हाइड्रोलिक ब्रेक: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Arrangement of braking mechanism}}
{{Short description|Arrangement of braking mechanism}}
[[File:Hydraulic disc brake diagram.gif|thumb|upright=1.5|एक हाइड्रोलिक डिस्क रोधक तंत्र के प्रमुख घटकों को दर्शाता एक योजनाबद्ध।]]हाइड्रोलिक ब्रेक (रोधक) , रोधक तंत्र  (रोधक यंत्रावली) की एक व्यवस्था है जो  [[ब्रेक द्रव|रोधक द्रव]] का उपयोग करती है, जिसमें सामान्यतः [[ग्लाइकोल ईथर]] या [[डाएइथाईलीन ग्लाइकोल]] होता है, जो निरोधक तंत्र (नियंत्रक यंत्रावली) से रोधक तंत्र (रोधक यंत्रावली) में दबाव स्थानांतरित करता है।
[[File:Hydraulic disc brake diagram.gif|thumb|upright=1.5|एक हाइड्रोलिक डिस्क रोधक तंत्र के प्रमुख घटकों को दर्शाता एक योजनाबद्ध।]]'''हाइड्रोलिक ब्रेक''' (रोधक) , रोधक तंत्र  (रोधक यंत्रावली) की एक व्यवस्था है जो  [[ब्रेक द्रव|रोधक द्रव]] का उपयोग करती है, जिसमें सामान्यतः [[ग्लाइकोल ईथर]] या [[डाएइथाईलीन ग्लाइकोल]] होता है, जो निरोधक तंत्र (नियंत्रक यंत्रावली) से रोधक तंत्र (रोधक यंत्रावली) में दबाव स्थानांतरित करता है।


== इतिहास ==
== इतिहास ==
Line 132: Line 132:
{{DEFAULTSORT:Hydraulic Brake}}
{{DEFAULTSORT:Hydraulic Brake}}


[[Category: Machine Translated Page]]
[[Category:Articles with hAudio microformats|Hydraulic Brake]]
[[Category:Created On 25/01/2023]]
[[Category:Created On 25/01/2023|Hydraulic Brake]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates|Hydraulic Brake]]
[[Category:Machine Translated Page|Hydraulic Brake]]
[[Category:Multi-column templates|Hydraulic Brake]]
[[Category:Pages using div col with small parameter|Hydraulic Brake]]
[[Category:Pages with script errors|Hydraulic Brake]]
[[Category:Short description with empty Wikidata description|Hydraulic Brake]]
[[Category:Templates Vigyan Ready|Hydraulic Brake]]
[[Category:Templates that add a tracking category|Hydraulic Brake]]
[[Category:Templates that generate short descriptions|Hydraulic Brake]]
[[Category:Templates using TemplateData|Hydraulic Brake]]
[[Category:Templates using under-protected Lua modules|Hydraulic Brake]]
[[Category:Wikipedia fully protected templates|Div col]]

Latest revision as of 12:51, 29 August 2023

एक हाइड्रोलिक डिस्क रोधक तंत्र के प्रमुख घटकों को दर्शाता एक योजनाबद्ध।

हाइड्रोलिक ब्रेक (रोधक) , रोधक तंत्र (रोधक यंत्रावली) की एक व्यवस्था है जो रोधक द्रव का उपयोग करती है, जिसमें सामान्यतः ग्लाइकोल ईथर या डाएइथाईलीन ग्लाइकोल होता है, जो निरोधक तंत्र (नियंत्रक यंत्रावली) से रोधक तंत्र (रोधक यंत्रावली) में दबाव स्थानांतरित करता है।

इतिहास

1904 के दौरान, फ्रेडरिक जॉर्ज हीथ (हीथ हाइड्रॉलिक रोधक कं, लिमिटेड), रेडडिच, इंग्लैंड ने एक हैंडलबार लीवर और पिस्टन का उपयोग करके एक हाइड्रोलिक (पानी/ग्लिसरीन) रोधक तंत्र को साइकिल में लगाया था। उन्होंने "साइकिल और मोटर्स के लिए हाइड्रोलिक एक्टीवेटेड रोधक में सुधार" के लिए पेटेंट GB190403651A प्राप्त किया, साथ ही बाद में बेहतर लचीले रबर हाइड्रोलिक पाइप का उपयोग किया था।

