआई (VSI) का उपयोग सक्रिय पावर फिल्टर के रूप में किया जाता है। विद्युत् और वोल्टेज के माप के आधार पर, एक नियंत्रण प्रणाली वर्तमान संकेतों को निर्धारण प्रत्येक चरण के लिए करती है। इसे बाहरी लूप के माध्यम से वापस सिंचित किया जाता है और इन्वर्टर को एक आंतरिक लूप के लिए वर्तमान सिग्नल बनाने के लिए वास्तविक वर्तमान सिग्नल से घटाया जाता है। ये गुणावृत्ति अंश (हार्मोनिक कंटेंट) की भरपाई करते हैं तब इन्वर्टर की आउटपुट धाराओं को उत्पन्न करने का संकेत देते हैं। इस विन्यास (कॉन्फ़िगरेशन) के लिए किसी वास्तविक बिजली की खपत की आवश्यकता नहीं है, क्योंकि यह पूरी तरह से लाइन द्वारा सिंचित किया जाता है, डीसी (DC) लिंक बस एक संधारित्र है जिसे नियंत्रण प्रणाली द्वारा एक स्थिर वोल्टेज पर रखा जाता है।<ref name=Rashid3 /> इस विन्यास (कॉन्फ़िगरेशन) में, आउटपुट धाराएं एकता शक्ति कारक का उत्पादन करने के लिए लाइन वोल्टेज के साथ चरण में हैं। इसके विपरीत, वीएआर (VAR) क्षतिपूर्ति एक समान विन्यास (कॉन्फ़िगरेशन) में संभव है जहां आउटपुट धाराएं समग्र शक्ति कारक में सुधार के लिए लाइन वोल्टेज का नेतृत्व करती हैं।<ref name=Trzynadlowski />


बिजली प्रणालियों में अक्सर लाइन धाराओं में पाए जाने वाले हार्मोनिक सामग्री को खत्म करने की इच्छा होती है। इस मुआवजे को प्रदान करने के लिए वीएसआई को सक्रिय पावर फिल्टर के रूप में इस्तेमाल किया जा सकता है। मापी गई लाइन धाराओं और वोल्टेज के आधार पर, एक नियंत्रण प्रणाली प्रत्येक चरण के लिए संदर्भ वर्तमान संकेतों को निर्धारित करती है। यह एक बाहरी लूप के माध्यम से वापस फीड किया जाता है और इन्वर्टर के लिए एक आंतरिक लूप के लिए वर्तमान सिग्नल बनाने के लिए वास्तविक वर्तमान संकेतों से घटाया जाता है। ये संकेत तब इन्वर्टर को आउटपुट धाराओं को उत्पन्न करने का कारण बनते हैं जो हार्मोनिक सामग्री की भरपाई करते हैं। इस कॉन्फ़िगरेशन को वास्तविक बिजली की खपत की आवश्यकता नहीं है, क्योंकि यह पूरी तरह से लाइन द्वारा खिलाया जाता है; डीसी लिंक केवल एक संधारित्र है जिसे नियंत्रण प्रणाली द्वारा निरंतर वोल्टेज पर रखा जाता है<ref name=Rashid3 /> इस विन्यास में, आउटपुट धाराएं एकता शक्ति कारक का उत्पादन करने के लिए लाइन वोल्टेज के साथ चरण में हैं। इसके विपरीत, VAR मुआवजा एक समान कॉन्फ़िगरेशन में संभव है जहां आउटपुट धाराएं समग्र पावर फैक्टर को बेहतर बनाने के लिए लाइन वोल्टेज का नेतृत्व करती हैं<ref name=Trzynadlowski />
इसका उपयोग हर समय ऊर्जा की आवश्यकता पड़ने वाली सुविधाओं, जैसे अस्पताल और हवाई अड्डे, यूपीएस सिस्टम में किया जाता है। इस प्रणाली में,  एक इन्वर्टर तब ऑनलाइन लाया जाता है जब सामान्य रूप से आपूर्ति करने वाले ग्रिड बाधित होते है। बिजली को तत्काल ऑनसाइट बैटरियों से खींचा जाता है और वीएसआई (VSI) द्वारा प्रयोग करने योग्य एसी (AC) वोल्टेज में परिवर्तित किया जाता है, जब तक कि ग्रिड पावर बहाल नहीं हो जाती है, या जब तक बैकअप जनरेटर ऑनलाइन नहीं लाए जाते हैं।ऑनलाइन यूपीएस प्रणाली में, रेक्टिफायर-डीसी-लिंक-इन्वर्टर का उपयोग लोड को ट्रांजिस्टर और गुणावृत्ति अंश (हार्मोनिक कंटेंट) से बचाने के लिए किया जाता है। ग्रिड पावर बाधित होने की स्थिति में डीसी-लिंक के साथ समानांतर में एक बैटरी को आउटपुट द्वारा पूरी तरह से चार्ज रखा जाता है, जबकि इन्वर्टर के आउटपुट को कम पास फिल्टर के माध्यम से लोड तक फीड किया जाता है। उच्च शक्ति की गुणवत्ता और गड़बड़ी से स्वतंत्रता प्राप्त की जाती है।<ref name=Rashid3 />


जिन सुविधाओं में हर समय ऊर्जा की आवश्यकता होती है, जैसे अस्पताल और हवाई अड्डे, यूपीएस सिस्टम का उपयोग किया जाता है। एक स्टैंडबाय सिस्टम में, सामान्य रूप से आपूर्ति करने वाले ग्रिड के बाधित होने पर एक इन्वर्टर ऑनलाइन लाया जाता है। बिजली को तत्काल ऑनसाइट बैटरियों से खींचा जाता है और वीएसआई द्वारा प्रयोग करने योग्य एसी वोल्टेज में परिवर्तित किया जाता है, जब तक कि ग्रिड पावर बहाल नहीं हो जाती है, या जब तक बैकअप जनरेटर ऑनलाइन नहीं लाए जाते हैं। एक ऑनलाइन यूपीएस प्रणाली में, एक रेक्टिफायर-डीसी-लिंक-इन्वर्टर का उपयोग लोड को ट्रांजिस्टर और हार्मोनिक सामग्री से बचाने के लिए किया जाता है। ग्रिड पावर बाधित होने की स्थिति में डीसी-लिंक के साथ समानांतर में एक बैटरी को आउटपुट द्वारा पूरी तरह से चार्ज रखा जाता है, जबकि इन्वर्टर के आउटपुट को कम पास फिल्टर के माध्यम से लोड में फीड किया जाता है। उच्च शक्ति की गुणवत्ता और गड़बड़ी से स्वतंत्रता प्राप्त की जाती है<ref name=Rashid3 />
विभिन्न एसी (AC) मोटर ड्राइव का विकास एसी (AC) मोटर्स की गति, टॉर्क और स्थिति नियंत्रण के लिए किया गया हैं। इन ड्राइव्स को निम्न-प्रदर्शन या उच्च-प्रदर्शन के रूप में वर्गीकृत किया जा सकता है, इस आधार पर कि वे क्रमशः स्केलर-नियंत्रित या वेक्टर-नियंत्रित हैं। स्केलर-नियंत्रित ड्राइव में, मौलिक स्टेटर करंट, या वोल्टेज फ़्रीक्वेंसी और आयाम (Amplitude) , केवल नियंत्रित करने योग्य मात्राएँ हैं। इसलिए, इन ड्राइवों का उपयोग उन अनुप्रयोगों में किया जाता है जहां उच्च गुणवत्ता नियंत्रण की आवश्यकता नहीं होती है, जैसे कि पंखे और कम्प्रेसर। दूसरी ओर, वेक्टर-नियंत्रित ड्राइव तात्कालिक वर्तमान और वोल्टेज मूल्यों को लगातार नियंत्रित करने की अनुमति देते हैं। यह उच्च प्रदर्शन एलिवेटर और इलेक्ट्रिक कारों जैसे अनुप्रयोगों के लिए आवश्यक है।<ref name=Rashid3 />


एसी मोटर्स की गति, टॉर्क और स्थिति नियंत्रण के लिए विभिन्न एसी मोटर ड्राइव विकसित किए गए हैं। इन ड्राइवों को क्रमशः स्केलर-नियंत्रित या वेक्टर-नियंत्रित होने के आधार पर निम्न-प्रदर्शन या उच्च-प्रदर्शन के रूप में वर्गीकृत किया जा सकता है। स्केलर-नियंत्रित ड्राइव में, मौलिक स्टेटर करंट, या वोल्टेज फ़्रीक्वेंसी और आयाम, केवल नियंत्रणीय मात्राएँ हैं। इसलिए, इन ड्राइवों का उपयोग उन अनुप्रयोगों में किया जाता है जहां उच्च गुणवत्ता नियंत्रण की आवश्यकता नहीं होती है, जैसे कि पंखे और कम्प्रेसर। दूसरी ओर, वेक्टर-नियंत्रित ड्राइव तात्कालिक वर्तमान और वोल्टेज मूल्यों को लगातार नियंत्रित करने की अनुमति देते हैं। लिफ्ट और इलेक्ट्रिक कारों जैसे अनुप्रयोगों के लिए यह उच्च प्रदर्शन आवश्यक है<ref name=Rashid3 />
इनवर्टर कई अक्षय ऊर्जा अनुप्रयोगों के लिए भी महत्वपूर्ण हैं। फोटोवोल्टिक उद्देश्यों में, इन्वर्टर एक पीडब्लूएम (PWM) वीएसआई (VSI) होता है, जो फोटोवोल्टिक मॉड्यूल या सरणी के डीसी (DC) विद्युत ऊर्जा आउटपुट द्वारा खिलाया जाता है।न्वर्टर फिर इसे एक एसी (AC) वोल्टेज में परिवर्तित करता है जिसे लोड या यूटिलिटी ग्रिड के साथ अंतरापृष्ठ किया जाता है। इनवर्टर को अन्य नवीकरणीय प्रणालियों, जैसे पवन टरबाइन में भी नियोजित किया जा सकता है। इन अनुप्रयोगों में, टरबाइन की गति आमतौर पर भिन्न होती है, जिससे वोल्टेज आवृत्ति में और कभी-कभी परिमाण में परिवर्तन होता है। इस मामले में, उत्पन्न वोल्टेज को ठीक किया जा सकता है और फिर आवृत्ति और परिमाण को स्थिर करने के लिए उलटा किया जा सकता है।<ref name=Rashid3 />


कई नवीकरणीय ऊर्जा अनुप्रयोगों के लिए इनवर्टर भी महत्वपूर्ण हैं। फोटोवोल्टिक उद्देश्यों में, इन्वर्टर, जो आमतौर पर एक पीडब्लूएम वीएसआई होता है, एक फोटोवोल्टिक मॉड्यूल या सरणी के डीसी विद्युत ऊर्जा आउटपुट द्वारा खिलाया जाता है। इन्वर्टर फिर इसे लोड या यूटिलिटी ग्रिड के साथ इंटरफेस करने के लिए एसी वोल्टेज में परिवर्तित करता है। इनवर्टर को अन्य नवीकरणीय प्रणालियों, जैसे पवन टरबाइन में भी नियोजित किया जा सकता है। इन अनुप्रयोगों में, टरबाइन की गति आमतौर पर भिन्न होती है, जिससे वोल्टेज आवृत्ति में और कभी-कभी परिमाण में परिवर्तन होता है। इस मामले में, उत्पन्न वोल्टेज को ठीक किया जा सकता है और फिर आवृत्ति और परिमाण को स्थिर करने के लिए उलटा किया जा सकता है<ref name=Rashid3 />
=== स्मार्ट ग्रिड ===


=== स्मार्ट ग्रिड ===
स्मार्ट ग्रिड एक विद्युत ग्रिड है जो सूचना और संचार प्रौद्योगिकी का उपयोग सूचना एकत्र करने और उस पर कार्रवाई करने के लिए करता है, जैसे कि आपूर्तिकर्ताओं और उपभोक्ताओं के व्यवहार के बारे में जानकारी, स्वचालित रूप से दक्षता, विश्वसनीयता, अर्थशास्त्र और उत्पादन की स्थिरता में सुधार करने के लिए और बिजली का वितरण के लिए किया जाता है।<ref>{{cite web | url =http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17167.pdf | title = Pacific Northwest GridWise™ Testbed Demonstration Projects, Part I. Olympic Peninsula Project | access-date = 2014-01-15 | author = D. J. Hammerstrom|display-authors=etal}}</ref><ref>{{cite web | url = http://energy.gov/oe/technology-development/smart-grid | title = Smart Grid / Department of Energy | access-date = 2012-06-18 | author = U.S. Department of Energy}}</ref>


एक  [[ स्मार्ट ग्रिड ]] एक आधुनिकीकृत  [[ विद्युत ग्रिड ]] है जो  [[ सूचना और संचार प्रौद्योगिकी ]] का उपयोग करता है ताकि दक्षता, विश्वसनीयता, अर्थशास्त्र में सुधार के लिए स्वचालित रूप से आपूर्तिकर्ताओं और उपभोक्ताओं के व्यवहार के बारे में जानकारी एकत्र की जा सके और उन पर कार्रवाई की जा सके। , और बिजली के उत्पादन और वितरण की स्थिरता<ref>{{cite web | url =http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17167.pdf | title = Pacific Northwest GridWise™ Testbed Demonstration Projects, Part I. Olympic Peninsula Project | access-date = 2014-01-15 | author = D. J. Hammerstrom|display-authors=etal}}</ref><ref>{{cite web | url = http://energy.gov/oe/technology-development/smart-grid | title = Smart Grid / Department of Energy | access-date = 2012-06-18 | author = U.S. Department of Energy}}</ref>
प्रेरण जनरेटर का उपयोग करके पवन टर्बाइन और हाइड्रोइलेक्ट्रिक टर्बाइन द्वारा उत्पन्न विद्युत शक्ति उस आवृत्ति में भिन्नता पैदा कर सकती है जिस पर बिजली उत्पन्न होती है। इन प्रणालियों में उत्पन्न एसी (AC) वोल्टेज को हाई-वोल्टेज डायरेक्ट करंट ([[ एचवीडीसी |एचवीडीसी HVDC]]) में बदलने के लिए पावर इलेक्ट्रॉनिक उपकरणों का उपयोग किया जाता है। एचवीडीसी (HVDC) पावर को अधिक आसानी से थ्री फेज पावर में बदला जा सकता है जो मौजूदा पावर ग्रिड से जुड़ी पावर के साथ सुसंगत है। इन उपकरणों के माध्यम से, इन प्रणालियों द्वारा प्रदान की जाने वाली शक्ति स्वच्छ होती है और इसमें उच्च संबद्ध शक्ति कारक होता है। पवन ऊर्जा प्रणाली इष्टतम टोक़ या तो गियरबॉक्स या प्रत्यक्ष ड्राइव प्रौद्योगिकियों के माध्यम से प्राप्त की जाती है जो बिजली इलेक्ट्रॉनिक्स डिवाइस के आकार को कम कर सकती है।


