फोर्ड वृत्त: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Rational circle tangent to the real line}} | {{short description|Rational circle tangent to the real line}} | ||
[[File:Ford_circles_colour.svg|upright=1.35|thumb|1 से 20 तक q के लिए Ford सर्कल। q ≤ 10 वाले सर्कल को लेबल किया गया है {{sfrac|''p''|''q''}} और क्यू के अनुसार रंग-कोडित। प्रत्येक वृत्त आधार रेखा और उसके पड़ोसी वृत्तों की [[स्पर्शरेखा]] है। समान भाजक वाले इरेड्यूसिबल अंशों में समान आकार के वृत्त होते हैं।]]गणित में युक्लीडियन तल में फोर्ड वृत्त है वृत्त के | [[File:Ford_circles_colour.svg|upright=1.35|thumb|1 से 20 तक q के लिए Ford सर्कल। q ≤ 10 वाले सर्कल को लेबल किया गया है {{sfrac|''p''|''q''}} और क्यू के अनुसार रंग-कोडित। प्रत्येक वृत्त आधार रेखा और उसके पड़ोसी वृत्तों की [[स्पर्शरेखा]] है। समान भाजक वाले इरेड्यूसिबल अंशों में समान आकार के वृत्त होते हैं।]]गणित में युक्लीडियन तल में '''फोर्ड वृत्त''' है वृत्त के समूह में परिमेय बिंदुओं पर एक्स-एक्सिस की सभी स्पर्श रेखाएं होती हैं। प्रत्येक परिमेय संख्या p/q के लिए, निम्नतम शब्दों में व्यक्त किया गया, फोर्ड वृत्त है जिसका केंद्र बिंदु <math>(p/q,1/(2q^2))</math>पर है और जिसकी त्रिज्या <math>1/(2q^2)</math>है। यह अपने निचले बिंदु,<math>(p/q,0)</math> पर एक्स-अक्ष पर स्पर्शरेखा है। परिमेय संख्या <math>p/q</math> और <math>r/s</math> (दोनों निम्नतम शब्दों में) के लिए दो फोर्ड वृत्त स्पर्शरेखा है जब <math>|p s-q r|=1</math> और अन्यथा ये दो वृत्त अलग हैं।<ref name="ford"/> | ||
== इतिहास == | == इतिहास == | ||
फोर्ड | फोर्ड वृत्त परस्पर स्पर्शरेखा वृत्त का विशेष कारण है; आधार रेखा को अनंत त्रिज्या वाले वृत्त के रूप में माना जा सकता है। पेरगा के एपोलोनियस द्वारा पारस्परिक रूप से स्पर्शरेखा वृतों की प्रणालियों का अध्ययन किया गया है, जिसके बाद एपोलोनियस और [[अपोलोनियन गैसकेट]] की समस्या का नाम दिया गया है।<ref name="coxeter">{{citation | ||
| last = Coxeter | first = H. S. M. | authorlink = Harold Scott MacDonald Coxeter | | last = Coxeter | first = H. S. M. | authorlink = Harold Scott MacDonald Coxeter | ||
| journal = [[The American Mathematical Monthly]] | | journal = [[The American Mathematical Monthly]] | ||
Line 63: | Line 63: | ||
| volume = 100 | | volume = 100 | ||
| year = 2003| s2cid = 16607718 }}.</ref> अतिपरवलयिक ज्यामिति (पॉइनकेयर अर्ध - समतल मॉडल) के मॉडल के रूप में सम्मिश्र समतल के ऊपरी आधे हिस्से की व्याख्या करके, फोर्ड वृत्त को कुंडली के रूप में व्याख्या किया जा सकता है। अतिपरवलयिक ज्यामिति में कोई भी दो [[कुंडली]] [[सर्वांगसमता (ज्यामिति)|समरूप (ज्यामिति)]] होती हैं। जब ये होरोसाइकल एपिरोगोन्स द्वारा [[स्पर्शरेखा बहुभुज]] होते हैं, तो वे अतिपरवलयिक तल को [[क्रम-3 एपिरोगोनल टाइलिंग]] के साथ जोड़ते हैं। | | year = 2003| s2cid = 16607718 }}.