1908 में, ब्रिस्टल, इंग्लैंड के अर्नेस्ट वाल्टर वेट ने एक मोटर कार में चार-पहिया हाइड्रोलिक (तेल) रोधक तंत्र (रोधकिंग प्रणाली) तैयार किया और लगाया था । उन्होंने दिसंबर 1908 में ग्रेट ब्रिटेन (GB190800241A) में, बाद में यूरोप और संयुक्त राज्य अमेरिका में इसका पेटेंट कराया और फिर 1909 के लंदन मोटर शो में इसका प्रदर्शन किया। उनके भाई, विलियम हर्बर्ट वेट ने पेटेंट (GB190921122A) में सुधार किया और दोनों को 23 ब्रिज स्ट्रीट, ब्रिस्टल के वेट पेटेंट ऑटोमोबाइल रोधक लिमिटेड को सौंपा गया, जब इसे 1909/10 में स्थापित किया गया था। कंपनी, जिसका लकवेल लेन, ब्रिस्टल में एक कारखाना था, उसने हिल और बोल बॉडी से सुसज्जित मेटलर्जिक चेसिस पर एक चार-पहिया द्रवचालित रोधक तंत्र (हाइड्रोलिक रोधकिंग प्रणाली) स्थापित किया, जिसे नवंबर 1910 लंदन मोटर शो में प्रदर्शित किया गया था। हालांकि अधिक कारों में रोधक तंत्र ( रोधक प्रणाली) लगा हुआ था और कंपनी ने भारी विज्ञापन किया, लेकिन वह उस सफलता को प्राप्त किए बिना गायब हो गई जिसके वह हकदार थी।

नॉक्स मोटर्स कंपनी ने 1915 में एक ट्रैक्टर इकाई में द्रवचालित रोधकका इस्तेमाल किया था।[1]

मैल्कम लौघेड (जिन्होंने बाद में अपने नाम की स्पेलिंग बदलकर लॉकहीड कॉर्पोरेशन कर ली) ने द्रवचालित रोधकका आविष्कार किया, जिसका उन्होंने 1917 में पेटेंट कराया।[2][3] लॉकहीड फ्रांस में रोधक फ्लुइड के लिए एक सामान्य शब्द है।

फ्रेड ड्यूसेनबर्ग ने अपनी 1914 की रेसिंग कारों में लॉकहीड कॉरपोरेशन द्रवचालित रोधक का इस्तेमाल किया[4] और उनकी कार कंपनी, दुजेनबर्ग,1921 में ड्यूसेनबर्ग मॉडल पर प्रौद्योगिकी का उपयोग करने वाली पहली कंपनी थी।

स्प्रिंगफील्ड, एमए की नॉक्स ऑटोमोबाइल कंपनी 1915 से अपने सेमी-ट्रेलर ट्रकों को द्रवचालित रोधकसे लैस कर रही थी।[5]

प्रौद्योगिकी को ऑटोमोटिव उपयोग में आगे बढ़ाया गया और अंततः स्व-ऊर्जावान हाइड्रोलिक ड्रम रोधक तंत्र (एडवर्ड बिशप बॉटन, लंदन इंग्लैंड, 28 जून, 1927) की शुरुआत हुई, जो आज भी उपयोग में है।


निर्माण

यात्री वाहनों, मोटरसाइकिलों, स्कूटरों और मोपेड के लिए द्रवचालित रोधककी सबसे आम व्यवस्था में निम्नलिखित सम्मिलित हैं:

  • रोधक पेडल या लीवर
  • एक पुशरोड (जिसे एक्ट्यूएटिंग रॉड भी कहा जाता है)
  • एक प्रमुख सिलिंडर जिसमें पिस्टन असेंबली होती है (या तो एक या दो पिस्टन से बना होता है, एक रिटर्न स्प्रिंग, गैस्केट्स / ओ-रिंग्स की एक श्रृंखला और एक द्रव जलाशय)
  • प्रबलित हाइड्रोलिक लाइनें
  • डिस्क रोधक # कैलीपर्स में सामान्यतः एक या दो खोखले एल्यूमीनियम या क्रोम-प्लेटेड स्टील पिस्टन (कैलिपर पिस्टन कहा जाता है), थर्मल प्रवाहकीय रोधक पैड का एक सेट और एक रोटर (रोधक) (जिसे रोधक डिस्क भी कहा जाता है) या नगाड़ा से जुड़ा होता है। एक धुरी।

प्रणाली सामान्यतः ग्लाइकोल ईथर से भरा होता है | ग्लाइकोल-ईथर आधारित रोधक द्रव (अन्य तरल पदार्थ भी इस्तेमाल किए जा सकते हैं)।