[[ पवन टरबाइन | पवन टरबाइन]] एस और  [[ हाइड्रोइलेक्ट्रिक | हाइड्रोइलेक्ट्रिक]] टर्बाइनों द्वारा  [[ प्रेरण जनरेटर | प्रेरण जनरेटर]] एस का उपयोग करके उत्पन्न विद्युत शक्ति उस आवृत्ति में भिन्नता पैदा कर सकती है जिस पर बिजली उत्पन्न होती है। इन प्रणालियों में उत्पन्न एसी वोल्टेज को हाई-वोल्टेज डायरेक्ट करंट ( [[ एचवीडीसी | एचवीडीसी]] ) में बदलने के लिए पावर इलेक्ट्रॉनिक उपकरणों का उपयोग किया जाता है। एचवीडीसी पावर को अधिक आसानी से थ्री फेज पावर में परिवर्तित किया जा सकता है जो मौजूदा पावर ग्रिड से जुड़ी पावर के साथ सुसंगत है। इन उपकरणों के माध्यम से, इन प्रणालियों द्वारा प्रदान की जाने वाली शक्ति स्वच्छ होती है और इसमें उच्च संबद्ध शक्ति कारक होता है। पवन ऊर्जा प्रणाली इष्टतम टोक़ या तो गियरबॉक्स या प्रत्यक्ष ड्राइव प्रौद्योगिकियों के माध्यम से प्राप्त की जाती है जो बिजली इलेक्ट्रॉनिक्स डिवाइस के आकार को कम कर सकती हैं<ref name="Carrasco_समार्ट" ग्रिड< ref=""></ref>
बिजली इलेक्ट्रॉनिक उपकरणों का उपयोग करके फोटोवोल्टिक कोशिकाओं के माध्यम से विद्युत शक्ति उत्पन्न की जा सकती है। उत्पादित बिजली आमतौर पर [[ सौर इन्वर्टर |सौर इन्वर्टर]] द्वारा बदल दी जाती है। इनवर्टर को तीन अलग-अलग प्रकारों में बांटा गया है, केंद्रीय, मॉड्यूल-एकीकृत, और स्ट्रिंग। सेंट्रल कन्वर्टर्स को सिस्टम के डीसी (DC) साइड पर समानांतर या श्रृंखला में जोड़ा जा सकता है। फोटोवोल्टिक "खेतों" के लिए, पूरे सिस्टम के लिए एक केंद्रीय कनवर्टर का उपयोग किया जाता है। मॉड्यूल-एकीकृत कन्वर्टर्स या तो डीसी (DC) या एसी (AC) की तरफ श्रृंखला में जुड़े हुए हैं। आम तौर पर एक फोटोवोल्टिक प्रणाली के भीतर कई मॉड्यूल का उपयोग किया जाता है, क्योंकि सिस्टम को डीसी (DC) और एसी (AC) दोनों टर्मिनलों पर इन कन्वर्टर्स की आवश्यकता होती है। स्ट्रिंग कनवर्टर का उपयोग एक सिस्टम में किया जाता है जो फोटोवोल्टिक कोशिकाओं का उपयोग करता है जो विभिन्न दिशाओं का सामना कर रहे हैं। इसका उपयोग उत्पन्न शक्ति को प्रत्येक तार, या रेखा में परिवर्तित करने के लिए किया जाता है, जिसमें फोटोवोल्टिक कोशिकाएं परस्पर क्रिया कर रही होती हैं।<ref name=Carrasco_Smart_Grid>{{cite journal|last=Carrasco|first=Juan Manuel|author2=Leopoldo Garcia Franquelo |author3=Jan T. Bialasiewecz |author4=Eduardo Galvan |author5=Ramon C. Portillo Guisado |author6=Ma. Angeles Martin Prats |author7=Jose Ignacio Leon |author8=Narciso Moreno-Alfonso |title=Power-Electronic Systems for the Grid Integration of Renewable Sources: A Survey|date=August 2006|volume=53|issue=4|page=1002|doi=10.1109/tie.2006.878356|citeseerx=10.1.1.116.5024|s2cid=12083425}}</ref>


बिजली इलेक्ट्रॉनिक उपकरणों का उपयोग करके  [[ फोटोवोल्टिक सेल ]] एस के माध्यम से विद्युत शक्ति उत्पन्न की जा सकती है। उत्पादित बिजली आमतौर पर  [[ सौर इन्वर्टर ]] एस द्वारा बदल दी जाती है। इनवर्टर को तीन अलग-अलग प्रकारों में विभाजित किया जाता है: केंद्रीय, मॉड्यूल-एकीकृत और स्ट्रिंग। सेंट्रल कन्वर्टर्स को सिस्टम के डीसी साइड पर समानांतर या श्रृंखला में जोड़ा जा सकता है। फोटोवोल्टिक खेतों के लिए, पूरे सिस्टम के लिए एक केंद्रीय कनवर्टर का उपयोग किया जाता है। मॉड्यूल-एकीकृत कन्वर्टर्स डीसी या एसी तरफ श्रृंखला में जुड़े हुए हैं। आम तौर पर एक फोटोवोल्टिक प्रणाली के भीतर कई मॉड्यूल का उपयोग किया जाता है, क्योंकि सिस्टम को डीसी और एसी दोनों टर्मिनलों पर इन कन्वर्टर्स की आवश्यकता होती है। एक स्ट्रिंग कनवर्टर का उपयोग एक सिस्टम में किया जाता है जो फोटोवोल्टिक कोशिकाओं का उपयोग करता है जो विभिन्न दिशाओं का सामना कर रहे हैं। इसका उपयोग उत्पन्न शक्ति को प्रत्येक स्ट्रिंग, या रेखा में परिवर्तित करने के लिए किया जाता है, जिसमें फोटोवोल्टिक कोशिकाएं परस्पर क्रिया कर रही होती हैं<ref name=Carrasco_स्मार्ट_ग्रिड />
बिजली इलेक्ट्रॉनिक्स का उपयोग उपयोगिताओं को वितरित आवासीय/वाणिज्यिक सौर ऊर्जा उत्पादन में तेजी से वृद्धि के अनुकूल बनाने में मदद करने के लिए किया जा सकता है।अपेक्षाकृत छोटे पैमाने के ग्राउंड- या पोल-माउंटेड डिवाइस बिजली के प्रवाह की निगरानी और प्रबंधन के लिए एक वितरित नियंत्रण बुनियादी ढांचे की क्षमता पैदा करते हैं। पारंपरिक इलेक्ट्रोमैकेनिकल सिस्टम, जैसे कैपेसिटर बैंक या सबस्टेशन पर वोल्टेज रेगुलेटर, वोल्टेज को समायोजित करने में मिनटों का समय ले सकते हैं और सौर प्रतिष्ठानों से दूर हो सकते हैं जहां समस्याएं उत्पन्न होती हैं। यदि पड़ोस सर्किट पर वोल्टेज बहुत अधिक होता है, तो यह उपयोगिता कर्मचारियों को खतरे में पड़  सकता है और उपयोगिता और ग्राहक उपकरण दोनों को नुकसान पहुंचा सकता है। इसके अलावा, ग्रिड की खराबी के कारण फोटोवोल्टिक जनरेटर तुरंत बंद हो जाते हैं, जिससे ग्रिड बिजली की मांग बढ़ जाती है। कई उपभोक्ता उपकरणों की तुलना में स्मार्ट ग्रिड-आधारित नियामक अधिक नियंत्रणीय हैं।


बिजली इलेक्ट्रॉनिक्स का उपयोग उपयोगिताओं को वितरित आवासीय/वाणिज्यिक  [[ सौर ऊर्जा ]] पीढ़ी में तेजी से वृद्धि के अनुकूल बनाने में मदद करने के लिए किया जा सकता है। जर्मनी और हवाई, कैलिफोर्निया और न्यू जर्सी के कुछ हिस्सों में नए सौर प्रतिष्ठानों को मंजूरी देने से पहले महंगे अध्ययन किए जाने की आवश्यकता है। अपेक्षाकृत छोटे पैमाने के ग्राउंड- या पोल-माउंटेड डिवाइस बिजली के प्रवाह की निगरानी और प्रबंधन के लिए एक वितरित नियंत्रण बुनियादी ढांचे की क्षमता पैदा करते हैं।  [[ विद्युत सबस्टेशन |  सबस्टेशन ]] पर  [[ कैपेसिटर बैंक ]] एस या  [[ वोल्टेज नियामक ]] एस जैसे पारंपरिक इलेक्ट्रोमैकेनिकल सिस्टम, वोल्टेज को समायोजित करने में मिनट लग सकते हैं और सौर प्रतिष्ठानों से दूर हो सकते हैं जहां समस्याएं उत्पन्न होती हैं। यदि पड़ोस सर्किट पर वोल्टेज बहुत अधिक हो जाता है, तो यह उपयोगिता कर्मचारियों को खतरे में डाल सकता है और उपयोगिता और ग्राहक उपकरण दोनों को नुकसान पहुंचा सकता है। इसके अलावा, एक ग्रिड दोष के कारण फोटोवोल्टिक जनरेटर तुरंत बंद हो जाते हैंवास्तव में, ग्रिड पावर की मांग में तेजी आई है। स्मार्ट ग्रिड-आधारित नियामक कहीं अधिक उपभोक्ता उपकरणों की तुलना में अधिक नियंत्रणीय हैं<ref name=tr1401>{{cite web|first=Martin |last=LaMonica |url=https://www.technologyreview.com/2014/01/21/174504/power-electronics-smooth-solar-transition/ |title=Power Electronics Could Help Grid and Solar Power Get Along &#124; MIT Technology Review |publisher=Technologyreview.com |date= 2014-01-21|access-date=2014-01-22}}</ref>
अन्य दृष्टिकोण में, पश्चिमी इलेक्ट्रिक इंडस्ट्री लीडर्स नामक 16 पश्चिमी उपयोगिताओं के एक समूह ने "स्मार्ट इनवर्टर" के अनिवार्य उपयोग का आह्वान किया। ये उपकरण डीसी को घरेलू एसी (AC) में परिवर्तित करते हैं और बिजली की गुणवत्ता में भी मदद कर सकते हैं। ऐसे उपकरण बहुत कम लागत पर महंगे उपयोगिता उपकरण उन्नयन की आवश्यकता को समाप्त कर सकते हैं।<ref name=tr1401>{{cite web|first=Martin |last=LaMonica |url=https://www.technologyreview.com/2014/01/21/174504/power-electronics-smooth-solar-transition/ |title=Power Electronics Could Help Grid and Solar Power Get Along &#124; MIT Technology Review |publisher=Technologyreview.com |date= 2014-01-21|access-date=2014-01-22}}</ref>


एक अन्य दृष्टिकोण में, पश्चिमी इलेक्ट्रिक उद्योग के नेताओं नामक 16 पश्चिमी उपयोगिताओं के एक समूह ने स्मार्ट इनवर्टर के अनिवार्य उपयोग का आह्वान किया। ये उपकरण डीसी को घरेलू एसी में परिवर्तित करते हैं और बिजली की गुणवत्ता में भी मदद कर सकते हैं। ऐसे उपकरण बहुत कम कुल लागत पर महंगे उपयोगिता उपकरण उन्नयन की आवश्यकता को समाप्त कर सकते हैं<ref name=tr1401 />
[[Category:Articles with short description]]
[[Category:CS1]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]


== See also ==
== यह भी देखें ==
* [[Multi-port power electronic interface]]
* [[Multi-port power electronic interface|मल्टी-पोर्ट पावर इलेक्ट्रॉनिक इंटरफ़ेस]]
* [[FET amplifier]]
* एफईटी ([[FET amplifier|FET]]) एम्पलीफायर
* [[RF power amplifier]]
*आरएफ शक्ति एम्पलीफायर


== Notes ==
== टिप्पणियाँ ==
{{reflist|33em}}
{{reflist|33em}}


Line 230: Line 268:
* {{citation|surname1=Arendt Wintrich|surname2=Ulrich Nicolai|surname3=Werner Tursky|surname4=Tobias Reimann|title=Application Manual 2011|edition=2.|publisher=ISLE Verlag|year=2011|isbn=978-3-938843-66-6|language=de|url=http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf|format=PDF-Version|url-status=dead|archive-url=https://web.archive.org/web/20130903030232/http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf|archive-date=2013-09-03
* {{citation|surname1=Arendt Wintrich|surname2=Ulrich Nicolai|surname3=Werner Tursky|surname4=Tobias Reimann|title=Application Manual 2011|edition=2.|publisher=ISLE Verlag|year=2011|isbn=978-3-938843-66-6|language=de|url=http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf|format=PDF-Version|url-status=dead|archive-url=https://web.archive.org/web/20130903030232/http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf|archive-date=2013-09-03
}
}
[[Category: Machine Translated Page]]
 
[[Category:Articles with short description]]
[[Category:CS1]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:CS1 maint]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 12:14, 25 August 2023

स्वीडन
एक पीसी बिजली की आपूर्ति बिजली इलेक्ट्रॉनिक्स के एक टुकड़े का एक उदाहरण है, चाहे कैबिनेट के अंदर या बाहर।

पावर इलेक्ट्रॉनिक्स वह अनुप्रयोग है, जिसमे विद्युत शक्ति का नियंत्रण और परिवर्तन होता है।