</ref> अतिपरवलयिक ज्यामिति (पॉइनकेयर अर्ध - समतल मॉडल) के मॉडल के रूप में सम्मिश्र समतल के ऊपरी आधे हिस्से की व्याख्या करके, फोर्ड वृत्त को कुंडली के रूप में व्याख्या किया जा सकता है। अतिपरवलयिक ज्यामिति में कोई भी दो [[कुंडली]] [[सर्वांगसमता (ज्यामिति)|समरूप (ज्यामिति)]] होती हैं। जब ये होरोसाइकल एपिरोगोन्स द्वारा [[स्पर्शरेखा बहुभुज]] होते हैं, तो वे अतिपरवलयिक तल को [[क्रम-3 एपिरोगोनल टाइलिंग]] के साथ जोड़ते हैं। | ||
== फोर्ड | |||
== फोर्ड वृत्त का कुल क्षेत्रफल == | |||
फोर्ड वृत्त के क्षेत्र के बीच कड़ी है, यूलर का कुल फंक्शन <math>\varphi,</math> रीमैन जीटा फंक्शन <math>\zeta,</math> और एपेरी स्थिरांक <math>\zeta(3).</math><ref>{{citation | फोर्ड वृत्त के क्षेत्र के बीच कड़ी है, यूलर का कुल फंक्शन <math>\varphi,</math> रीमैन जीटा फंक्शन <math>\zeta,</math> और एपेरी स्थिरांक <math>\zeta(3).</math><ref>{{citation | ||
| last = Marszalek | first = Wieslaw | | last = Marszalek | first = Wieslaw | ||
Line 103: | Line 91: | ||
:<math> A = \frac{45}{2} \frac{\zeta(3)}{\pi^3}\approx 0.872284041.</math> | :<math> A = \frac{45}{2} \frac{\zeta(3)}{\pi^3}\approx 0.872284041.</math> | ||
ध्यान दें कि | ध्यान दें कि पारम्परिक कथनों में, पिछली गणनाओं में त्रिज्या के वृत्त को सम्मिलित नहीं किया गया था <math>\frac{1}{2}</math> भिन्न के अनुरूप <math>\frac{0}{1}</math> है। इसमें के लिए पूरा वृत्त सम्मिलित है <math>\frac{1}{1}</math>, जिनमें से आधा इकाई अंतराल के बाहर है, इसलिए योग अभी भी फोर्ड वृत्त द्वारा कवर किए गए इकाई वर्ग का भिन्न है। | ||
== फोर्ड क्षेत्रों (3 डी) == | == फोर्ड क्षेत्रों (3 डी) == | ||
[[File:Ford-Kugeln.png|thumb|फोर्ड जटिल डोमेन के ऊपर स्थित है]]फोर्ड | [[File:Ford-Kugeln.png|thumb|फोर्ड जटिल डोमेन के ऊपर स्थित है]]फोर्ड वृतों की अवधारणा को परिमेय संख्याओं से गॉसियन परिमेय तक सामान्यीकृत किया जा सकता है, फोर्ड क्षेत्रों को दे रहा है। इस निर्माण में, सम्मिश्र संख्याएं त्रि-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्पेस]] में समतल के रूप में स्थापित होती हैं, और इस समतल में प्रत्येक [[गॉसियन तर्कसंगत]] बिंदु के लिए उस बिंदु पर विमान के लिए एक गोलाकार स्पर्शरेखा का निर्माण होता है। गॉसियन परिमेय के लिए सबसे कम शब्दों में <math>p/q</math> प्रतिनिधित्व किया गया है, इस गोले का व्यास <math>1/2q\bar q</math> होना चाहिए जहाँ <math>\bar q</math> के सम्मिश्र संयुग्म <math>q</math> का प्रतिनिधित्व करता है | परिणामी गोले गॉसियन परिमेय <math>P/Q</math> और <math>p/q</math> साथ <math>|Pq-pQ|=1</math>के जोड़े के लिए स्पर्शरेखा हैं और अन्यथा वे एक दूसरे को प्रतिच्छेद नहीं करते है।<ref>{{citation|title=Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning|first=Clifford A.