एक समय में, यात्री वाहनों में सामान्यतः सभी चार पहियों पर ड्रम रोधक लगाए जाते थे। बाद में, आगे के लिए डिस्क रोधक और पीछे के लिए ड्रम रोधक का इस्तेमाल किया जाने लगा था। हालांकि डिस्क रोधक ने बेहतर गर्मी लंपटता के लिए अधिक प्रतिरोध दिखाया है और सामान्यतः ड्रम रोधक की तुलना में अधिक सुरक्षित हैं। इसकारण चार पहिया डिस्क रोधक सबसे बुनियादी वाहनों को छोड़कर तेजी से लोकप्रिय हो गए हैं और ड्रम रोधक की जगह ले लिए। हालांकि, कई दोपहिया वाहनों के डिजाइन में पिछले पहिए के लिए ड्रम रोधक लगाना जारी है।

निम्नलिखित विवरण एक साधारण डिस्क रोधक की / और विन्यास के लिए शब्दावली का उपयोग करता है।

प्रणाली संचालन

एक द्रवचालित रोधक तंत्र में, जब रोधक पेडल दबाया जाता है, मास्टर सिलेंडर में पिस्टन (ओं) पर एक पुशरोड बल लगाता है, जिससे रोधक द्रव जलाशय से द्रव एक क्षतिपूर्ति बंदरगाह के माध्यम से एक दबाव कक्ष में प्रवाहित होता है। इसके परिणामस्वरूप पूरे हाइड्रोलिक प्रणाली के दबाव में वृद्धि होती है, हाइड्रोलिक लाइनों के माध्यम से तरल पदार्थ को एक या एक से अधिक कैलीपर्स की ओर धकेलता है जहां यह एक या एक से अधिक बैठे ओ-रिंग्स द्वारा सील किए गए एक या अधिक कैलीपर पिस्टन पर कार्य करता है (जो द्रव के रिसाव को रोकता है)l

रोधक कैलीपर पिस्टन तब रोधक पैड पर बल लगाते हैं, उन्हें कताई रोटर के खिलाफ धकेलते हैं, और पैड और रोटर के बीच घर्षण के कारण रोधकिंग आघूर्ण बल (टॉर्क) उत्पन्न होता है, जिससे वाहन धीमा हो जाता है। इस घर्षण से उत्पन्न गर्मी या तो रोटर में वेंट और चैनलों के माध्यम से विलुप्त हो जाती है या पैड के माध्यम से आयोजित की जाती है, जो केवलर या सिंटर्ड ग्लास जैसे विशेष ताप-सहिष्णु सामग्री से बने होते हैं।

वैकल्पिक रूप से, एक ड्रम रोधक में, द्रव एक पहिया सिलेंडर में प्रवेश करता है और स्पिनिंग ड्रम के अंदर एक या दो रोधक शूज़ दबाता है। रोधक शूज़ डिस्क रोधक में इस्तेमाल किए जाने वाले पैड के समान गर्मी-सहिष्णु घर्षण सामग्री का उपयोग करते हैं।

रोधक पेडल/लीवर के बाद के रिलीज मास्टर सिलेंडर असेंबली में वसंत (एस) को मास्टर पिस्टन (ओं) को वापस स्थिति में वापस करने की अनुमति देता है। यह क्रिया पहले कैलीपर पर हाइड्रोलिक दबाव से राहत देती है, फिर कैलीपर असेंबली में रोधक पिस्टन को सक्शन लागू करती है, इसे वापस अपने आवास में ले जाती है और रोधक पैड को रोटर को छोड़ने की अनुमति देती है।

हाइड्रोलिक रोधकिंग प्रणाली को एक बंद प्रणाली के रूप में डिज़ाइन किया गया है: जब तक प्रणाली में कोई रिसाव नहीं होता है, तब तक रोधक द्रव में से कोई भी इसमें प्रवेश नहीं करता है या बाहर नहीं निकलता है, न ही उपयोग के माध्यम से तरल पदार्थ का उपभोग होता है। हालांकि, ओ-रिंग्स में दरारें या रोधक लाइन में पंचर से रिसाव हो सकता है। दरारें तब बन सकती हैं जब दो प्रकार के रोधक द्रव मिश्रित होते हैं या यदि रोधक द्रव पानी, शराब, एंटीफ्ऱीज़र, या किसी भी अन्य तरल पदार्थ से दूषित हो जाता है।[6]