मरकरी (पारा) आर्क वाल्व का उपयोग करके पहले उच्च शक्ति वाले इलेक्ट्रॉनिक उपकरण को बनाया गया था। आधुनिक प्रणालियों में, परिवर्तन अर्धचालक स्विचिंग डिवाइस जैसे डायोड, थाइरिस्टर, और पावर ट्रांजिस्टर जैसे पावर मोसफेट (MOSFET) और आईजीबीटी (IGBT) के साथ किया जाता है। सिग्नल और डेटा के प्रसारण और प्रसंस्करण से संबंधित इलेक्ट्रॉनिक प्रणालियों के विपरीत, बिजली इलेक्ट्रॉनिक्स में पर्याप्त मात्रा में विद्युत ऊर्जा परिवर्तित होती है। उपभोक्ता के इलेक्ट्रॉनिक उपकरणों में एसी/डीसी कनवर्टर (रेक्टिफायर) सबसे ज्यादा पाया जाने वाला बिजली इलेक्ट्रॉनिक्स उपकरण है, उदाहरण के लिए टेलीविजन सेट, व्यक्तिगत कंप्यूटर, बैटरी चार्जर, आदि। बिजली की सीमा आम तौर पर दस वाट (watt) से लेकर सौ वाट (watt) तक होती है। उद्योग में, वैरिएबल स्पीड ड्राइव (वीएसडी) का उपयोग इंडक्शन मोटर को नियंत्रित करने के लिए किया जाता है। वीएसडी की बिजली की सीमा सौ वाट से शुरू होकर मेगावाट सेकेंड पर समाप्त होती है।

बिजली रूपांतरण प्रणालियों को इनपुट और आउटपुट पावर के प्रकार के अनुसार वर्गीकृत किया जा सकता है:

इतिहास

मरकरी आर्क रेक्टिफायर के विकास के साथ पावर इलेक्ट्रॉनिक्स का प्रारम्भ हुआ। प्रत्यावर्ती धारा (AC) को एकदिश धारा (DC) में बदलने के लिए इसका उपयोग किया गया था। 1920 से, विद्युत प्रसारण के लिए थायराट्रॉन और ग्रिड-नियंत्रित पारा चाप वाल्वों पर खोज जारी है। यूनो लैम ने ग्रेडिंग इलेक्ट्रोड के साथ एक पारा वाल्व विकसित किया जो उन्हें उच्च वोल्टेज प्रत्यक्ष धारा (high voltage direct current) बिजली संचरण (पावर ट्रांसमिशन) के लिए उपयुक्त बनाता है। सेलेनियम रेक्टिफायर्स का आविष्कार 1933 में हुआ था।[1]

क्षेत्र-प्रभाव ट्रांजिस्टर की अवधारणा का प्रस्ताव जूलियस एडगर लिलिएनफेल्ड ने 1926 में रखा, लेकिन उस समय वास्तव में एक कार्यशील उपकरण का निर्माण संभव नहीं था।[2] वाल्टर एच. ब्रैटन और जॉन बार्डीन ने बाइपोलर पॉइंट-कॉन्टैक्ट ट्रांजिस्टर का आविष्कार , बेल लैब्स में, 1947 में  विलियम शॉक्ले के निर्देशन में किया था। कम लागत में 1948 में शॉक्ले के बाइपोलर जंक्शन ट्रांजिस्टर (बीजेटी) के आविष्कार ने ट्रांजिस्टर की स्थिरता और निष्पादन में सुधार किया। 1950 तक, वैक्यूम ट्यूबों की जगह उच्च शक्ति वाले सेमीकंडक्टर डायोड उपलब्ध कराये जाते थे। सिलिकॉन नियंत्रित रेक्टिफायर (SCR) को 1956 में जनरल इलेक्ट्रिक द्वारा शुरू किया गया, जिससे बिजली इलेक्ट्रॉनिक्स अनुप्रयोगों में काफी वृद्धि हुई।[3] 1960 के दशक तक, द्विध्रुवी जंक्शन ट्रांजिस्टर की बेहतर स्विचिंग गति ने उच्च आवृत्ति डीसी(DC) / डीसी कन्वर्टर्स के लिए अनुमति दी थी।

1970 में, पावर इलेक्ट्रॉनिक्स समूह की स्थापना की।[4] राज्य-अंतरिक्ष औसत पद्धति की समीक्षा की और आधुनिक बिजली इलेक्ट्रॉनिक्स डिजाइन के लिए महत्वपूर्ण उपकरण विकसित किए गए थे।[5]

पावर मोसफेट

1959 में बेल लैब्स में बिजली इलेक्ट्रॉनिक्स में एक सफलता मोसफेट (धातु-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के आविष्कार के साथ हुई थी। मोसफेट (MOSFET) ट्रांजिस्टर की पीढ़ियों ने बिजली डिजाइनरों को प्रदर्शन और घनत्व के स्तर को प्राप्त करने में सक्षम बनाया जो द्विध्रुवी ट्रांजिस्टर के साथ संभव नहीं है।[6] 1970 में मोसफेट (MOSFET) तकनीक में सुधार के कारण (पहले  इंटीग्रेटेड सर्किट का उपयोग उत्पादन करने के लिए किया जाता है) शक्ति मोसफेट (MOSFET) उपलब्ध कराया गया था।

1969 में, पहली ऊर्ध्वाधर शक्ति मोसफेट(MOSFET) की शुरुआत गयी थी[7] जिसे बाद में वीएमओएस (वी-ग्रूव मॉसफेट) के रूप में जाना गया था।[8] 1974 से, यमाहा (Yamaha) , जेवीसी (JVC), पायनियर कॉर्पोरेशन (Pioneer Corporation), सोनी (Sony) और तोशिबा(Toshiba) ने शक्ति मोसफेट (MOSFET) के साथ ऑडियो प्रवर्धक (एम्पलीफायर) का निर्माण शुरू किया था।[9]इंटरनेशनल रेक्टिफायर ने 1978 में 25ए (A), 400 वी (V) पावर मोसफेट पेश किया था।[10] यह द्विध्रुवी ट्रांजिस्टर की तुलना में उच्च आवृत्तियों पर संचालन की अनुमति देता है, लेकिन कम वोल्टेज अनुप्रयोगों तक सीमित है।

शक्ति मोसफेट(MOSFET) दुनिया में सबसे साधारण पावर डिवाइस है, इसकी गेट ड्राइव पावर कम, स्विचिंग गति तेज [11] उन्नत समानांतर क्षमता आसान[11][12] बैंडविड्थ विस्तृत, कठोरता, आसान ड्राइव, सरल पूर्वाग्रह, आवेदन में आसानी, और मरम्मत में आसानी से होती है।[12] इसमें पोर्टेबल सूचना उपकरण, पावर इंटीग्रेटेड सर्किट, मोबाइल फ़ोन (सेल फोन), लैपटॉप (नोटबुक कंप्यूटर), और संचार अवसंरचना (कम्युनिकेशन इंफ्रास्ट्रक्चर) जैसे पावर इलेक्ट्रॉनिक अनुप्रयोगों की एक विस्तृत श्रृंखला है जो इंटरनेट को सक्षम बनाती है।[13]

1982 में, इंसुलेटेड-गेट बाइपोलर ट्रांजिस्टर (IGBT) पेश किया गया था। यह 1990 के दशक में व्यापक रूप से उपलब्ध हो गया था। इस घटक में द्विध्रुवी ट्रांजिस्टर की पावर हैंडलिंग क्षमता और पावर मोसफेट(MOSFET) के पृथक गेट ड्राइव के फायदे हैं।

उपकरण (डिवाइस)

यह भी देखें: पावर सेमीकंडक्टर डिवाइस

पावर इलेक्ट्रॉनिक्स सिस्टम की क्षमताएं और अर्थव्यवस्था उपलब्ध सक्रिय उपकरणों द्वारा निर्धारित की जाती है। पावर इलेक्ट्रॉनिक्स सिस्टम के डिजाइन में उनकी विशेषताएं और सीमाएं एक प्रमुख तत्व हैं। पहले पारा चाप वाल्व, उच्च-वैक्यूम और गैस से भरे डायोड थर्मिओनिक रेक्टिफायर, और थायराट्रॉन (thyratron) और इग्निट्रॉन (ignitron) जैसे ट्रिगर उपकरणों का व्यापक रूप से बिजली इलेक्ट्रॉनिक्स में उपयोग किया जाता था। जैसे-जैसे सॉलिड-स्टेट डिवाइसेज के वोल्टेज और करंट-हैंडलिंग दोनों की अनुमतांक (रेटिंग) में सुधार होता है, वैसे वैसे  वैक्यूम डिवाइसेज को सॉलिड-स्टेट डिवाइसेस से पूरी तरह से बदल दिया जाता है।

पावर इलेक्ट्रॉनिक उपकरणों का उपयोग स्विच के रूप या एम्पलीफायरों के रूप में किया जाता है। एक स्विच को खोला या बंद किया जा सकता है जिससे इसके द्वारा ऊर्जा का दोहन नहीं होता है, यह एक लागू वोल्टेज का सामना करता है और कोई करंट पास नहीं करता है या बिना वोल्टेज ड्रॉप के किसी भी मात्रा में करंट पास करता है। स्विच के रूप में उपयोग किए जाने वाले सेमीकंडक्टर डिवाइस इसका अनुमान लगा सकते हैं और इसलिए अधिकांश पावर इलेक्ट्रॉनिक एप्लिकेशन स्विचिंग डिवाइस को चालू और बंद करने पर भरोसा करते हैं, जो सिस्टम को बहुत कुशल बनाता है क्योंकि स्विच में बहुत कम बिजली बर्बाद होती है। इसके विपरीत, एम्पलीफायर में, डिवाइस से करंट एक नियंत्रित इनपुट के अनुसार लगातार बदलता रहता है। डिवाइस टर्मिनल पर वोल्टेज और करंट लोड लाइन का पालन करते हैं, और डिवाइस के अंदर बिजली अपव्यय लोड की तुलना में बड़ा होता है।

कई गुण निर्देशित करते हैं कि उपकरणों का उपयोग कैसे किया जाता है।| डायोड (diodes)] जैसे उपकरण आगे वोल्टेज लागू होने पर आचरण करते हैं और चालन की शुरुआत का कोई बाहरी नियंत्रण नहीं होता है। बिजली के उपकरण जैसे कि सिलिकॉन नियंत्रित रेक्टिफायर और थाइरिस्टर (साथ ही पारा वाल्व और थायरट्रॉन) चालन की शुरुआत को नियंत्रित करने की अनुमति देते हैं लेकिन उन्हें बंद करने के लिए वर्तमान प्रवाह के आवधिक उलट पर भरोसा करते हैं। गेट टर्न-ऑफ थाइरिस्टर, बीजेटी और एमओएसएफईटी ट्रांजिस्टर जैसे उपकरण पूर्ण स्विचिंग नियंत्रण प्रदान करते हैं और उनके माध्यम से वर्तमान प्रवाह की परवाह किए बिना चालू या बंद किया जा सकता है। ट्रांजिस्टर डिवाइस भी आनुपातिक प्रवर्धन की अनुमति देते हैं, लेकिन इसका उपयोग शायद ही कभी सौ वाट से अधिक रेट किए गए सिस्टम के लिए किया जाता है। डिवाइस की नियंत्रण इनपुट विशेषताएँ भी डिज़ाइन को महत्वपूर्ण रूप से प्रभावित करती हैं कभी-कभी नियंत्रण इनपुट जमीन के संबंध में बहुत अधिक वोल्टेज पर होता है और इसे एक अलग स्रोत द्वारा संचालित किया जाता है।

चूंकि पावर इलेक्ट्रॉनिक कनवर्टर में दक्षता प्रीमियम पर होती है, इसलिए पावर इलेक्ट्रॉनिक डिवाइस द्वारा उत्पन्न नुकसान जितना संभव हो उतना कम होना चाहिए।

डिवाइस स्विचिंग गति से भिन्न होते हैं। कुछ डायोड और थाइरिस्टर अपेक्षाकृत धीमी गति के लिए उपयुक्त हैं और बिजली आवृत्ति स्विचिंग और नियंत्रण के लिए उपयोगी हैं, कुछ थाइरिस्टर कुछ किलोहर्ट्ज़ (KHz) पर उपयोगी होते हैं। मोसफेट(MOSFET) और बिजेटी (BJT) जैसे बिजली उपकरण अनुप्रयोगों में दस किलोहर्ट्ज़ (KHz) पर कुछ मेगाहर्ट्ज़ (MHz) तक स्विच कर सकते हैं, लेकिन बिजली के स्तर में कमी के साथ। वैक्यूम ट्यूब उपकरण बहुत उच्च आवृत्ति (सैकड़ों या हजारों मेगाहर्ट्ज़) अनुप्रयोगों पर उच्च शक्ति (सैकड़ों किलोवाट) पर हावी होते हैं। तेजी से स्विच करने वाले उपकरण चालू से बंद और पीछे संक्रमण में खोई हुई ऊर्जा को कम करते हैं लेकिन विकिरणित विद्युत चुम्बकीय हस्तक्षेप के साथ समस्याएं पैदा कर सकते हैं। गेट ड्राइव (या समकक्ष) सर्किट को डिवाइस के साथ संभव पूर्ण स्विचिंग गति प्राप्त करने के लिए पर्याप्त ड्राइव चालू करने के लिए डिज़ाइन किया जाना चाहिए। उपकरण में  तेजी से स्विच करने पर पर्याप्त ड्राइव न होतो  ज्यादा हीटिंग से वह नष्ट हो सकता है।

प्रायोगिक उपकरणों में एक गैर-शून्य वोल्टेज ड्रॉप होता है और चालू होने पर शक्ति को नष्ट कर देता है, और एक सक्रिय क्षेत्र से गुजरने में कुछ समय लगता है जब तक कि वे "चालू" या "बंद" स्थिति तक नहीं पहुंच जाते। ये नुकसान एक कनवर्टर में कुल खोई हुई शक्ति का एक महत्वपूर्ण हिस्सा हैं।

उपकरणों की डिजाइन में पावर हैंडलिंग और अपव्यय भी महत्वपूर्ण कारक है। पावर इलेक्ट्रॉनिक उपकरणों को दसियों या सैकड़ों वाट अपशिष्ट गर्मी को नष्ट करना पड़ सकता है, यहां तक ​​​​कि संचालन और गैर-संचालन राज्यों के बीच जितना संभव हो उतना कुशलता से स्विच करना चाहिए। स्विचिंग मोड में, नियंत्रित शक्ति स्विच में नष्ट होने वाली शक्ति से बहुत बड़ी होती है। संवाहक अवस्था में आगे की वोल्टेज ड्रॉप गर्मी में तब्दील हो जाती है जिसे समाप्त किया जाना चाहिए। उच्च शक्ति अर्धचालकों को अपने जंक्शन तापमान को प्रबंधित करने के लिए विशेष हीट सिंक या सक्रिय कूलिंग सिस्टम की आवश्यकता होती है, सिलिकॉन कार्बाइड जैसे विदेशी अर्धचालकों का इस संबंध में सीधे सिलिकॉन पर फायदा है, और जर्मेनियम, एक बार ठोस-राज्य इलेक्ट्रॉनिक्स का मुख्य-स्थल अब इसके प्रतिकूल उच्च तापमान गुणों के कारण बहुत कम उपयोग किया जाता है।

