प्रक्षेपीय अवकल ज्यामिति: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Geometry}} गणित में, प्रोजेक्टिव डिफरेंशियल ज्योमेट्री, गणितीय व...")
 
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Geometry}}
{{short description|Geometry}}
गणित में, प्रोजेक्टिव डिफरेंशियल ज्योमेट्री, गणितीय वस्तुओं जैसे [[फ़ंक्शन (गणित)]], [[भिन्नता]] और [[सबमैनिफोल्ड]]्स के गुणों के दृष्टिकोण से, डिफरेंशियल ज्योमेट्री का अध्ययन है, जो प्रोजेक्टिव समूह के परिवर्तनों के तहत अपरिवर्तनीय हैं। यह अपरिवर्तनशीलता का अध्ययन करने के [[रीमैनियन ज्यामिति]] के दृष्टिकोण और उनके समूह समरूपता के अनुसार ज्यामिति को चिह्नित करने के [[एर्लांगेन कार्यक्रम]] का मिश्रण है।
[[गणित]] में, '''प्रक्षेपीय अवकल ज्यामिति''', [[अवकल ज्यामिति]] का अध्ययन है, गणितीय वस्तुओं के गुणों जैसे कि फलन, डिफ़ियोमोर्फिज्म और सबमैनिफोल्ड्स के दृष्टिकोण से, जो प्रक्षेपीय समूह के परिवर्तनों के तहत अपरिवर्तनीय हैं। यह अपरिवर्तनशीलता का अध्ययन करने के लिए [[रीमैनियन ज्यामिति]]के दृष्टिकोण और उनके समूह समरूपता के अनुसार ज्यामिति को चिह्नित करने के [[एर्लांगेन कार्यक्रम]] का मिश्रण है।


इस क्षेत्र का गणितज्ञों द्वारा 1890 के आसपास एक पीढ़ी तक (जे.जी. डार्बौक्स, [[जॉर्ज हेनरी हाल्फेन]], [[अर्नेस्ट जूलियस विल्ज़िंस्की]], ई. बोम्पियानी, जी. फ़ुबिनी, एडुआर्ड सेच, अन्य लोगों द्वारा) बहुत अध्ययन किया गया था, बिना [[विभेदक अपरिवर्तनीय]]ता के एक व्यापक सिद्धांत के उभरने के। एली कार्टन ने फ्रेम को हिलाने की अपनी पद्धति के हिस्से के रूप में एक सामान्य प्रक्षेप्य कनेक्शन का विचार तैयार किया; संक्षेप में कहें तो, यह व्यापकता का वह स्तर है जिस पर एर्लांगेन कार्यक्रम को [[विभेदक ज्यामिति]] के साथ समेटा जा सकता है, जबकि यह सिद्धांत का सबसे पुराना हिस्सा ([[प्रक्षेप्य रेखा]] के लिए) भी विकसित करता है, अर्थात् [[श्वार्ज़ियन व्युत्पन्न]], सबसे सरल प्रक्षेप्य विभेदक अपरिवर्तनीय।<ref name=Ovsienko2004>{{cite book|last=V. Ovsienko and S. Tabachnikov|title=प्रोजेक्टिव डिफरेंशियल ज्योमेट्री पुरानी और नई, श्वार्ज़ियन डेरिवेटिव से लेकर डिफोमोर्फिज्म ग्रुप्स की कोहोमोलॉजी तक|year=2004|publisher=Cambridge University Press|isbn=9780521831864|page=vii (preface)|url=http://www.math.psu.edu/tabachni/Books/BookPro.pdf}}</ref>
 
1930 के दशक के बाद से आगे का काम जे. कनिटानी, [[शिंग-शेन चेर्न]], ए. पी. नॉर्डेन, जी. बोल, एस. पी. फिनिकोव और जी. एफ. लापतेव द्वारा किया गया। यहां तक ​​कि [[वक्र]]ों के दोलन पर मूल परिणाम, एक स्पष्ट रूप से प्रक्षेप्य-अपरिवर्तनीय विषय, में भी किसी व्यापक सिद्धांत का अभाव है। प्रोजेक्टिव डिफरेंशियल ज्योमेट्री के विचार गणित और उसके अनुप्रयोगों में दोहराए जाते हैं, लेकिन दिए गए सूत्रीकरण अभी भी बीसवीं सदी की शुरुआत की भाषा में निहित हैं।
इस क्षेत्र का गणितज्ञों द्वारा 1890 के आसपास एक पीढ़ी तक (जे.जी. डार्बौक्स, जॉर्ज हेनरी हैल्फेन, अर्नेस्ट जूलियस विल्ज़िंस्की, ई. बोम्पियानी, जी. फ़ुबिनी, एडुआर्ड सेच, अन्य लोगों द्वारा) बहुत अध्ययन किया गया था, बिना अवकल अपरिवर्तनीयता के एक व्यापक सिद्धांत के आने के है। एली कार्टन ने फ्रेम को हिलाने की अपनी पद्धति के हिस्से के रूप में एक सामान्य प्रक्षेपीय कनेक्शन का विचार प्रस्तुत किया; संक्षेप में कहें तो, यह व्यापकता का वह स्तर है जिस पर एर्लांगेन कार्यक्रम को अवकल ज्यामिति के साथ समेटा जा सकता है, जबकि यह सिद्धांत का सबसे पुराना हिस्सा ([[प्रक्षेपीय रेखा]] के लिए) भी विकसित करता है, अर्थात् श्वार्ज़ियन व्युत्पन्न, सबसे सरल प्रक्षेपीय अवकल अपरिवर्तनीय है।<ref name="Ovsienko2004">{{cite book|last=V. Ovsienko and S. Tabachnikov|title=प्रोजेक्टिव डिफरेंशियल ज्योमेट्री पुरानी और नई, श्वार्ज़ियन डेरिवेटिव से लेकर डिफोमोर्फिज्म ग्रुप्स की कोहोमोलॉजी तक|year=2004|publisher=Cambridge University Press|isbn=9780521831864|page=vii (preface)|url=http://www.math.psu.edu/tabachni/Books/BookPro.pdf}}</ref>
 