|last=Pickover|authorlink=Clifford A. Pickover|publisher=Oxford University Press|year=2001|isbn=9780195348002|contribution=Chapter 103. Beauty and Gaussian Rational Numbers|pages=243–246|url=https://books.google.com/books?id=52N0JJBspM0C&pg=PA243}}.</ref><ref>{{citation|year=2015|arxiv=1503.00813|title=Ford Circles and Spheres|first=Sam|last=Northshield|bibcode=2015arXiv150300813N}}.</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* अपोलोनियन गैस्केट - | * अपोलोनियन गैस्केट-रेखा के बदले वृत्त मे अनंत पारस्परिक रूप से स्पर्शरेखा वाले वृत्तों वाला विषम है | | ||
* [[स्टेनर चेन]] | * [[स्टेनर चेन]] | ||
* पप्पस चेन | * पप्पस चेन | ||
Line 123: | Line 111: | ||
* {{cite web|last1=Bonahon|first1=Francis|authorlink=Francis Bonahon|title=Funny Fractions and Ford Circles|url=https://www.youtube.com/watch?v=0hlvhQZIOQw |archive-url=https://ghostarchive.org/varchive/youtube/20211221/0hlvhQZIOQw |archive-date=2021-12-21 |url-status=live|publisher=[[Brady Haran]]|accessdate=9 June 2015|format=YouTube video}}{{cbignore}} | * {{cite web|last1=Bonahon|first1=Francis|authorlink=Francis Bonahon|title=Funny Fractions and Ford Circles|url=https://www.youtube.com/watch?v=0hlvhQZIOQw |archive-url=https://ghostarchive.org/varchive/youtube/20211221/0hlvhQZIOQw |archive-date=2021-12-21 |url-status=live|publisher=[[Brady Haran]]|accessdate=9 June 2015|format=YouTube video}}{{cbignore}} | ||
{{DEFAULTSORT:Ford Circle}} | {{DEFAULTSORT:Ford Circle}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 28/02/2023|Ford Circle]] | ||
[[Category: | [[Category:Lua-based templates|Ford Circle]] | ||
[[Category:Machine Translated Page|Ford Circle]] | |||
[[Category:Pages with script errors|Ford Circle]] | |||
[[Category:Short description with empty Wikidata description|Ford Circle]] | |||
[[Category:Templates Vigyan Ready|Ford Circle]] | |||
[[Category:Templates that add a tracking category|Ford Circle]] | |||
[[Category:Templates that generate short descriptions|Ford Circle]] | |||
[[Category:Templates using TemplateData|Ford Circle]] | |||
[[Category:अंश (गणित)|Ford Circle]] | |||
[[Category:सर्किल पैकिंग|Ford Circle]] |
Latest revision as of 17:09, 29 August 2023
गणित में युक्लीडियन तल में फोर्ड वृत्त है वृत्त के समूह में परिमेय बिंदुओं पर एक्स-एक्सिस की सभी स्पर्श रेखाएं होती हैं। प्रत्येक परिमेय संख्या p/q के लिए, निम्नतम शब्दों में व्यक्त किया गया, फोर्ड वृत्त है जिसका केंद्र बिंदु पर है और जिसकी त्रिज्या है। यह अपने निचले बिंदु, पर एक्स-अक्ष पर स्पर्शरेखा है। परिमेय संख्या और (दोनों निम्नतम शब्दों में) के लिए दो फोर्ड वृत्त स्पर्शरेखा है जब और अन्यथा ये दो वृत्त अलग हैं।[1]
इतिहास