सेमीकंडक्टर डिवाइस में कुछ किलोवोल्ट (Kilovolt) मौजूद होते हैं। जहां बहुत अधिक वोल्टेज को नियंत्रित किया जाता है, सभी उपकरणों में वोल्टेज को बराबर करने के लिए नेटवर्क के साथ श्रृंखला में कई उपकरणों का उपयोग किया जाना चाहिए। फिर से, स्विचिंग गति एक महत्वपूर्ण कारक है क्योंकि सबसे धीमी-स्विचिंग डिवाइस को समग्र वोल्टेज के अनुपातहीन हिस्से का सामना करना पड़ेगा। पारा वाल्व एक बार एक इकाई में 100 केवी रेटिंग के साथ उपलब्ध थे, एचवीडीसी (HVDC) प्रणालियों में उनके अनुप्रयोग को सरल बनाते हैं।

सेमीकंडक्टर डिवाइस की वर्तमान रेटिंग मरने के भीतर उत्पन्न गर्मी और इंटरकनेक्टिंग लीड के प्रतिरोध में विकसित गर्मी से सीमित होती है। सेमीकंडक्टर उपकरणों को इस तरह से डिजाइन किया जाना चाहिए कि करंट को डिवाइस के भीतर उसके आंतरिक जंक्शनों (या चैनलों) में समान रूप से वितरित किया जाए, एक बार एक हॉट स्पॉट विकसित हो जाने पर, ब्रेकडाउन प्रभाव डिवाइस को तेजी से नष्ट कर सकता है। कुछ एससीआर (SCR) एक इकाई में 3000 एम्पीयर (Ampere) की वर्तमान रेटिंग के साथ उपलब्ध हैं।





डीसी/एसी कन्वर्टर्स (इनवर्टर)

डीसी (DC) से एसी (AC) कन्वर्टर्स डीसी (DC) स्रोत से एसी (AC) आउटपुट तरंग उत्पन्न करते हैं। अनुप्रयोगों मेंएडजस्टेबल स्पीड ड्राइव (एएसडी), अनइंटरप्टिबल पावर सप्लाई (यूपीएस), फ्लेक्सिबल एसी ट्रांसमिशन सिस्टम (फैक्ट्स), वोल्टेज कम्पेसाटर और फोटोवोल्टिक इनवर्टर शामिल हैं। इन कन्वर्टर्स के लिए टोपोलॉजी को दो अलग-अलग श्रेणियों में विभाजित किया जाता है, वोल्टेज स्रोत इनवर्टर और वर्तमान स्रोत इनवर्टर। वोल्टेज स्रोत इनवर्टर (वीएसआई) (VSI) का नाम इसलिए रखा गया है क्योंकि स्वतंत्र रूप से नियंत्रित आउटपुट एक वोल्टेज तरंग है। इसी तरह, धारा स्रोत इनवर्टर (CSI) इस मायने में अलग हैं कि नियंत्रित एसी (AC) आउटपुट एक करंट तरंगरूप (वेवफॉर्म) है।

डीसी (DC) से एसी (AC) विद्युत् परिवर्तन बिजली स्विचिंग उपकरणों का परिणाम है, जोकि नियंत्रित अर्धचालक पावर स्विच होते हैं। इसलिए वाह्य तरंगरूप उत्पाद (आउटपुट वेवफॉर्म) अलग मूल्यों से बने होते हैं, जो स्थिरता के बजाय तेजी से संक्रमण पैदा करते हैं। कुछ अनुप्रयोगों के लिए, एसी (AC) विद्युत् के साइनसोइडल तरंग का अनुमान भी पर्याप्त है। जहां एक निकट साइनसॉइडल तरंग की आवश्यकता होती है, स्विचिंग डिवाइस आउटपुट आवृत्ति की तुलना में बहुत तेजी से संचालित होते हैं, और किसी भी राज्य में खर्च किए जाने वाले समय को नियंत्रित किया जाता है, इसलिए औसत आउटपुट लगभग साइनसॉइडल होता है। सामान्य मॉड्यूलेशन तकनीकों में वाहक-आधारित तकनीक या पल्स-चौड़ाई मॉडुलन, स्पेस-वेक्टर तकनीक और चयनात्मक-हार्मोनिक तकनीक शामिल हैं।[14]

वोल्टेज स्रोत इनवर्टर का एकल-चरण और तीन-चरण दोनों अनुप्रयोगों में उपयोग होता है। सिंगल-फेज वीएसआई (VSI) हाफ-ब्रिज और फुल-ब्रिज कॉन्फ़िगरेशन का उपयोग करते हैं, और व्यापक रूप से बिजली की आपूर्ति, एकल-चरण यूपीएस (UPS) और मल्टीसेल कॉन्फ़िगरेशन में उपयोग किए जाने पर उच्च-शक्ति टोपोलॉजी के लिए उपयोग किए जाते हैं। तीन-चरण वीएसआई (VSI) का उपयोग साइनसॉइडल वोल्टेज तरंगों की आवश्यकता के लिए किया जाता है, जैसे एएसडी (ASD), यूपीएस (UPS), और कुछ प्रकार के फैक्ट्स (FACTS) उपकरण जैसे स्टैटकॉम (STATCOM) में किया जाता है। उनका उपयोग उन अनुप्रयोगों में भी किया जाता है जहां मनमानी वोल्टेज की आवश्यकता होती है, जैसे सक्रिय पावर फिल्टर और वोल्टेज कम्पेसाटर।[14]

धारा स्रोत इनवर्टर का उपयोग डीसी (DC) करंट सप्लाई से एसी (AC) आउटपुट करंट उत्पन्न करने के लिए किया जाता है। तीन-चरण अनुप्रयोगों के लिए यह इन्वर्टर के लिए उपयोगी है जिसमें उच्च-गुणवत्ता वाले वोल्टेज तरंगों की आवश्यकता होती है।

बहुस्तरीय इनवर्टर एक नए वर्ग का इनवर्टर है, जिसमे व्यापक रुचि प्राप्त की गयी  है। सीएसआई (CSI) और वीएसआई (VSI) को दो-स्तरीय इनवर्टर के रूप में वर्गीकृत किया जा सकता है, इस तथ्य के कारण बिजली स्विच सकारात्मक या नकारात्मक डीसी (DC) बस से जुड़ते हैं। इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज पर एसी (AC)आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है। इसलिए बहुस्तरीय इनवर्टर, अधिक जटिल और महंगे हैं, और उच्च प्रदर्शन करते हैं।[15]

प्रत्येक इन्वर्टर उपयोग किए गए डीसी (DC) लिंक में भिन्न होता है, चाहे उन्हें फ्रीव्हीलिंग डायोड की जरुरत हो या न हो। या तो स्क्वायर-वेव में संचालित करने के लिए या पल्स-चौड़ाई मॉडुलन (पीडब्लूएम) मोड में संचालित करने के लिए बनाया जा सकता है। स्क्वायर-वेव मोड सरलता प्रदान करता है, जबकि पीडब्लूएम को कई अलग-अलग तरीकों से लागू किया जा सकता है और उच्च गुणवत्ता वाले तरंगों का उत्पादन करता है। [14]

वोल्टेज स्रोत इनवर्टर (वीएसआई)(VSI) लगभग स्थिर-वोल्टेज स्रोत से आउटपुट इन्वर्टर अनुभाग को सिंचित करते हैं।[14]

वर्तमान आउटपुट तरंग की गुणवत्ता यह निर्धारित करती है कि दिए गए उपकरण के लिए कौन सी मॉड्यूलेशन तकनीक का चयन किया जाना चाहिए। वीएसआई (VSI) का आउटपुट असतत मूल्यों से बना होता है। एक चिकनी वर्तमान तरंग प्राप्त करने के लिए,लोड को चुनिंदा हार्मोनिक आवृत्तियों पर आगमनात्मक होना चाहिए। स्रोत और लोड के बीच बिना किसी आगमनात्मक फ़िल्टरिंग के, एक कैपेसिटिव लोड लोड को बड़े और लगातार वर्तमान स्पाइक्स के साथ एक गतिमान वर्तमान तरंग प्राप्त करने का कारण बनता है।[14]

वीएसआई (VSI) के तीन मुख्य प्रकार हैं:

  1. सिंगल-फेज हाफ-ब्रिज इन्वर्टर
  2. सिंगल-फेज फुल-ब्रिज इन्वर्टर
  3. तीन चरण वोल्टेज स्रोत इन्वर्टर

सिंगल-फेज हाफ-ब्रिज इन्वर्टर:

सिंगल-फेज वोल्टेज स्रोत हाफ-ब्रिज इनवर्टर कम वोल्टेज पर बिजली की आपूर्ति के लिए उपयोग किए जाते हैं।[14] चित्र 9 इस इन्वर्टर के सर्किट को दिखाता है।

इन्वर्टर के संचालन से सोर्स वोल्टेज में लो-ऑर्डर करंट हार्मोनिक्स को  वापस अंत : क्षिप्त किया जाता है। इसका मतलब है कि इस डिज़ाइन में फ़िल्टरिंग के लिए दो बड़े कैपेसिटर की आवश्यकता होती है।[14] जैसा कि चित्र 9 दिखाता है, इन्वर्टर के प्रत्येक चरण में एक समय में केवल एक स्विच चालू हो सकता है। यदि प्रत्येक चरण में दो स्विच एक ही समय पर चालू करते हैं, तो डीसी (DC) स्रोत छोटा हो जाएगा।

मॉड्यूलेशन तकनीकों का उपयोग कर के इनवर्टर अपनी स्विचिंग योजनाओं को नियंत्रित कर सकते हैं। कैरियर-आधारित पीडब्लूएम (PWM) तकनीक, (AC) एसी आउटपुट वेवफ़ॉर्म, वीसी (vc ) की तुलना कैरियर वोल्टेज सिग्नल (vΔ ) से करती है। जब vc बड़ा हो vΔ से, तो S+ चालू होता है और जब vc कम होता है , vΔ से, तो S- चालू है। जब एसी (AC) आउटपुट आवृत्ति (frequency) fc पर होता है जिसका आयाम (Amplitude) vc होता है, और त्रिकोणीय वाहक सिग्नल आवृत्ति (frequency) fΔ पर होता है, जिसका आयाम (Amplitude) vΔ पर होता है तब पीडब्लूएम (PWM) वाहक आधारित पीडब्लूएम (PWM) का एक विशेष साइनसोइडल केस बन जाता है।[14] इस को साइनसॉइडल पल्स-चौड़ाई मॉड्यूलेशन (SPWM) कहा गया है। इस को, मॉड्यूलेशन इंडेक्स, या आयाम-मॉड्यूलेशन अनुपात के रूप में परिभाषित किया गया है।

ma = vc/v

सामान्यीकृत वाहक आवृत्ति, या आवृत्ति-मॉड्यूलेशन अनुपात की गणना इस समीकरण से की जाती है,

mf = f/fc '[16]

यदि ओवर-मॉड्यूलेशन क्षेत्र, ma एक से अधिक है, तो एक उच्च मौलिक एसी (AC) आउटपुट वोल्टेज दिखेगा, लेकिन संतृप्ति की कीमत पर। एसपीडब्लूएम (SPWM) के लिए, आउटपुट तरंग की गुणवृत्ति अच्छी तरह से परिभाषित आवृत्तियों और आयामों (Amplitude) पर होती हैं। इन्वर्टर के संचालन से निम्न-क्रम के वर्तमान हार्मोनिक इंजेक्शन के लिए आवश्यक फ़िल्टरिंग घटकों के डिज़ाइन को सरल रताक है। संचालन के इस तरीके मेंअधिकतम आउटपुट आयाम (Amplitude) स्रोत वोल्टेज का आधा होता है। यदि अधिकतम आउटपुट आयाम (Amplitude), ma, 3.24 से अधिक है, तो इन्वर्टर का आउटपुट तरंग एक वर्ग तरंग बन जाता है।[14]

जैसा कि पल्स-चौड़ाई मॉड्यूलेशन (PWM) के लिए सही था, स्क्वायर वेव मॉड्यूलेशन के लिए एक चरण में दोनों स्विच एक ही समय में चालू नहीं किए जा सकते, क्योंकि इससे वोल्टेज स्रोत में शॉर्ट हो जाएगा। स्विचिंग योजना के लिए आवश्यक है कि S+ और S- दोनों AC आउटपुट अवधि के आधे चक्र के लिए चालू रहें।[14]

मौलिक एसी (AC)आउटपुट आयाम (Amplitude) है vo1 = vaN = 2vi

इसके हार्मोनिक्स का आयाम (Amplitude) है voh = vo1/h'.