हाइड्रोलिक ब्रेक तंत्र का एक उदाहरण

द्रवचालित रोधक किसी वस्तु, सामान्यतः एक घूर्णन धुरी को रोकने के लिए ऊर्जा स्थानांतरित करते हैं। एक बहुत ही सरल रोधक तंत्र में, सिर्फ दो सिलेंडर और एक डिस्क रोधक के साथ, सिलेंडर के अंदर एक पिस्टन के साथ, सिलेंडर को ट्यूब के माध्यम से जोड़ा जा सकता है। सिलेंडरों और ट्यूबों में असम्पीडित तेल भरा होता है। दो सिलेंडरों में समान मात्रा है, लेकिन अलग-अलग व्यास हैं, और इस प्रकार अलग-अलग क्रॉस-सेक्शन क्षेत्र हैं। ऑपरेटर जिस सिलेंडर का उपयोग करता है उसे मास्टर सिलेंडर कहा जाता है। कताई डिस्क रोधक बड़े क्रॉस-सेक्शन के साथ पिस्टन से सटे होंगे। मान लीजिए कि मास्टर सिलेंडर का व्यास गुलाम सिलेंडर का आधा व्यास है, इसलिए मास्टर सिलेंडर का क्रॉस-सेक्शन चार गुना छोटा होता है। अब, यदि मास्टर सिलेंडर में पिस्टन को 40 मिमी नीचे धकेला जाता है, तो दास पिस्टन 10 मिमी चला जाएगा। यदि मास्टर पिस्टन पर 10 न्यूटन (इकाई) (N) बल लगाया जाता है, तो स्लेव पिस्टन 40 N के बल से दबेगा।

मास्टर पिस्टन, पैडल और उत्तोलक के बीच जुड़ा लीवर डालकर इस बल को और बढ़ाया जा सकता है। यदि पेडल से धुरी की दूरी धुरी से कनेक्टेड पिस्टन की दूरी से तीन गुना है, तो पेडल पर नीचे धकेलने पर यह पेडल बल को 3 के कारक से गुणा करता है, ताकि 10N 30N हो जाए रोधक पैड पर मास्टर पिस्टन और 120N। इसके विपरीत, पेडल को मास्टर पिस्टन से तीन गुना आगे बढ़ना चाहिए। यदि हम पैडल को 120 मिमी नीचे धकेलते हैं, तो मास्टर पिस्टन 40 मिमी और स्लेव पिस्टन रोधक पैड को 10 मिमी नीचे ले जाएगा।

घटक विशिष्टता

(विशिष्ट लाइट ड्यूटी ऑटोमोटिव रोधकिंग प्रणाली के लिए)

एक चार पहिया कार में, संघीय मोटर वाहन सुरक्षा मानक मानक 105, 1976;[7] यह आवश्यक है कि मास्टर सिलेंडर को आंतरिक रूप से दो खंडों में विभाजित किया जाए, जिनमें से प्रत्येक एक अलग हाइड्रोलिक सर्किट पर दबाव डालता है। प्रत्येक खंड एक सर्किट को दबाव प्रदान करता है। संयोजन को अग्रानुक्रम मास्टर सिलेंडर के रूप में जाना जाता है। यात्री वाहनों में सामान्यतः या तो अग्र/पृष्ठ (फ्रंट/रियर) स्प्लिट रोधक तंत्र या डायगोनल स्प्लिट रोधक तंत्र होता है (मोटरसाइकिल या स्कूटर में मास्टर सिलेंडर केवल एक इकाई पर दबाव डाल सकता है, जो फ्रंट रोधक होगा)।

एक अग्र/पृष्ठ (फ्रंट/रियर) स्प्लिट प्रणाली फ्रंट कैलीपर पिस्टन पर दबाव डालने के लिए एक मास्टर सिलेंडर सेक्शन का उपयोग करता है और दूसरा सेक्शन रियर कैलीपर पिस्टन पर दबाव डालता है। सुरक्षा कारणों से अधिकांश देशों में अब स्प्लिट सर्किट रोधकिंग प्रणाली कानून द्वारा आवश्यक है; यदि एक सर्किट विफल हो जाता है, तो दूसरा सर्किट अभी भी वाहन को रोक सकता है।