फोर्ड वृत्त परस्पर स्पर्शरेखा वृत्त का विशेष कारण है; आधार रेखा को अनंत त्रिज्या वाले वृत्त के रूप में माना जा सकता है। पेरगा के एपोलोनियस द्वारा पारस्परिक रूप से स्पर्शरेखा वृतों की प्रणालियों का अध्ययन किया गया है, जिसके बाद एपोलोनियस और अपोलोनियन गैसकेट की समस्या का नाम दिया गया है।[2] 17वीं शताब्दी में रेने डेसकार्टेस ने डेसकार्टेस प्रमेय की खोज की, जो पारस्परिक रूप से स्पर्शरेखा वाले वृतों की त्रिज्या के व्युत्क्रमों के बीच संबंध है।[2]
जापानी गणित की सांगकी (ज्यामितीय पहेलियाँ) में फोर्ड वृत्त भी दिखाई देते हैं। विशिष्ट समस्या, जिसे गुंमा प्रान्त में 1824 टैबलेट पर प्रस्तुत किया गया है, सामान्य स्पर्शरेखा के साथ तीन स्पर्श करने वाले वृत्तों के संबंध को बताती है। दो बाहरी बड़े वृत्तों के आकार को देखते हुए, उनके बीच के छोटे वृत्त का आकार क्या है? उत्तर फोर्ड वृत्त के बराबर है:[3]
फोर्ड वृत्तों का नाम अमेरिकी गणितज्ञ लेस्टर आर. फोर्ड|लेस्टर आर. फोर्ड, सीनियर के नाम पर रखा गया है, जिन्होंने 1938 में उनके बारे में लिखा था।[1]
गुण
भिन्न के साथ जुड़े फोर्ड वृत्त को या द्वारा निरूपित किया जाता है | प्रत्येक परिमेय संख्या के साथ फोर्ड वृत्त जुड़ा होता है। इसके अतिरिक्त रेखा फोर्ड वृत्त के रूप में गिना जाता है-इसे अनंत से जुड़े फोर्ड वृत्त के रूप में माना जा सकता है, जो कि कारण है
दो अलग-अलग फोर्ड वृत्त या तो अलग समूह हैं या एक दूसरे से स्पर्शरेखा हैं। फोर्ड वृत्त के कोई भी दो आंतरिक पक्ष एक दूसरे को नहीं काटते हैं, भले ही परिमेय संख्या निर्देशांक के साथ प्रत्येक बिंदु पर एक्स-अक्ष के लिए फोर्ड वृत्त स्पर्शरेखा है। यदि 0 और 1 के बीच है, फोर्ड वृत्त जो स्पर्शरेखा हैं के रूप में विभिन्न प्रकार से वर्णित किया जा सकता है
- वृत्त जहाँ [1]
- भिन्नों से जुड़े वृत्त जो कुछ फेरी क्रम में निकट है।[1]
- वृत्त में जहाँ स्टर्न-ब्रोकॉट के ट्री में या जहां का अगला बड़ा या अगला छोटा पहले दिया गया है जहाँ का अगला बड़ा या अगला छोटा पहले दिया गया है।[1]
यदि और दो स्पर्शरेखा फोर्ड वृत्त हैं, फिर वृत्त के माध्यम से और (फोर्ड वृतों के केंद्रों का एक्स-निर्देशांक) और वह लंबवत है एक्स-अक्ष (जिसका केंद्र एक्स-अक्ष पर है) भी उस बिंदु से होकर गुजरता है जहां दो वृत्त एक दूसरे को स्पर्श करते हैं।
फोर्ड वृत्त को सम्मिश्र समतल में घटता के रूप में भी सोचा जा सकता है। सम्मिश्र समतल के परिवर्तनों का मॉड्यूलर समूह गामा फोर्ड वृत्त को अन्य फोर्ड वृत्त में मैप करता है।[1]
फोर्ड वृत्त रेखाओं द्वारा उत्पन्न अपोलोनियन गैसकेट में वृतों का और उप-समूह है और वृत्त [4] अतिपरवलयिक ज्यामिति (पॉइनकेयर अर्ध - समतल मॉडल) के मॉडल के रूप में सम्मिश्र समतल के ऊपरी आधे हिस्से की व्याख्या करके, फोर्ड वृत्त को कुंडली के रूप में व्याख्या किया जा सकता है। अतिपरवलयिक ज्यामिति में कोई भी दो कुंडली समरूप (ज्यामिति) होती हैं। जब ये होरोसाइकल एपिरोगोन्स द्वारा स्पर्शरेखा बहुभुज होते हैं, तो वे अतिपरवलयिक तल को क्रम-3 एपिरोगोनल टाइलिंग के साथ जोड़ते हैं।