इसलिए इन्वर्टर के एसी (AC) आउटपुट वोल्टेज से नियंत्रित नहीं किया जाता है, बल्कि इन्वर्टर के डीसी (DC) इनपुट वोल्टेज से नियंत्रित किया जाता है।[14]

मॉड्यूलेशन तकनीक के रूप में सेलेक्टिव हार्मोनिक एलिमिनेशन (एसएचई) का उपयोग करने से इन्वर्टर के स्विचिंग को चुनिंदा आंतरिक हार्मोनिक्स को खत्म करने की अनुमति मिलती है। एसी (AC) आउटपुट वोल्टेज के मूलभूत घटक को एक वांछनीय सीमा के भीतर भी समायोजित किया जा सकता है। चूंकि इस मॉड्यूलेशन तकनीक से प्राप्त एसी (AC) आउटपुट वोल्टेज में विषम आधा और विषम क्वार्टर-वेव समरूपता है, यहां तक ​​कि हार्मोनिक्स भी मौजूद नहीं हैं। [15] आउटपुट तरंग से किसी भी अवांछनीय विषम (N-1) आंतरिक हार्मोनिक्स को समाप्त किया जा सकता है।

सिंगल-फेज फुल-ब्रिज इन्वर्टर

फुल-ब्रिज इन्वर्टर हाफ ब्रिज-इन्वर्टर के समान है, लेकिन इसमें न्यूट्रल पॉइंट को लोड से जोड़ने के लिए एक अलग चरण है।[14] चित्रा 3 एकल-चरण वोल्टेज स्रोत पूर्ण-पुल इन्वर्टर के सर्किट योजनाबद्ध को दर्शाता है।

वोल्टेज स्रोत को छोटा करने से बचने के लिए, S1 और S1- एक ही समय में चालू नहीं कर सकते हैं, और S2 और S2- भी एक ही समय पे  चालू नहीं हो सकते हैं। फुल-ब्रिज कॉन्फ़िगरेशन में उपयोग होने वाली मॉड्यूलेटिंग तकनीक को किसी भी समय में प्रत्येक चरण के ऊपर या नीचे का स्विच ही होना चाहिए। अतिरिक्त चरण के कारण, वाह्य तरंगरूप (आउटपुट वेवफॉर्म) का अधिकतम आयाम (Amplitude) वीआई है, और हाफ-ब्रिज कॉन्फ़िगरेशन के लिए अधिकतम प्राप्त करने योग्य आउटपुट आयाम (Amplitude) दोगुना से बड़ा है।[14]

तालिका 2 (table 2) में राज्य 1 और 2 का उपयोग द्विध्रुवी एसपीडब्लूऍम (SPWM) के साथ एसी (AC) आउटपुट वोल्टेज उत्पन्न करने के लिए किया जाता है। एसी (AC)आउटपुट वोल्टेज केवल दो मान (values) ले सकता है, या तो वीआई (Vi) या -वीआई (-Vi)। हाफ-ब्रिज कॉन्फ़िगरेशन का उपयोग करके इन समान अवस्थाओं को उत्पन्न करने के लिए, एक तकनीक का उपयोग किया जा सकता है। हाफ-ब्रिज के लिए S+ चालू होना S1+ और S2- फुल-ब्रिज के लिए चालू होने के अनुरूप है। इसी तरह, हाफ-ब्रिज के लिए S- चालू होना S1- और S2+ के फुल-ब्रिज के लिए होने के अनुरूप है। इस मॉड्यूलेशन तकनीक के लिए आउटपुट वोल्टेज कम या ज्यादा साइनसॉइडल है, जिसमें एक मौलिक घटक होता है जिसका रैखिक क्षेत्र में आयाम (Amplitude) से कम या बराबर होता है[14]

vo1 =vab1= vi • ma.

द्विध्रुवी पीडब्लूएम तकनीक के विपरीत, एकध्रुवीय दृष्टिकोण अपने एसी (AC) आउटपुट वोल्टेज को उत्पन्न करने के लिए तालिका 2 (table 2) से 1, 2, 3 और 4 राज्यों का उपयोग करता है। इसलिए, एसी (AC) आउटपुट वोल्टेज Vi, 0 or –V [1]i मान (values) ले सकता है। इन अवस्थाओं को उत्पन्न करने के लिए, दो साइनसोइडल मॉड्यूलेटिंग सिग्नल, Vc और -Vc की आवश्यकता होती है, जैसा कि चित्र 4 में देखा गया है।

Vc का उपयोग VaN उत्पन्न करने के लिए, जबकि -Vc का उपयोग VbN उत्पन्न करने के लिए किया जाता है। निम्नलिखित संबंध को एकध्रुवीय वाहक-आधारित एसपीडब्लूऍम (SPWM) कहा जाता है

vo1 =2 • vaN1= vi • ma.'.

वोल्टेज रूप VaN और VbN समान हैं, लेकिन 180 डिग्री एक दूसरे के साथ चरण से बाहर हैं। आउटपुट वोल्टेज दो-चरण वोल्टेज के अंतर के बराबर है, और इसमें कोई भी हार्मोनिक्स नहीं है। इसलिए, यदि एमएफ (mf) लिया जाता है, तो एसी (AC) आउटपुट वोल्टेज हार्मोनिक्स भी सामान्यीकृत विषम आवृत्तियों एफएच (fh) पर दिखाई देगा। ये आवृत्तियाँ सामान्यीकृत वाहक आवृत्ति के दोगुने मान (values) पर केंद्रित होती हैं। उच्च गुणवत्ता आउटपुट तरंग पाने के प्रयास के समय यह विशेष सुविधा छोटे फ़िल्टरिंग घटकों की अनुमति देता है।[14]

जैसा कि हाफ-ब्रिज एसएचई में था, एसी (AC) आउटपुट वोल्टेज में इसके आधे विषम और क्वार्टर-वेव विषम समरूपता के कारण कोई भी हार्मोनिक्स नहीं होता है।[14]

तीन चरण वोल्टेज स्रोत इन्वर्टर

सिंगल-फेज वीएसआई का उपयोग काम पावर रेंज अनुप्रयोगों के लिए जाता है, जबकि तीन-चरण वीएसआई मध्यम और उच्च पावर रेंज दोनों अनुप्रयोगों को कवर करता है।[14] चित्रा 5 तीन चरण वीएसआई के लिए सर्किट योजनाबद्ध दिखाता है।

इन्वर्टर के तीनों चरणों में से किसी में भी स्विच को एक साथ बंद नहीं किया जा सकता है, जिसके परिणामस्वरूप वोल्टेज संबंधित लाइन करंट की ध्रुवता पर निर्भर होता है। राज्य 7 और 8 शून्य एसी (AC) लाइन वोल्टेज उत्पन्न करते हैं, जिसके परिणामस्वरूप एसी (AC) लाइन धाराएं ऊपरी या निचले घटकों के माध्यम से फ्रीव्हीलिंग करती हैं। हालांकि, 1 से 6 राज्यों के लिए लाइन वोल्टेज एक एसी (AC) लाइन वोल्टेज उत्पन्न करते हैं जिसमें वीआई, 0 या -वी के अलग मान (values) होते हैं।[14]

तीन-चरण एसपीडब्लूएम (SPWM) के लिए, तीन मॉड्यूलेटिंग सिग्नल जो एक दूसरे के साथ चरण से 120 डिग्री बाहर हैं, आउट-ऑफ-फेज लोड वोल्टेज का उत्पादन करने के लिए उपयोग किया जाता है। एकल वाहक संकेत के साथ पीडब्लूएम (PWM) सुविधाओं को संरक्षित करने के लिए, सामान्यीकृत वाहक आवृत्ति, mf, को तीन का गुणज (multiple) होना चाहिए। यह चरण वोल्टेज के परिमाण को समान रखता है, लेकिन 120 डिग्री तक एक दूसरे के साथ चरण से बाहर होता है।[14] रैखिक क्षेत्र में अधिकतम प्राप्य चरण वोल्टेज आयाम, एक से कम या उसके बराबर है,

vphase = vi / 2

अधिकतम प्राप्य लाइन वोल्टेज आयाम है Vab1 = vab • 3 / 2

लोड वोल्टेज को नियंत्रित करने का एकमात्र तरीका इनपुट डीसी (DC) वोल्टेज को बदलना है।

धारा स्रोत इनवर्टर

File:Three-Phase Current Source Inverter.jpg
फिगर 7: थ्री-फेज करंट सोर्स इन्वर्टर
File:Synchronized-Pulse-Width-Modulation Waveforms for a Three-Phase Current Source Inverter a) Carrier and Modulating Signals b) S1 State c) S3 State d) Output Current.jpg
चित्र 8: तीन चरण के करंट सोर्स इन्वर्टर के लिए सिंक्रोनाइज्ड-पल्स-चौड़ाई-मॉड्यूलेशन तरंग a) कैरियर और मॉड्यूलेटिंग Ssgnals b) S1 स्टेट c) S3 स्टेट d) आउटपुट करंट
File:Space-Vector Representation in Current Source Inverters.jpg
चित्र 9: वर्तमान स्रोत इनवर्टर में अंतरिक्ष-वेक्टर प्रतिनिधित्व

धारा स्रोत इनवर्टर डीसी (DC) करंट को एसी (AC) करंट तरंगरूप (वेवफॉर्म) में बदलते हैं। साइनसॉइडल एसी (AC) तरंगों की आवश्यकता वाले अनुप्रयोगों में, जटिलता, आवृत्ति और चरण सभी को नियंत्रित किया जाना चाहिए। सीएसआई (CSI) में वर्तमान समय में उच्च परिवर्तन होते हैं, इसलिए कैपेसिटर आमतौर पर एसी (AC) की तरफ लगाए जाते हैं, जबकि इंडक्टर्स आमतौर पर डीसी (DC) साइड पर लगाए जाते हैं।[14] फ्रीव्हीलिंग डायोड की अनुपस्थिति के कारण, पावर सर्किट आकार और वजन में कम हो जाता है, और वीएसआई (VSI) की तुलना में अधिक विश्वसनीय हो जाता है।[15] हालांकि एकल-चरण टोपोलॉजी संभव है, तीन-चरण सीएसआई (CSI) अधिक व्यावहारिक हैं।

अपने सबसे सामान्यीकृत रूप में, एक तीन-चरण सीएसआई (CSI) छह-पल्स रेक्टिफायर के समान चालन अनुक्रम को नियोजित करता है। किसी भी समय, केवल एक कॉमन-कैथोड स्विच और एक कॉमन-एनोड स्विच चालू होता है।[15]

परिणामस्वरूप, रेखा धाराएं -ii, 0 और ii अलग मान (values) लेती हैं। राज्यों को इस तरह चुना जाता है कि एक वांछित तरंग आउटपुट हो और केवल वैध राज्यों का उपयोग किया जाता हो। यह चयन मॉड्यूलेटिंग तकनीकों पर आधारित है, जिसमें वाहक-आधारित पीडब्लूएम (PWM), चयनात्मक हार्मोनिक उन्मूलन और अंतरिक्ष-वेक्टर तकनीक शामिल हैं।[14]

वीएसआई (VSI) के लिए उपयोग की जाने वाली कैरियर-आधारित तकनीकों को सीएसआई (CSI) के लिए भी लागू किया जा सकता है, जिसके परिणामस्वरूप सीएसआई (CSI) लाइन धाराएं वीएसआई (VSI) लाइन वोल्टेज के समान व्यवहार करती हैं। संकेतों को मॉड्यूलेट करने के लिए उपयोग किए जाने वाले डिजिटल सर्किट में एक स्विचिंग पल्स जनरेटर, एक शॉर्टिंग पल्स जनरेटर, एक शॉर्टिंग पल्स डिस्ट्रीब्यूटर और एक स्विचिंग और शॉर्टिंग पल्स कॉम्बिनर होता है। एक वाहक वर्तमान और तीन मॉड्यूलेटिंग संकेतों के आधार पर एक गेटिंग सिग्नल उत्पन्न होता है।[14]

शॉर्टिंग पल्स को इस सिग्नल में तब जोड़ा जाता है जब कोई टॉप स्विच और कोई बॉटम स्विच गेट नहीं होता है, जिससे आरएमएस (RMS) करंट सभी चरण में बराबर हो जाता है। प्रत्येक चरण के लिए समान विधियों का उपयोग किया जाता है, हालांकि, स्विचिंग चर एक दूसरे के सापेक्ष चरण से 120 डिग्री बाहर होते हैं, और वर्तमान दालों को आउटपुट धाराओं के संबंध में आधा चक्र द्वारा स्थानांतरित किया जाता है। यदि एक त्रिकोणीय वाहक का उपयोग साइनसॉइडल मॉड्यूलेटिंग सिग्नल के साथ किया जाता है, तो सीएसआई (CSI) को सिंक्रोनाइज्ड-पल्स-चौड़ाई-मॉड्यूलेशन (एसपीडब्लूएम) का उपयोग करने के लिए कहा जाता है।[14]

दूसरी सीएसआई (CSI) मॉडुलन श्रेणी, एसएचई भी अपने वीएसआई (VSI) समकक्ष के समान है। वीएसआई (VSI) के लिए विकसित किए गए गेटिंग सिग्नल और साइनसॉइडल करंट सिग्नल को सिंक्रोनाइज़ करने के एक सेट का उपयोग करने से, सममित रूप से वितरित शॉर्टिंग पल्स और इसलिए, सममित गेटिंग पैटर्न का परिणाम होता है। यह किसी भी मनमानी संख्या में हार्मोनिक्स को समाप्त करने की अनुमति देता है।[14] यह प्राथमिक स्विचिंग कोणों के उचित चयन के माध्यम से मौलिक लाइन करंट को नियंत्रित करने की भी अनुमति देता है। इष्टतम स्विचिंग पैटर्न में क्वार्टर-वेव और हाफ-वेव समरूपता, साथ ही समरूपता लगभग 30 डिग्री और 150 डिग्री होनी चाहिए। 60 डिग्री और 120 डिग्री के बीच स्विचिंग पैटर्न की अनुमति कभी नहीं दी जाती है। वर्तमान तरंग को बड़े आउटपुट कैपेसिटर के उपयोग से या स्विचिंग दालों की संख्या में वृद्धि करके और कम किया जा सकता है।[15]

तीसरी श्रेणी, स्पेस-वेक्टर-आधारित मॉडुलन, पीडब्लूएम लोड लाइन धाराएं उत्पन्न करती है जो औसत लोड लाइन धाराओं के बराबर होती है। अंतरिक्ष वेक्टर परिवर्तन के आधार पर वैध स्विचिंग राज्य और समय चयन डिजिटल रूप से किए जाते हैं। परिवर्तन समीकरण का उपयोग करके मॉड्यूलेटिंग संकेतों को एक जटिल वेक्टर के रूप में दर्शाया जाता है। संतुलित तीन-चरण साइनसॉइडल संकेतों के लिए, यह वेक्टर एक निश्चित मॉड्यूल बन जाता है, जो आवृत्ति(frequency) पर घूमता है। इन अंतरिक्ष सदिशों का उपयोग मॉड्यूलेटिंग सिग्नल का अनुमान लगाने के लिए किया जाता है। यदि संकेत मनमाना वैक्टर के बीच है, तो वैक्टर को शून्य वैक्टर I7, I8, या I9 के साथ जोड़ दिया जाता है।[14] निम्नलिखित समीकरणों का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि उत्पन्न धाराएं और वर्तमान वैक्टर औसत समकक्ष हैं।