1930 के दशक के बाद से आगे का काम जे. कनिटानी, शिंग-शेन चेर्न, ए. पी. नॉर्डेन, जी. बोल, एस. पी. फिनिकोव और जी. एफ. लापतेव द्वारा किया गया। यहां तक कि वक्रों के दोलन पर बुनियादी परिणामों, एक स्पष्ट रूप से प्रक्षेपीय-अपरिवर्तनीय विषय, में भी किसी व्यापक सिद्धांत का अभाव है। प्रोजेक्टिव डिफरेंशियल ज्योमेट्री के विचार गणित और उसके अनुप्रयोगों में दोहराए जाते हैं, लेकिन दिए गए सूत्रीकरण अभी भी बीसवीं सदी की शुरुआत की भाषा में निहित हैं।


==यह भी देखें==
==यह भी देखें==
Line 15: Line 17:
==अग्रिम पठन==
==अग्रिम पठन==
*[https://web.archive.org/web/20100727082315/http://www.ima.umn.edu/imaging/SP7.17-8.4.06/activities/Eastwood-Michael/projective.pdf Notes on Projective Differential Geometry] by Michael Eastwood
*[https://web.archive.org/web/20100727082315/http://www.ima.umn.edu/imaging/SP7.17-8.4.06/activities/Eastwood-Michael/projective.pdf Notes on Projective Differential Geometry] by Michael Eastwood
[[Category: विभेदक ज्यामिति|*]] [[Category: प्रक्षेप्य ज्यामिति|*]]


[[Category: Machine Translated Page]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रक्षेप्य ज्यामिति|*]]
[[Category:विभेदक ज्यामिति|*]]

Latest revision as of 10:07, 28 August 2023

गणित में, प्रक्षेपीय अवकल ज्यामिति, अवकल ज्यामिति का अध्ययन है, गणितीय वस्तुओं के गुणों जैसे कि फलन, डिफ़ियोमोर्फिज्म और सबमैनिफोल्ड्स के दृष्टिकोण से, जो प्रक्षेपीय समूह के परिवर्तनों के तहत अपरिवर्तनीय हैं। यह अपरिवर्तनशीलता का अध्ययन करने के लिए रीमैनियन ज्यामितिके दृष्टिकोण और उनके समूह समरूपता के अनुसार ज्यामिति को चिह्नित करने के एर्लांगेन कार्यक्रम का मिश्रण है।


इस क्षेत्र का गणितज्ञों द्वारा 1890 के आसपास एक पीढ़ी तक (जे.जी. डार्बौक्स, जॉर्ज हेनरी हैल्फेन, अर्नेस्ट जूलियस विल्ज़िंस्की, ई. बोम्पियानी, जी. फ़ुबिनी, एडुआर्ड सेच, अन्य लोगों द्वारा) बहुत अध्ययन किया गया था, बिना अवकल अपरिवर्तनीयता के एक व्यापक सिद्धांत के आने के है। एली कार्टन ने फ्रेम को हिलाने की अपनी पद्धति के हिस्से के रूप में एक सामान्य प्रक्षेपीय कनेक्शन का विचार प्रस्तुत किया; संक्षेप में कहें तो, यह व्यापकता का वह स्तर है जिस पर एर्लांगेन कार्यक्रम को अवकल ज्यामिति के साथ समेटा जा सकता है, जबकि यह सिद्धांत का सबसे पुराना हिस्सा (प्रक्षेपीय रेखा के लिए) भी विकसित करता है, अर्थात् श्वार्ज़ियन व्युत्पन्न, सबसे सरल प्रक्षेपीय अवकल अपरिवर्तनीय है।[1]

1930 के दशक के बाद से आगे का काम जे. कनिटानी, शिंग-शेन चेर्न, ए. पी. नॉर्डेन, जी. बोल, एस. पी. फिनिकोव और जी. एफ. लापतेव द्वारा किया गया। यहां तक कि वक्रों के दोलन पर बुनियादी परिणामों, एक स्पष्ट रूप से प्रक्षेपीय-अपरिवर्तनीय विषय, में भी किसी व्यापक सिद्धांत का अभाव है। प्रोजेक्टिव डिफरेंशियल ज्योमेट्री के विचार गणित और उसके अनुप्रयोगों में दोहराए जाते हैं, लेकिन दिए गए सूत्रीकरण अभी भी बीसवीं सदी की शुरुआत की भाषा में निहित हैं।

यह भी देखें

संदर्भ

  1. V. Ovsienko and S. Tabachnikov (2004). प्रोजेक्टिव डिफरेंशियल ज्योमेट्री पुरानी और नई, श्वार्ज़ियन डेरिवेटिव से लेकर डिफोमोर्फिज्म ग्रुप्स की कोहोमोलॉजी तक (PDF). Cambridge University Press. p. vii (preface). ISBN 9780521831864.


अग्रिम पठन