1967 के उत्पादन वर्ष में अमेरिकी मोटर्स ऑटोमोबाइल पर प्रांरम्भ में विकर्ण विभाजन प्रणाली का उपयोग किया गया था। दाएँ आगे और पीछे के बाएँ एक एक्चुएटिंग पिस्टन द्वारा परोसा जाता है, जबकि बाएँ अग्र और दाएँ रियर को विशेष रूप से, एक दूसरे एक्चुएटिंग पिस्टन द्वारा परोसा जाता है (दोनों पिस्टन एक फुट पेडल से अपनी संबंधित युग्मित रेखाओं पर दबाव डालते हैं)। यदि कोई सर्किट विफल हो जाता है, तो दूसरा, कम से कम एक फ्रंट व्हील रोधकिंग के साथ (अग्र रोधक अधिकांश रोधकिंग बल प्रदान करते हैं, वजन हस्तांतरण के कारण), यांत्रिक रूप से क्षतिग्रस्त वाहन को रोकने के लिए बरकरार रहता है। 1970 के दशक तक, संयुक्त राज्य अमेरिका में बेचे जाने वाले ऑटोमोबाइल में तिरछे विभाजन प्रणाली आम हो गए थे। प्रणाली विफलता के दौरान बेहतर नियंत्रण और स्थिरता बनाए रखने के लिए इस प्रणाली को फ्रंट-व्हील ड्राइव कारों के निलंबन डिजाइन के साथ विकसित किया गया था।

मेरी 1967 से वोल्वो 140 श्रृंखला पर एक त्रिकोणीय विभाजन प्रणाली प्रांरम्भ की गई थी, जहां फ्रंट डिस्क रोधक में चार सिलेंडर की व्यवस्था होती है, और दोनों सर्किट प्रत्येक अग्र व्हील पर और पीछे के पहियों में से एक पर कार्य करते हैं। व्यवस्था को बाद की मॉडल श्रृंखला 200 और 700 के माध्यम से रखा गया था।

रोधक तंत्र के प्रदर्शन पर मास्टर सिलेंडर के व्यास और लंबाई का महत्वपूर्ण प्रभाव पड़ता है। एक बड़ा व्यास मास्टर सिलेंडर कैलीपर पिस्टन को अधिक हाइड्रोलिक द्रव प्रदान करता है, फिर भी किसी दिए गए मंदी को प्राप्त करने के लिए अधिक रोधक पेडल बल और कम रोधक पेडल स्ट्रोक की आवश्यकता होती है। एक छोटे व्यास के मास्टर सिलेंडर का विपरीत प्रभाव होता है।

एक मास्टर सिलेंडर कैलीपर पिस्टन या दूसरे के एक सेट में तरल पदार्थ की मात्रा में वृद्धि की अनुमति देने के लिए दो वर्गों के बीच अलग-अलग व्यास का उपयोग कर सकता है और इसे त्वरित टेक-अप एम / सी कहा जाता है। ईंधन की बचत को बढ़ाने के लिए इनका उपयोग कम ड्रैग फ्रंट कैलीपर्स के साथ किया जाता है।

भारी रोधकिंग के तहत पिछले रोधक पर दबाव कम करने के लिए एक आनुपातिक वाल्व का उपयोग किया जा सकता है। यह पीछे के रोधक को लॉक करने की संभावना को कम करने के लिए रियर रोधकिंग को सीमित करता है, और स्पिन की संभावना को बहुत कम करता है।

पावर रोधक

वैक्यूम बूस्टर या खाली सर्वर का उपयोग अधिकांश आधुनिक हाइड्रोलिक रोधक तंत्र में किया जाता है जिसमें चार पहिए होते हैं, वैक्यूम बूस्टर मास्टर सिलेंडर और रोधक पेडल के बीच जुड़ा होता है और ड्राइवर द्वारा लगाए गए रोधकिंग बल को गुणा करता है। इन इकाइयों में पूरे केंद्र में एक जंगम रबर डायाफ्राम (यांत्रिक उपकरण) के साथ एक खोखला आवास होता है, जिससे दो कक्ष बनते हैं। जब थ्रॉटल बॉडी के कम दबाव वाले हिस्से या इंजन के इनटेक मैनिफोल्ड से जुड़ा होता है, तो यूनिट के दोनों कक्षों में दबाव कम हो जाता है। दोनों कक्षों में कम दबाव द्वारा बनाया गया संतुलन रोधक पेडल के दबे होने तक डायाफ्राम को हिलने से रोकता है। रोधक पेडल लागू होने तक रिटर्न स्प्रिंग डायाफ्राम को शुरुआती स्थिति में रखता है। जब रोधक पेडल लगाया जाता है, आंदोलन एक वायु वाल्व खोलता है जो वायुमंडलीय दबाव हवा को बूस्टर के एक कक्ष में जाने देता है। चूंकि दबाव एक कक्ष में अधिक हो जाता है, डायाफ्राम डायाफ्राम के क्षेत्र और अंतर दबाव द्वारा बनाए गए बल के साथ निचले दबाव वाले कक्ष की ओर बढ़ता है। यह बल, चालक के पैर के बल के अतिरिक्त, मास्टर सिलेंडर पिस्टन पर धकेलता है। यहाँ अपेक्षाकृत छोटे व्यास की बूस्टर इकाई की आवश्यकता होती है जो की 50% मैनिफोल्ड वैक्यूम के लिए, लगभग 1500 एन (200 एन) की सहायक शक्ति 0.03 वर्ग मीटर के क्षेत्र के साथ 20 सेमी डायाफ्राम द्वारा निर्मित होती है। जब कक्ष के दोनों किनारों पर बल संतुलन पर पहुंचेंगे तो डायाफ्राम हिलना बंद कर देगा। यह या तो वायु वाल्व के बंद होने (पेडल के रुकने के कारण) या रन आउट होने के कारण हो सकता है। रन आउट तब होता है जब एक कक्ष में दबाव वायुमंडलीय दबाव तक पहुंच जाता है और अब स्थिर विभेदक दबाव द्वारा कोई अतिरिक्त बल उत्पन्न नहीं किया जा सकता है। रन आउट बिंदु तक पहुंचने के बाद, मास्टर सिलेंडर पिस्टन को आगे लागू करने के लिए केवल चालक के पैर बल का उपयोग किया जा सकता है।