मल्टीलेवल इनवर्टर

बहुस्तरीय इनवर्टर अपेक्षाकृत नए वर्ग ने बहुत दूर तक रुचि प्राप्त की है। सीएसआई (CSI) और वीएसआई (VSI) को दो-स्तरीय इनवर्टर के रूप में बाटा जा सकता है क्योंकि पावर स्विच सकारात्मक या नकारात्मक डीसी (DC) बस से जुड़ते हैं।[15] यदि इन्वर्टर आउटपुट टर्मिनलों के लिए दो से अधिक वोल्टेज उपलब्ध थे, तो एसी (AC) आउटपुट एक साइन वेव का बेहतर अनुमान लगा सकता है।[14] इस लिए बहुस्तरीय इनवर्टर, अधिक जटिल और महंगे हैं, और उच्च प्रदर्शन प्रदान करते हैं।[15] चित्र 10 में एक तीन-स्तरीय न्यूट्रल-क्लैम्प्ड इन्वर्टर दिखाया गया है।

तीन-स्तरीय इन्वर्टर की नियंत्रण विधि में प्रत्येक चरण में चार स्विच के दो स्विच को एक साथ बदलने की अनुमति देता हैं। यह सुचारू रूप से आवागमन की अनुमति देता है और केवल वैध राज्यों का चयन करके शूट थ्रू से बचा जाता है।[15] इसपे भी ध्यान दे सकते है चूंकि डीसी (DC) बस वोल्टेज कम से कम दो पावर वाल्व द्वारा साझा किया जाता है, इसलिए इसकी वोल्टेज रेटिंग दो-स्तरीय समकक्ष से कम हो सकती है।

बहुस्तरीय टोपोलॉजी के लिए कैरियर-आधारित और अंतरिक्ष-वेक्टर मॉड्यूलेशन तकनीकों का उपयोग किया जाता है। इन तकनीकों के लिए विधियां क्लासिक इनवर्टर का अनुसरण जटिलता के साथ करती हैं। स्पेस-वेक्टर मॉड्यूलेशन, मॉड्यूलेशन सिग्नल को अनुमानित करने में उपयोग किए जाने वाले निश्चित वोल्टेज वैक्टर की एक बड़ी संख्या प्रदान करता है, और इसलिए अधिक विस्तृत एल्गोरिदम की कीमत पर अधिक प्रभावी स्पेस वेक्टर पीडब्लूएम (PWM) रणनीतियों को पूरा करने की अनुमति देता है। अतिरिक्त जटिलता और अर्धचालक उपकरणों की संख्या के कारण, बहुस्तरीय इनवर्टर वर्तमान में उच्च-शक्ति वाले उच्च-वोल्टेज अनुप्रयोगों के लिए अधिक उपयुक्त हैं।[15]यह तकनीक हार्मोनिक्स को कम करके योजना की समस्त दक्षता में सुधार करती है।

एसी (AC)/ एसी (AC) कन्वर्टर्स

एसी (AC) पावर को एसी (AC) पावर में बदलने से आपूर्ति एसी (AC) सिस्टम से लोड पर लागू तरंग के वोल्टेज, आवृत्ति और चरण के नियंत्रण की अनुमति मिलती है।[17] कन्वर्टर्स के प्रकारों को अलग करने के लिए दो मुख्य श्रेणियों का उपयोग किया जा सकता है, या तरंग की आवृत्ति बदल जाती है।[18] एसी (AC) वोल्टेज नियंत्रक, या एसी (AC) नियामक में एसी (AC) /एसी कनवर्टर उपयोगकर्ता को आवृत्तियों को संशोधित करने की अनुमति नहीं देता है। एसी (AC) कन्वर्टर्स जो उपयोगकर्ता को आवृत्ति बदलने की अनुमति देते हैं, उन्हें एसी (AC) से एसी (AC) रूपांतरण के लिए आवृत्ति कन्वर्टर्स के रूप में जाना जाता है। आवृति कन्वर्टर्स में तीन अलग-अलग प्रकार के कन्वर्टर्स होते हैं जो साइक्लोकन्वर्टर, मैट्रिक्स कन्वर्टर, डीसी लिंक कन्वर्टर (उर्फ एसी/डीसी/एसी कन्वर्टर) में उपयोग किए जाते हैं।

एसी वोल्टेज नियंत्रक: एसी (AC) वोल्टेज नियंत्रक, या एसी (AC) नियामक का उद्देश्य एक स्थिर आवृत्ति पर आरएमएस (RMS) वोल्टेज को पूरे लोड में बदलना है[17] तीन नियंत्रण विधियां जो आमतौर पर स्वीकार की जाती है वो है चालू/बंद नियंत्रण, चरण-कोण नियंत्रण, और पल्स-चौड़ाई मॉड्यूलेशन एसी चॉपर कंट्रोल (पीडब्लूएम एसी चॉपर कंट्रोल)।[19] इन तीनों विधियों को न केवल एकल-चरण सर्किट में, बल्कि तीन-चरण सर्किट में भी लागू किया जा सकता है।

  • चालू / बंद नियंत्रण: आमतौर पर हीटिंग लोड या मोटर्स के गति नियंत्रण के लिए उपयोग किया जाता है, इस नियंत्रण विधि में एन इंटीग्रल साइकिल के लिए स्विच चालू करना और एम इंटीग्रल साइकिल के लिए स्विच को बंद करना शामिल है। क्योंकि स्विच को चालू और बंद करने से अवांछनीय हार्मोनिक्स का निर्माण होता है, शून्य-वोल्टेज और शून्य-वर्तमान स्थितियों (शून्य-क्रॉसिंग) के दौरान स्विच चालू और बंद होते हैं, विरूपण को प्रभावी ढंग से कम करते हैं।[19]
  • चरण-कोण नियंत्रण: विभिन्न तरंगों पर चरण-कोण नियंत्रण को लागू करने के लिए विभिन्न सर्किट मौजूद हैं, जैसे कि आधा-लहर (half-wave) या पूर्ण-लहर (full-wave) वोल्टेज नियंत्रण। आमतौर पर बिजली इलेक्ट्रॉनिक में उपयोग किए जाने वाले घटक डायोड, एससीआर (SCR)और ट्राइक (Traics) हैं। इन घटकों के उपयोग के साथ, उपयोगकर्ता एक लहर में फायरिंग कोण में देरी कर सकता है, जिससे लहर का केवल एक हिस्सा आउटपुट में होता है।[17]
  • पीडब्लूएम एसी चॉपर कंट्रोल: दोनो अन्य नियंत्रण विधियों में अक्सर खराब हार्मोनिक्स, आउटपुट वर्तमान गुणवत्ता और इनपुट पावर फैक्टर होता है। अन्य तरीकों के बजाय पीडब्लूएम (PWM) का उपयोग इन मूल्यों को सुधारने के लिए किया जाता है। पीडब्लूएम एसी (AC) चॉपर में ऐसे स्विच होते हैं जो इनपुट वोल्टेज के हर आधे चक्र के अंदर कई बार चालू और बंद होते हैं।[19]

मैट्रिक्स कन्वर्टर्स और साइक्लोकॉनवर्टर: उद्योग में एसी (AC) से एसी (AC) रूपांतरण के लिए साइक्लोकॉनवर्टर का व्यापक रूप से उपयोग किया जाता है, क्योंकि वे उच्च-शक्ति अनुप्रयोगों में उपयोग करने में सक्षम हैं। ये कम्यूटेड डायरेक्ट फ़्रीक्वेंसी कन्वर्टर्स हैं जो एक सप्लाई लाइन द्वारा सिंक्रोनाइज़ किए जाते हैं। साइक्लोकॉनवर्टर आउटपुट वोल्टेज तरंगों में जटिल हार्मोनिक्स होते हैं जिनमें उच्च-क्रम वाले हार्मोनिक्स मशीन इंडक्शन द्वारा फ़िल्टर किए जाते हैं। जिससे मशीन के करंट में कम हार्मोनिक्स होते हैं, जबकि शेष हार्मोनिक्स में नुकसान और टॉर्क स्पंदन होता है। ध्यान दें कि एक साइक्लोकॉनवर्टर में, अन्य कन्वर्टर्स से भिन्न, कोई इंडक्टर्स या कैपेसिटर नहीं होते हैं, यानी कोई स्टोरेज डिवाइस नहीं होता है। इस कारण से, तात्कालिक इनपुट पावर और आउटपुट पावर बराबर होते हैं।[20]

  • सिंगल-फेज से सिंगल-फेज साइक्लोकॉनवर्टर : पावर इलेक्ट्रॉनिक्स स्विच के आकार और कीमत दोनों में कमी के कारण सिंगल-फेज से सिंगल-फेज साइक्लोकॉनवर्टर्स ने हाल ही में [कब?] अधिक रुचि लेना शुरू किया है। एकल-चरण उच्च आवृत्ति एसी (AC) वोल्टेज या तो साइनसोइडल या ट्रेपोजॉइडल हो सकता है। ये नियंत्रण उद्देश्य के लिए शून्य वोल्टेज अंतराल या शून्य वोल्टेज कम्यूटेशन हो सकते हैं।
  • तीन-चरण से एकल-चरण साइक्लोकॉनवर्टर : तीन-चरण से एकल-चरण साइक्लोकॉनवर्टर दो प्रकार के होते हैं, 3φ से 1φ आधा तरंग साइक्लोकॉनवर्टर और 3φ से 1φ ब्रिज साइक्लोकॉनवर्टर। सकारात्मक और नकारात्मक दोनों कन्वर्टर्स किसी भी ध्रुवीयता पर वोल्टेज उत्पन्न कर सकते हैं, जिसके परिणामस्वरूप सकारात्मक कनवर्टर केवल सकारात्मक वर्तमान की और नकारात्मक कनवर्टर केवल नकारात्मक वर्तमान की आपूर्ति करता है।

हाल ही में डिवाइस की प्रगति के साथ, साइक्लोकोनवर्टर के नए रूप विकसित किए जा रहे हैं, जैसे मैट्रिक्स कन्वर्टर्स। पहला बदलाव जो पहली बार देखा गया है वह यह है कि मैट्रिक्स कन्वर्टर्स द्वि-दिशात्मक, द्विध्रुवी स्विच का उपयोग किया जाता हैं। सिंगल फेज से सिंगल फेज मैट्रिक्स कन्वर्टर में 9 स्विच का मैट्रिक्स होता है जो तीन इनपुट फेज को ट्री आउटपुट फेज से जोड़ता है। किसी भी इनपुट चरण और आउटपुट चरण को एक ही समय में एक ही चरण से किन्हीं दो स्विचों को जोड़े बिना एक साथ जोड़ा जा सकता है अन्यथा यह इनपुट चरणों के शॉर्ट सर्किट का कारण बन जाएगा। मैट्रिक्स कनवर्टर अन्य कनवर्टर समाधानों की तुलना में हल्का, अधिक कॉम्पैक्ट और बहुमुखी हैं। नतीजतन, वे एकीकरण के उच्च स्तर, उच्च तापमान संचालन, व्यापक उत्पादन आवृत्ति और प्राकृतिक द्वि-दिशात्मक बिजली प्रवाह को प्राप्त कर ऊर्जा को उपयोगिता में वापस लाने के लिए उपयुक्त हैं।

मैट्रिक्स कन्वर्टर्स दो प्रकारों में विभाजित किया जाता हैं प्रत्यक्ष और अप्रत्यक्ष कन्वर्टर्स। तीन-चरण इनपुट और तीन-चरण आउटपुट प्रत्यक्ष मैट्रिक्स के साथ कनवर्टर तीन-चरण इनपुट और तीन-चरण आउटपुट होते है, मैट्रिक्स कनवर्टर में स्विच द्वि-दिशात्मक होना चाहिए अर्थात, वे किसी भी ध्रुवता के वोल्टेज को रोकने और किसी भी दिशा में वर्तमान का संचालन करने में सक्षम होना चाहिए। यह स्विचिंग रणनीति उच्चतम संभावित आउटपुट वोल्टेज की अनुमति दे कर  प्रतिक्रियाशील लाइन-साइड करंट को कम करती है। इसलिए, कनवर्टर से बिजली का प्रवाह प्रतिवर्ती होता है। इसकी कम्यूटेशन समस्या और जटिल नियंत्रण के कारण इसे उद्योग में उपयोग करने से रोकता है।

डायरेक्ट मैट्रिक्स कन्वर्टर्स के विपरीत, इनडायरेक्ट मैट्रिक्स कन्वर्टर्स की कार्यक्षमता समान होती है, लेकिन अलग-अलग इनपुट और आउटपुट सेक्शन का उपयोग करते हैं जो स्टोरेज एलिमेंट्स के बिना डीसी (DC) लिंक के से जुड़े होते हैं। डिजाइन में चार-चतुर्थांश वर्तमान स्रोत सुधारक और एक वोल्टेज स्रोत इन्वर्टर शामिल है। इनपुट अनुभाग में द्वि-दिशात्मक द्विध्रुवी स्विच होते हैं। जब आउटपुट सेक्शन फ्रीव्हीलिंग मोड में हो तो कम्यूटेशन रणनीति को इनपुट सेक्शन की स्विचिंग स्थिति को बदलकर लागू किया जा सकता है। यह कम्यूटेशन एल्गोरिदम काफी कम जटिल है, और पारंपरिक प्रत्यक्ष मैट्रिक्स कनवर्टर की तुलना में अधिक विश्वासयोग्य है।[21]

डीसी लिंक कन्वर्टर्स: डीसी लिंक कन्वर्टर्स को एसी (AC)/ डीसी (DC)/ एसी (AC) कन्वर्टर्स के रूप में भी जानते है, बीच में डीसी लिक के उपयोग से एसी (AC) इनपुट को एसी (AC) आउटपुट में परिवर्तित करते हैं। मतलब कि कन्वर्टर में पावर को रेक्टिफायर के इस्तेमाल से एसी (AC) से डीसी (DC) में बदला जाता है, और फिर इन्वर्टर से डीसी (DC) से एसी (AC) में वापस कन्वर्ट किया जाता है। कम वोल्टेज और चर (उच्च या निम्न) आवृत्ति वाला आउटपुट है इसका अंतिम परिणाम है ।[19] एसी (AC)/ डीसी (DC)/ एसी (AC) कन्वर्टर्स सबसे आम समकालीन समाधान हैं इसके अन्य लाभ यह है कि वे ओवरलोड और नो-लोड की स्थिति में स्थिर होते हैं, साथ ही उन्हें बिना किसी नुकसान के लोड से हटाया जा सकता है।[22]

हाइब्रिड मैट्रिक्स कनवर्टर: एसी (AC)/ एसी (AC) कन्वर्टर्स के लिए हाइब्रिड मैट्रिक्स कन्वर्टर्स नए हैं। ये कन्वर्टर्स एसी (AC)/ डीसी (DC)/ एसी (AC) डिज़ाइन को मैट्रिक्स कन्वर्टर डिज़ाइन के साथ जोड़ते हैं। इस नई श्रेणी में कई प्रकार के हाइब्रिड कन्वर्टर्स विकसित किए गए हैं, इसका उदाहरण एक कनवर्टर है जो एक-दिशात्मक स्विच और डीसी-लिंक के बिना दो कनवर्टर चरणों का उपयोग करता है डीसी-लिंक के लिए कैपेसिटर या इंडक्टर्स के बिना, कनवर्टर का वजन और आकार कम हो जाता है। हाइब्रिड कन्वर्टर्स की दो उप-श्रेणियां हैं, जिन्हें हाइब्रिड डायरेक्ट मैट्रिक्स कन्वर्टर (HDMC) और हाइब्रिड इनडायरेक्ट मैट्रिक्स कन्वर्टर (HIMC) कहते है। एक चरण में एचडीएमसी (HDMC) वोल्टेज और करंट को बदलता है, जबकि एचआईएमसी (HIMC) अलग-अलग चरणों का उपयोग करता है लेकिन एक मध्यवर्ती भंडारण तत्व के उपयोग के बिना, जैसे एसी (AC)/ डीसी (DC)/ एसी (AC) कनवर्टर।[23][24]

अनुप्रयोग: नीचे उन सामान्य अनुप्रयोगों की सूची दी गई है जिनमें प्रत्येक कनवर्टर का उपयोग किया जाता है।

  • एसी (AC) वोल्टेज नियंत्रक: प्रकाश नियंत्रण, घरेलू और औद्योगिक हीटिंग, पंखे, पंप या लहरा ड्राइव का गति नियंत्रण, प्रेरण मोटर्स की नरम शुरुआत, स्थिर एसी (AC) स्विच[17] (तापमान नियंत्रण, ट्रांसफार्मर नल बदलना, आदि)।
  • साइक्लोकॉनवर्टर: हाई-पावर लो-स्पीड रिवर्सिबल एसी (AC) मोटर ड्राइव, चर इनपुट आवृत्ति के साथ निरंतर आवृत्ति बिजली की आपूर्ति; पावर फैक्टर सुधार के लिए नियंत्रणीय वीएआर (VAR) जनरेटर, दो स्वतंत्र बिजली प्रणालियों को जोड़ने वाली एसी (AC) प्रणाली इंटरटीज।[17]
  • मैट्रिक्स कनवर्टर: वर्तमान में मैट्रिक्स कन्वर्टर्स के अनुप्रयोग उच्च आवृत्ति, जटिल नियंत्रण कानून कार्यान्वयन, कम्यूटेशन और अन्य कारणों से संचालन करने में सक्षम द्विपक्षीय मोनोलिथिक स्विच की अनुपलब्धता के कारण सीमित हैं। इन विकासों के साथ, मैट्रिक्स कन्वर्टर्स कई क्षेत्रों में साइक्लोकोनवर्टर की जगह ले सकते हैं।[17]
  • डीसी (DC) लिंक: मशीन निर्माण और निर्माण के व्यक्तिगत या एकाधिक लोड अनुप्रयोगों के लिए इस्तेमाल किया जाता है।[22]

बिजली इलेक्ट्रॉनिक सिस्टम के सिमुलेशन

नियंत्रित थाइरिस्टर

कंप्यूटर सिमुलेशन प्रोग्राम जैसे खण्डशः रैखिक विद्युत सर्किट सिमुलेशन (PLECS), PSIM, स्पाइस (SPICE), और मैटलैब (MATLAB) /simulink का उपयोग करके पावर इलेक्ट्रॉनिक सर्किट का अनुकरण किया जाता है। सर्किट कुछ शर्तों पर कैसे प्रतिक्रिया देते  हैं, इसका परीक्षण करने के लिए सर्किट का अनुकरण उत्पादन से पहले  किया जाता है।

अनुप्रयोग

पावर इलेक्ट्रॉनिक्स के अनुप्रयोग आकार में एक एसी (AC) एडाप्टर, बैटरी चार्जर, ऑडियो एम्पलीफायर, फ्लोरोसेंट लैंप रोड़े, परिवर्तनीय आवृत्ति ड्राइव और पंप, प्रशंसकों और विनिर्माण मशीनरी को संचालित करने के लिए उपयोग किए जाने वाले डीसी मोटर ड्राइव के माध्यम से गीगावाट तक बिजली की आपूर्ति से लेकर आकार में होते हैं। गीगावाट -स्केल हाई वोल्टेज डायरेक्ट करंट पॉवर ट्रांसमिशन सिस्टम का इस्तेमाल इलेक्ट्रिकल ग्रिड को इंटरकनेक्ट करने के लिए किया जाता है। पावर इलेक्ट्रॉनिक सिस्टम लगभग हर इलेक्ट्रॉनिक उपकरण में पाए जाते हैं। उदाहरण के लिए:

  • डीसी (DC) /डीसी (DC) कन्वर्टर्स का उपयोग अधिकांश मोबाइल उपकरणों (मोबाइल फोन, पीडीए आदि) में किया जाता है ताकि वोल्टेज को एक निश्चित मूल्य पर बनाए रखा जा सके, चाहे बैटरी का वोल्टेज स्तर कुछ भी हो। इन कन्वर्टर्स का उपयोग इलेक्ट्रॉनिक आइसोलेशन और पावर फैक्टर करेक्शन के लिए भी किया जाता है। पावर ऑप्टिमाइज़र एक डीसी/डीसी कनवर्टर है जिसे सौर फोटोवोल्टिक या विंड टर्बाइ सिस्टम से ऊर्जा फसल को अधिकतम करने के लिए किया गया है।
  • एसी (AC) /डीसी (DC) कन्वर्टर्स (रेक्टिफायर) का उपयोग हर बार एक इलेक्ट्रॉनिक उपकरण को मेन्स (कंप्यूटर, टेलीविजन आदि) से जोड़ने क लिए किया जाता है। ये बस एसी (AC) को डीसी (DC) में बदलते हैं या अपने ऑपरेशन के हिस्से के रूप में वोल्टेज स्तर को भी बदल सकते हैं।
  • एसी (AC) /एसी (AC) कन्वर्टर्स का उपयोग वोल्टेज स्तर या आवृत्ति (अंतर्राष्ट्रीय पावर एडेप्टर, लाइट डिमर) को बदलने के लिए किया जाता है। बिजली वितरण नेटवर्क में, एसी (AC) / एसी (AC) कन्वर्टर्स का उपयोग उपयोगिता आवृत्ति 50 हर्ट्ज (Hz) और 60 हर्ट्ज (Hz) पावर ग्रिड के बीच बिजली का आदान-प्रदान करने के लिए किया जाता है।
  • डीसी (DC) /एसी AC) कन्वर्टर्स (इनवर्टर) का इस्तेमाल मुख्य रूप से यूपीएस या अक्षय ऊर्जा प्रणालियों या आपातकालीन प्रकाश (इमरजेंसी लाइट) व्यवस्था में किया जाता है। मेन्स पावर डीसी(DC) बैटरी को चार्ज करती है। यदि मेन फेल हो जाता है, तो इन्वर्टर डीसी(DC) बैटरी से मेन वोल्टेज पर एसी (AC) बिजली पैदा करता है। सोलर इन्वर्टर, दोनों छोटे स्ट्रिंग और बड़े सेंट्रल इनवर्टर, साथ ही सोलर माइक्रो-इन्वर्टर का उपयोग फोटोवोल्टिक्स में पीवी सिस्टम के एक घटक के रूप में किया जाता है।

मोटर ड्राइव टेक्सटाइल, पेपर, सीमेंट और ऐसी अन्य सुविधाओं के लिए पंप, ब्लोअर और मिल ड्राइव में पाए जाते हैं। ड्राइव का उपयोग बिजली रूपांतरण और गति नियंत्रण के लिए किया जा सकता है।[25] एसी (AC) मोटर्स केअनुप्रयोगों में चर-आवृत्ति ड्राइव, मोटर सॉफ्ट स्टार्टर और उत्तेजना प्रणाली शामिल हैं।

हाइब्रिड इलेक्ट्रिक वाहन (एचईवी) में, पावर इलेक्ट्रॉनिक्स का उपयोग दो स्वरूपों में किया जाता है, श्रृंखला संकर और समानांतर संकर। श्रृंएक श्रृंखला संकर और एक समानांतर संकर के बीच के अंतर का संबंध विद्युत मोटर के आंतरिक दहन इंजन (ICE) के साथ है। इलेक्ट्रिक वाहनों में उपयोग किए जाने वाले उपकरणों में बैटरी चार्जिंग के लिए ज्यादातर डीसी (DC) /डीसी (DC) कन्वर्टर्स और प्रोपल्शन मोटर को पावर देने के लिए डीसी (DC) /एसी (AC) कन्वर्टर्स होते हैं। इलेक्ट्रिक ट्रेनें बिजली प्राप्त करने के लिए बिजली इलेक्ट्रॉनिक उपकरणों का, और साथ ही पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम) रेक्टिफायर का उपयोग करके वेक्टर नियंत्रण के लिए उपयोग करती हैं। ट्रेनें बिजली लाइनों से अपनी शक्ति प्राप्त करती हैं। पावर इलेक्ट्रॉनिक्स के लिए एक और नया उपयोग एलेवेटर सिस्टम में है। ये सिस्टम थाइरिस्टर, इनवर्टर, स्थायी चुंबक मोटर्स, या पीडब्लूएम (PWM) सिस्टम और मानक मोटर्स को शामिल करने वाले विभिन्न हाइब्रिड सिस्टम का उपयोग कर सकते हैं।[26]

इनवर्टर

सामान्य तौर पर, इनवर्टर का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए डीसी (DC) से एसी (AC) में विद्युत ऊर्जा के प्रत्यक्ष रूपांतरण या एसी (AC) से एसी (AC) में अप्रत्यक्ष रूपांतरण की आवश्यकता होती है। डीसी (DC) से एसी (AC) रूपांतरण कई क्षेत्रों के लिए उपयोगी है, जिसमें पावर कंडीशनिंग, हार्मोनिक क्षतिपूर्ति, मोटर ड्राइव, अक्षय ऊर्जा ग्रिड एकीकरण और अंतरिक्ष यान सौर ऊर्जा प्रणाली शामिल हैं।

विद्युत प्रणालियों में अक्सर विद्युत् में पाए जाने वाले गुणावृत्ति अंश (हार्मोनिक कंटेंट) को समाप्त करने की इच्छा होती है। इसको प्रदान करने के लिए वीएसआई (VSI) का उपयोग सक्रिय पावर फिल्टर के रूप में किया जाता है। विद्युत् और वोल्टेज के माप के आधार पर, एक नियंत्रण प्रणाली वर्तमान संकेतों को निर्धारण प्रत्येक चरण के लिए करती है। इसे बाहरी लूप के माध्यम से वापस सिंचित किया जाता है और इन्वर्टर को एक आंतरिक लूप के लिए वर्तमान सिग्नल बनाने के लिए वास्तविक वर्तमान सिग्नल से घटाया जाता है। ये गुणावृत्ति अंश (हार्मोनिक कंटेंट) की भरपाई करते हैं तब इन्वर्टर की आउटपुट धाराओं को उत्पन्न करने का संकेत देते हैं। इस विन्यास (कॉन्फ़िगरेशन) के लिए किसी वास्तविक बिजली की खपत की आवश्यकता नहीं है, क्योंकि यह पूरी तरह से लाइन द्वारा सिंचित किया जाता है, डीसी (DC) लिंक बस एक संधारित्र है जिसे नियंत्रण प्रणाली द्वारा एक स्थिर वोल्टेज पर रखा जाता है।[14] इस विन्यास (कॉन्फ़िगरेशन) में, आउटपुट धाराएं एकता शक्ति कारक का उत्पादन करने के लिए लाइन वोल्टेज के साथ चरण में हैं। इसके विपरीत, वीएआर (VAR) क्षतिपूर्ति एक समान विन्यास (कॉन्फ़िगरेशन) में संभव है जहां आउटपुट धाराएं समग्र शक्ति कारक में सुधार के लिए लाइन वोल्टेज का नेतृत्व करती हैं।[15]

इसका उपयोग हर समय ऊर्जा की आवश्यकता पड़ने वाली सुविधाओं, जैसे अस्पताल और हवाई अड्डे, यूपीएस सिस्टम में किया जाता है। इस प्रणाली में,  एक इन्वर्टर तब ऑनलाइन लाया जाता है जब सामान्य रूप से आपूर्ति करने वाले ग्रिड बाधित होते है। बिजली को तत्काल ऑनसाइट बैटरियों से खींचा जाता है और वीएसआई (VSI) द्वारा प्रयोग करने योग्य एसी (AC) वोल्टेज में परिवर्तित किया जाता है, जब तक कि ग्रिड पावर बहाल नहीं हो जाती है, या जब तक बैकअप जनरेटर ऑनलाइन नहीं लाए जाते हैं।ऑनलाइन यूपीएस प्रणाली में, रेक्टिफायर-डीसी-लिंक-इन्वर्टर का उपयोग लोड को ट्रांजिस्टर और गुणावृत्ति अंश (हार्मोनिक कंटेंट) से बचाने के लिए किया जाता है। ग्रिड पावर बाधित होने की स्थिति में डीसी-लिंक के साथ समानांतर में एक बैटरी को आउटपुट द्वारा पूरी तरह से चार्ज रखा जाता है, जबकि इन्वर्टर के आउटपुट को कम पास फिल्टर के माध्यम से लोड तक फीड किया जाता है। उच्च शक्ति की गुणवत्ता और गड़बड़ी से स्वतंत्रता प्राप्त की जाती है।[14]

विभिन्न एसी (AC) मोटर ड्राइव का विकास एसी (AC) मोटर्स की गति, टॉर्क और स्थिति नियंत्रण के लिए किया गया हैं। इन ड्राइव्स को निम्न-प्रदर्शन या उच्च-प्रदर्शन के रूप में वर्गीकृत किया जा सकता है, इस आधार पर कि वे क्रमशः स्केलर-नियंत्रित या वेक्टर-नियंत्रित हैं। स्केलर-नियंत्रित ड्राइव में, मौलिक स्टेटर करंट, या वोल्टेज फ़्रीक्वेंसी और आयाम (Amplitude) , केवल नियंत्रित करने योग्य मात्राएँ हैं। इसलिए, इन ड्राइवों का उपयोग उन अनुप्रयोगों में किया जाता है जहां उच्च गुणवत्ता नियंत्रण की आवश्यकता नहीं होती है, जैसे कि पंखे और कम्प्रेसर। दूसरी ओर, वेक्टर-नियंत्रित ड्राइव तात्कालिक वर्तमान और वोल्टेज मूल्यों को लगातार नियंत्रित करने की अनुमति देते हैं। यह उच्च प्रदर्शन एलिवेटर और इलेक्ट्रिक कारों जैसे अनुप्रयोगों के लिए आवश्यक है।[14]