मास्टर सिलेंडर से द्रव का दबाव स्टील रोधक ट्यूबों की एक जोड़ी के माध्यम से दबाव अंतर वाल्व तक जाता है, जिसे कभी-कभी रोधक विफलता वाल्व के रूप में संदर्भित किया जाता है, जो दो कार्य करता है: यह दो प्रणालियों के बीच दबाव को बराबर करता है, और यह एक चेतावनी प्रदान करता है यदि कोई प्रणाली दबाव खो देता है। प्रेशर डिफरेंशियल वाल्व में उनके बीच एक पिस्टन के साथ दो कक्ष होते हैं (जिससे हाइड्रोलिक लाइनें जुड़ी होती हैं)। जब किसी भी लाइन में दबाव संतुलित होता है, तो पिस्टन हिलता नहीं है। यदि एक तरफ का दबाव कम हो जाता है, तो दूसरी तरफ का दबाव पिस्टन को घुमाता है। जब पिस्टन इकाई के केंद्र में एक साधारण विद्युत जांच के साथ संपर्क करता है, तो एक सर्किट पूरा हो जाता है और ऑपरेटर को रोधक तंत्र में विफलता की चेतावनी दी जाती है।

प्रेशर डिफरेंशियल वॉल्व से, रोधक टयूबिंग, पहियों पर रोधक यूनिट्स पर दबाव डालता है। चूँकि पहिए ऑटोमोबाइल से एक निश्चित संबंध नहीं रखते हैं, इसलिए वाहन के फ्रेम पर स्टील लाइन के अंत से पहिया पर कैलीपर तक द्रवचालित रोधकनली का उपयोग करना आवश्यक है। फ्लेक्स के लिए स्टील रोधक टयूबिंग की अनुमति देने से धातु की थकान और अंततः रोधक विफलता होती है। एक सामान्य उन्नयन मानक रबर होसेस को एक सेट के साथ बदलना है जो बाहरी रूप से लट वाले स्टेनलेस-स्टील तारों के साथ प्रबलित होते हैं। ब्रेडेड तारों का दबाव में नगण्य विस्तार होता है और किसी रोधकिंग प्रयास के लिए कम पेडल यात्रा के साथ रोधक पेडल को एक मजबूत अनुभव दे सकता है।