इनवर्टर कई अक्षय ऊर्जा अनुप्रयोगों के लिए भी महत्वपूर्ण हैं। फोटोवोल्टिक उद्देश्यों में, इन्वर्टर एक पीडब्लूएम (PWM) वीएसआई (VSI) होता है, जो फोटोवोल्टिक मॉड्यूल या सरणी के डीसी (DC) विद्युत ऊर्जा आउटपुट द्वारा खिलाया जाता है।न्वर्टर फिर इसे एक एसी (AC) वोल्टेज में परिवर्तित करता है जिसे लोड या यूटिलिटी ग्रिड के साथ अंतरापृष्ठ किया जाता है। इनवर्टर को अन्य नवीकरणीय प्रणालियों, जैसे पवन टरबाइन में भी नियोजित किया जा सकता है। इन अनुप्रयोगों में, टरबाइन की गति आमतौर पर भिन्न होती है, जिससे वोल्टेज आवृत्ति में और कभी-कभी परिमाण में परिवर्तन होता है। इस मामले में, उत्पन्न वोल्टेज को ठीक किया जा सकता है और फिर आवृत्ति और परिमाण को स्थिर करने के लिए उलटा किया जा सकता है।[14]

स्मार्ट ग्रिड

स्मार्ट ग्रिड एक विद्युत ग्रिड है जो सूचना और संचार प्रौद्योगिकी का उपयोग सूचना एकत्र करने और उस पर कार्रवाई करने के लिए करता है, जैसे कि आपूर्तिकर्ताओं और उपभोक्ताओं के व्यवहार के बारे में जानकारी, स्वचालित रूप से दक्षता, विश्वसनीयता, अर्थशास्त्र और उत्पादन की स्थिरता में सुधार करने के लिए और बिजली का वितरण के लिए किया जाता है।[27][28]

प्रेरण जनरेटर का उपयोग करके पवन टर्बाइन और हाइड्रोइलेक्ट्रिक टर्बाइन द्वारा उत्पन्न विद्युत शक्ति उस आवृत्ति में भिन्नता पैदा कर सकती है जिस पर बिजली उत्पन्न होती है। इन प्रणालियों में उत्पन्न एसी (AC) वोल्टेज को हाई-वोल्टेज डायरेक्ट करंट (एचवीडीसी HVDC) में बदलने के लिए पावर इलेक्ट्रॉनिक उपकरणों का उपयोग किया जाता है। एचवीडीसी (HVDC) पावर को अधिक आसानी से थ्री फेज पावर में बदला जा सकता है जो मौजूदा पावर ग्रिड से जुड़ी पावर के साथ सुसंगत है। इन उपकरणों के माध्यम से, इन प्रणालियों द्वारा प्रदान की जाने वाली शक्ति स्वच्छ होती है और इसमें उच्च संबद्ध शक्ति कारक होता है। पवन ऊर्जा प्रणाली इष्टतम टोक़ या तो गियरबॉक्स या प्रत्यक्ष ड्राइव प्रौद्योगिकियों के माध्यम से प्राप्त की जाती है जो बिजली इलेक्ट्रॉनिक्स डिवाइस के आकार को कम कर सकती है।

बिजली इलेक्ट्रॉनिक उपकरणों का उपयोग करके फोटोवोल्टिक कोशिकाओं के माध्यम से विद्युत शक्ति उत्पन्न की जा सकती है। उत्पादित बिजली आमतौर पर सौर इन्वर्टर द्वारा बदल दी जाती है। इनवर्टर को तीन अलग-अलग प्रकारों में बांटा गया है, केंद्रीय, मॉड्यूल-एकीकृत, और स्ट्रिंग। सेंट्रल कन्वर्टर्स को सिस्टम के डीसी (DC) साइड पर समानांतर या श्रृंखला में जोड़ा जा सकता है। फोटोवोल्टिक "खेतों" के लिए, पूरे सिस्टम के लिए एक केंद्रीय कनवर्टर का उपयोग किया जाता है। मॉड्यूल-एकीकृत कन्वर्टर्स या तो डीसी (DC) या एसी (AC) की तरफ श्रृंखला में जुड़े हुए हैं। आम तौर पर एक फोटोवोल्टिक प्रणाली के भीतर कई मॉड्यूल का उपयोग किया जाता है, क्योंकि सिस्टम को डीसी (DC) और एसी (AC) दोनों टर्मिनलों पर इन कन्वर्टर्स की आवश्यकता होती है। स्ट्रिंग कनवर्टर का उपयोग एक सिस्टम में किया जाता है जो फोटोवोल्टिक कोशिकाओं का उपयोग करता है जो विभिन्न दिशाओं का सामना कर रहे हैं। इसका उपयोग उत्पन्न शक्ति को प्रत्येक तार, या रेखा में परिवर्तित करने के लिए किया जाता है, जिसमें फोटोवोल्टिक कोशिकाएं परस्पर क्रिया कर रही होती हैं।[29]

बिजली इलेक्ट्रॉनिक्स का उपयोग उपयोगिताओं को वितरित आवासीय/वाणिज्यिक सौर ऊर्जा उत्पादन में तेजी से वृद्धि के अनुकूल बनाने में मदद करने के लिए किया जा सकता है।अपेक्षाकृत छोटे पैमाने के ग्राउंड- या पोल-माउंटेड डिवाइस बिजली के प्रवाह की निगरानी और प्रबंधन के लिए एक वितरित नियंत्रण बुनियादी ढांचे की क्षमता पैदा करते हैं। पारंपरिक इलेक्ट्रोमैकेनिकल सिस्टम, जैसे कैपेसिटर बैंक या सबस्टेशन पर वोल्टेज रेगुलेटर, वोल्टेज को समायोजित करने में मिनटों का समय ले सकते हैं और सौर प्रतिष्ठानों से दूर हो सकते हैं जहां समस्याएं उत्पन्न होती हैं। यदि पड़ोस सर्किट पर वोल्टेज बहुत अधिक होता है, तो यह उपयोगिता कर्मचारियों को खतरे में पड़  सकता है और उपयोगिता और ग्राहक उपकरण दोनों को नुकसान पहुंचा सकता है। इसके अलावा, ग्रिड की खराबी के कारण फोटोवोल्टिक जनरेटर तुरंत बंद हो जाते हैं, जिससे ग्रिड बिजली की मांग बढ़ जाती है। कई उपभोक्ता उपकरणों की तुलना में स्मार्ट ग्रिड-आधारित नियामक अधिक नियंत्रणीय हैं।

अन्य दृष्टिकोण में, पश्चिमी इलेक्ट्रिक इंडस्ट्री लीडर्स नामक 16 पश्चिमी उपयोगिताओं के एक समूह ने "स्मार्ट इनवर्टर" के अनिवार्य उपयोग का आह्वान किया। ये उपकरण डीसी को घरेलू एसी (AC) में परिवर्तित करते हैं और बिजली की गुणवत्ता में भी मदद कर सकते हैं। ऐसे उपकरण बहुत कम लागत पर महंगे उपयोगिता उपकरण उन्नयन की आवश्यकता को समाप्त कर सकते हैं।[30]

यह भी देखें

टिप्पणियाँ

  1. Thompson, M.T. "Notes 01" (PDF). Introduction to Power Electronics. Thompson Consulting, Inc.
  2. "1926 – Field Effect Semiconductor Device Concepts Patented". Computer History Museum. Archived from the original on March 22, 2016. Retrieved March 25, 2016.
  3. Kharagpur. "Power Semiconductor Devices" (PDF). EE IIT. Archived from the original (PDF) on 20 September 2008. Retrieved 25 March 2012.
  4. "Dr. R. David Middlebrook 1929 - 2010". Power Electronics (in English). 1 May 2010. Retrieved 29 October 2019.
  5. "IEEE Transactions on Transportation Electrification - IEEE Power Electronics Society".
  6. "Rethink Power Density with GaN". Electronic Design. 21 April 2017. Retrieved 23 July 2019.
  7. Oxner, E. S. (1988). Fet Technology and Application. CRC Press. p. 18. ISBN 9780824780500.
  8. "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Retrieved 31 July 2019. {{cite journal}}: |archive-url= is malformed: timestamp (help)CS1 maint: url-status (link)
  9. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177-8, 406. ISBN 9780080508047.
  10. जैक्स अर्नोल्ड, पियरे मेरेल पावर इलेक्ट्रॉनिक्स के उपकरण, एडिशन हर्मेस, ISBN 2-86601-306-9 (फ्रेंच में
  11. 11.0 11.1 "Power MOSFET Basics" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019.
  12. 12.0 12.1 Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 178-81. ISBN 9780080508047.
  13. {{उद्धरण पुस्तक | अंतिम 1=व्हाइटले | प्रथम 1 = कैरल | अंतिम 2 = मैकलॉघलिन | प्रथम 2 = जॉन रॉबर्ट | शीर्षक = प्रौद्योगिकी, उद्यमी, और सिलिकॉन वैली | दिनांक = 2002 | प्रकाशक = प्रौद्योगिकी के इतिहास के लिए संस्थान | आईएसबीएन = 9780964921719 | यूआरएल = https://books.google.com/books?id=x9koAQAAIAAJ | उद्धरण=सिलिकॉनिक्स के ये सक्रिय इलेक्ट्रॉनिक घटक, या पावर सेमीकंडक्टर उत्पाद, स्विच करने और परिवर्तित करने के लिए उपयोग किए जाते हैंपोर्टेबल सूचना उपकरणों से लेकर संचार बुनियादी ढांचे तक जो इंटरनेट को सक्षम बनाता है, सिस्टम की एक विस्तृत श्रृंखला में आरटी पावर। कंपनी के पावर MOSFETs - छोटे सॉलिड-स्टेट स्विच, या मेटल ऑक्साइड सेमीकंडक्टर फील्ड-इफ़ेक्ट ट्रांजिस्टर - और पावर इंटीग्रेटेड सर्किट का व्यापक रूप से सेल फोन और नोटबुक कंप्यूटर में बैटरी पावर को कुशलतापूर्वक प्रबंधित करने के लिए उपयोग किया जाता है}
  14. 14.00 14.01 14.02 14.03 14.04 14.05 14.06 14.07 14.08 14.09 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 14.19 14.20 14.21 14.22 14.23 14.24 14.25 14.26 14.27 14.28 14.29 Rashid, M.H. (2001). Power Electronics Handbook. Academic Press. pp. 225–250.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Trzynadlowski, A.M. (2010). Introduction to Modern Power Electronics. Wiley. pp. 269–341.
  16. Kiruthiga, Murugeshan R. & Sivaprasath (2017). Modern Physics, 18th Edition (in English). S. Chand Publishing. ISBN 978-93-5253-310-7.
  17. 17.0 17.1 17.2 17.3 17.4 17.5 Rahsid, M.H. (2010). Power Electronics Handbook: Devices, Circuits, and Applications. Elsevier. pp. 147–564. ISBN 978-0-12-382036-5.
  18. Skvarenina, T.L. (2002). The power electronics handbook Industrial electronics series. CRC Press. pp. 94–140. ISBN 978-0-8493-7336-7.
  19. 19.0 19.1 19.2 19.3 Rashid, M.H. (2005). Digital power electronics and applications Electronics & Electrical. Academic Press. ISBN 978-0-12-088757-6.
  20. {{उद्धरण वेब | अंतिम = टॉलबर्ट | प्रथम = एल.एम. | शीर्षक = साइक्लोकॉनवर्टर | यूआरएल = https://www.scribd.com/sagar%20jaiswal/d/18197288-Cycloconverters | प्रकाशक = दस विश्वविद्यालयनेसी | पहुंच-तिथि = 23 मार्च 2012}
  21. Klumpner, C. "Power Electronics 2". Archived from the original on 27 September 2014. Retrieved 23 March 2012.
  22. 22.0 22.1 Vodovozov, V (2006). Electronic engineering. ISBN 978-9985-69-039-0.
  23. Lipo; Kim, Sul (2000). "AC/AC Power Conversion Based on Matric Converter Topology with Unidirectional Switches". IEEE Transactions on Industry Applications. 36 (1): 139–145. doi:10.1109/28.821808.
  24. Wheeler; Wijekoon, Klumpner (July 2008). "Implementation of a Hybrid AC/AC Direct Power Converter with Unity Voltage Transfer Ratio" (PDF). IEEE Transactions on Power Electronics. 23 (4): 1918–1986. doi:10.1109/tpel.2008.924601. S2CID 25517304.
  25. Bose, Bimal K. (September–October 1993). "Power Electronics and Motion Control – Technology Status and Recent Trends". {{cite journal}}: Cite journal requires |journal= (help)
  26. Yano, Masao; Shigery Abe; Eiichi Ohno (2004). "History of Power Electronics for Motor Drives in Japan". {{cite journal}}: Cite journal requires |journal= (help)
  27. D. J. Hammerstrom; et al. "Pacific Northwest GridWise™ Testbed Demonstration Projects, Part I. Olympic Peninsula Project" (PDF). Retrieved 2014-01-15.
  28. U.S. Department of Energy. "Smart Grid / Department of Energy". Retrieved 2012-06-18.
  29. Carrasco, Juan Manuel; Leopoldo Garcia Franquelo; Jan T. Bialasiewecz; Eduardo Galvan; Ramon C. Portillo Guisado; Ma. Angeles Martin Prats; Jose Ignacio Leon; Narciso Moreno-Alfonso (August 2006). "Power-Electronic Systems for the Grid Integration of Renewable Sources: A Survey". 53 (4): 1002. CiteSeerX 10.1.1.116.5024. doi:10.1109/tie.2006.878356. S2CID 12083425. {{cite journal}}: Cite journal requires |journal= (help)
  30. LaMonica, Martin (2014-01-21). "Power Electronics Could Help Grid and Solar Power Get Along | MIT Technology Review". Technologyreview.com. Retrieved 2014-01-22.

References

}