शब्द 'पावर हाइड्रॉलिक रोधक' बहुत भिन्न सिद्धांतों पर चलने वाली प्रणालियों को भी संदर्भित कर सकता है जहां एक इंजन चालित पंप एक केंद्रीय संचायक में निरंतर हाइड्रोलिक दबाव बनाए रखता है। ड्राइवर का रोधक पैडल केवल पिस्टन को दबाकर मास्टर सिलेंडर में दबाव बनाने के बजाय पहियों पर रोधक इकाइयों में दबाव डालने के लिए वाल्व को नियंत्रित करता है। रोधक का यह रूप एक एयर रोधक (सड़क वाहन) प्रणाली के अनुरूप है, लेकिन हवा के बजाय काम करने वाले माध्यम के रूप में हाइड्रोलिक द्रव के साथ। हालाँकि, एयर रोधक पर प्रणाली w से हवा निकाली जाती हैजब रोधक जारी किए जाते हैं और संपीड़ित हवा के भंडार को फिर से भर दिया जाना चाहिए। एक पावर हाइड्रॉलिक रोधक तंत्र पर, कम दबाव पर तरल रोधक यूनिट से पहियों पर इंजन चालित पंप में वापस आ जाता है, क्योंकि रोधक जारी होते हैं, इसलिए केंद्रीय दबाव संचायक लगभग तुरंत फिर से दबाव डाला जाता है। यह पावर हाइड्रोलिक प्रणाली को उन वाहनों के लिए अत्यधिक उपयुक्त बनाता है जिन्हें बार-बार रुकना और प्रांरम्भ करना चाहिए (जैसे शहरों में बसें)। लगातार परिसंचारी द्रव ठंड वाले हिस्सों और एकत्रित जल वाष्प के साथ समस्याओं को भी दूर करता है जो ठंडी जलवायु में वायु प्रणालियों को प्रभावित कर सकता है। एईसी रूटमास्टर बस पावर द्रवचालित रोधकका एक प्रसिद्ध अनुप्रयोग है और जलविद्युत निलंबन वाली सिट्रोएन कारों की क्रमिक पीढ़ियों ने भी पारंपरिक ऑटोमोटिव रोधक तंत्र के बजाय पूरी तरह से संचालित द्रवचालित रोधकका उपयोग किया है। अधिकांश बड़े विमान पावर हाइड्रॉलिक व्हील रोधक का भी उपयोग करते हैं, क्योंकि वे अत्यधिक मात्रा में रोधकिंग बल प्रदान कर सकते हैं; व्हील रोधक एक या एक से अधिक एयरक्राफ्ट हाइड्रोलिक तंत्र से जुड़े होते हैं| विमान के मुख्य हाइड्रोलिक प्रणाली, एक हाइड्रोलिक संचायक के अतिरिक्त के साथ हाइड्रोलिक विफलता की स्थिति में भी विमान को रोधक लगाने की अनुमति देता है।

विशेष विचार

एयर रोधक तंत्र भारी हैं, और हवा कंप्रेसर और जलाशय टैंकों की आवश्यकता होती है। हाइड्रोलिक प्रणाली छोटे और कम खर्चीले होते हैं।

हाइड्रोलिक तरल पदार्थ गैर-संपीड़ित होना चाहिए। एयर रोधक (सड़क वाहन) के विपरीत, जहां एक वाल्व खोला जाता है और दबाव पर्याप्त रूप से बढ़ने तक लाइनों और रोधक कक्षों में हवा बहती है, हाइड्रोलिक प्रणाली प्रणाली के माध्यम से तरल पदार्थ को मजबूर करने के लिए पिस्टन के एक स्ट्रोक पर भरोसा करते हैं।यदि प्रणाली में कोई वाष्प पेश किया जाता है तो यह संकुचित हो जाएगा, और रोधक को सक्रिय करने के लिए दबाव पर्याप्त रूप से नहीं बढ़ सकता है।

हाइड्रोलिक रोधकिंग प्रणाली को कभी-कभी ऑपरेशन के दौरान उच्च तापमान के अधीन किया जाता है, जैसे कि खड़ी ग्रेड से उतरते समय। इस कारण से, हाइड्रोलिक द्रव को उच्च तापमान पर वाष्पीकरण का विरोध करना चाहिए।

पानी गर्मी से आसानी से वाष्पीकृत हो जाता है और प्रणाली के धातु भागों को खराब कर सकता है। पानी जो रोधक लाइनों में प्रवेश करता है, यहां तक ​​कि थोड़ी मात्रा में, अधिकांश सामान्य रोधक तरल पदार्थ (यानी, जो हीड्रोस्कोपिक हैं) के साथ प्रतिक्रिया करेगा[8][9]) निक्षेपों के निर्माण का कारण बनता है जो रोधक लाइनों और जलाशय को रोक सकता है। किसी भी रोधक तंत्र को पानी के संपर्क में आने से पूरी तरह से सील करना लगभग असंभव है, जिसका अर्थ है कि रोधक द्रव को नियमित रूप से बदलना आवश्यक है ताकि यह सुनिश्चित किया जा सके कि प्रणाली पानी के साथ प्रतिक्रियाओं के कारण होने वाली जमा राशि से अधिक नहीं हो रहा है। हल्के तेल को कभी-कभी विशेष रूप से हाइड्रोलिक तरल पदार्थ के रूप में उपयोग किया जाता है क्योंकि वे पानी के साथ प्रतिक्रिया नहीं करते हैं: तेल पानी को विस्थापित करता है, जंग के खिलाफ प्लास्टिक के हिस्सों की रक्षा करता है, और वाष्पीकरण से पहले बहुत अधिक तापमान सहन कर सकता है, लेकिन इसमें अन्य कमियां बनाम पारंपरिक हाइड्रोलिक तरल पदार्थ हैं। सिलिकॉन तरल पदार्थ अधिक महंगे विकल्प हैं।

 रोधक फीका एक ऐसी स्थिति है जो अत्यधिक गरम होने के कारण होती है जिसमें  रोधकिंग प्रभावशीलता कम हो जाती है, और खो सकती है। यह कई कारणों से हो सकता है। घूमने वाले हिस्से को जोड़ने वाले पैड ज़्यादा गरम हो सकते हैं और चमक सकते हैं, इतने चिकने और सख्त हो जाते हैं कि वे वाहन को धीमा करने के लिए पर्याप्त रूप से पकड़ नहीं पाते हैं। इसके अलावा, अत्यधिक तापमान या थर्मल विरूपण के तहत हाइड्रोलिक तरल पदार्थ के वाष्पीकरण के कारण लाइनिंग अपना आकार बदल सकती है और घूर्णन भाग के कम सतह क्षेत्र को संलग्न कर सकती है। थर्मल विरूपण भी धातु के घटकों के आकार में स्थायी परिवर्तन का कारण बन सकता है, जिसके परिणामस्वरूप  रोधकिंग क्षमता में कमी आती है जिसके लिए प्रभावित भागों को बदलने की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. Automobile Engineering, Vol. II., p. 183. American Technical Society, Chicago, 1919
  2. Loughhead, Malcolm, "Braking apparatus," U.S. Patent no. 1,249,143 (filed: 1917 January 22 ; issued: 1917 December 4).
  3. Csere, Csaba (January 1988), "10 Best Engineering Breakthroughs", Car and Driver, vol. 33, no. 7, p. 61
  4. "Stopping Power Put Duesenbergs Forever in Industry's Winner's Circle". 13 December 2005.
  5. "Motor Age". 1915.
  6. Sean Bennett (3 November 2006). Modern Diesel Technology: Brakes, Suspension & Steering. Cengage Learning. p. 97. ISBN 978-1-4180-1372-1.
  7. "Federal Motor Vehicle Safety Standards and Regulations". www.nhtsa.gov. Archived from the original on 2014-05-29. Retrieved 2016-10-01.
  8. "CDC - NIOSH Pocket Guide to Chemical Hazards - Ethylene glycol". www.cdc.gov. Retrieved 11 April 2018.
  9. "CDC - NIOSH Pocket Guide to Chemical Hazards - Propylene glycol monomethyl ether". www.cdc.gov. Retrieved 11 April 2018.

बाहरी कड़ियाँ

पेटेंट

  • US 2746575  Disc brakes for road and other vehicles. किंचिन 1956-05-22
  • US 2591793  Device for adjusting the return travel of fluid actuated means. डुबोइस 1952-04-08
  • US 2544849  Hydraulic brake automatic adjuster. मार्टिन 1951-03-13
  • US 2485032  Brake apparatus. ब्रायंट 1949-10-08
  • US 2466990  Single disk brake. जॉनसन वेड सी, ट्रिशमैन हैरी ए, स्ट्रैटन एडगर एच। 1949-04-12
  • US 2416091  Fluid pressure control mechanism. फिच 1947-02-12
  • US 2405219  Disk brake. लैम्बर्ट होमर टी 1946-08-06
  • US 2375855  Multiple disk brake. लैम्बर्ट होमर टी 1945-05-15
  • US 2366093  Brake. फोर्ब्स जोसेफ ए। 1944-12-26
  • US 2140752  Brake. ब्री 1938-12-20 पर
  • US 2084216  V-type brake for motor vehicles. पोएज रॉबर्ट ए. और पोएज मार्लिन जेड. 1937-06-15
  • US 2028488  Brake. एवरी विलियम लीसेस्टर 1936-02-21
  • US 1959049  Friction Brake. बुउस नील्स पीटर वल्देमार 1934-05-15
  • US 1954534  Brake. नॉर्टन रेमंड जे 1934-04-10
  • US 1721370  Brake for use on vehicles. बॉटन एडवर्ड बिशप 1929-07-16
  • DE 695921  Antriebsvorrichtung mit hydraulischem Gestaenge.... बोर्गवार कार्ल फ्रेडरिक विल्हेम 1940-09-06
  • GB 377478  Improvements in wheel cylinders for hydraulic brakes. हॉल फ्रेडरिक हेरोल्ड 1932-07-28
  • GB 365069  Improvements in control gear for hydraulically operated devices and particularly brakes for vehicles. रूबरी जॉन मेरेडिथ 1932-01-06