फोर्ड वृत्त का कुल क्षेत्रफल
फोर्ड वृत्त के क्षेत्र के बीच कड़ी है, यूलर का कुल फंक्शन रीमैन जीटा फंक्शन और एपेरी स्थिरांक [5] चूंकि कोई भी दो फोर्ड वृत्त प्रतिच्छेद नहीं करते हैं, यह तुरंत फोर्ड वृतों के कुल क्षेत्रफल का अनुसरण करता है
1 से कम है। वास्तव में इन फोर्ड वृतों का कुल क्षेत्रफल सहायक योग द्वारा दिया जाता है, जिसका मूल्यांकन किया जा सकता है। परिभाषा से, क्षेत्र है
इस व्यंजक को सरल बना देता है
जहां अंतिम समानता यूलर के कुल कार्य के लिए डिरिचलेट जनरेटिंग फंक्शन को दर्शाती है तब से यह अंत में बन जाता है
ध्यान दें कि पारम्परिक कथनों में, पिछली गणनाओं में त्रिज्या के वृत्त को सम्मिलित नहीं किया गया था भिन्न के अनुरूप है। इसमें के लिए पूरा वृत्त सम्मिलित है , जिनमें से आधा इकाई अंतराल के बाहर है, इसलिए योग अभी भी फोर्ड वृत्त द्वारा कवर किए गए इकाई वर्ग का भिन्न है।
फोर्ड क्षेत्रों (3 डी)
फोर्ड वृतों की अवधारणा को परिमेय संख्याओं से गॉसियन परिमेय तक सामान्यीकृत किया जा सकता है, फोर्ड क्षेत्रों को दे रहा है। इस निर्माण में, सम्मिश्र संख्याएं त्रि-आयामी यूक्लिडियन स्पेस में समतल के रूप में स्थापित होती हैं, और इस समतल में प्रत्येक गॉसियन तर्कसंगत बिंदु के लिए उस बिंदु पर विमान के लिए एक गोलाकार स्पर्शरेखा का निर्माण होता है। गॉसियन परिमेय के लिए सबसे कम शब्दों में प्रतिनिधित्व किया गया है, इस गोले का व्यास होना चाहिए जहाँ के सम्मिश्र संयुग्म का प्रतिनिधित्व करता है | परिणामी गोले गॉसियन परिमेय और साथ के जोड़े के लिए स्पर्शरेखा हैं और अन्यथा वे एक दूसरे को प्रतिच्छेद नहीं करते है।[6][7]
यह भी देखें
- अपोलोनियन गैस्केट-रेखा के बदले वृत्त मे अनंत पारस्परिक रूप से स्पर्शरेखा वाले वृत्तों वाला विषम है |
- स्टेनर चेन
- पप्पस चेन
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Ford, L. R. (1938), "Fractions", The American Mathematical Monthly, 45 (9): 586–601, doi:10.2307/2302799, JSTOR 2302799, MR 1524411.
- ↑ 2.0 2.1 Coxeter, H. S. M. (1968), "The problem of Apollonius", The American Mathematical Monthly, 75 (1): 5–15, doi:10.2307/2315097, JSTOR 2315097, MR 0230204.
- ↑ Fukagawa, Hidetosi; Pedoe, Dan (1989), Japanese temple geometry problems, Winnipeg, MB: Charles Babbage Research Centre, ISBN 0-919611-21-4, MR 1044556.
- ↑ Graham, Ronald L.; Lagarias, Jeffrey C.; Mallows, Colin L.; Wilks, Allan R.; Yan, Catherine H. (2003), "Apollonian circle packings: number theory", Journal of Number Theory, 100 (1): 1–45, arXiv:math.NT/0009113, doi:10.1016/S0022-314X(03)00015-5, MR 1971245, S2CID 16607718.
- ↑ Marszalek, Wieslaw (2012), "Circuits with oscillatory hierarchical Farey sequences and fractal properties", Circuits, Systems and Signal Processing, 31 (4): 1279–1296, doi:10.1007/s00034-012-9392-3, S2CID 5447881.
- ↑ Pickover, Clifford A. (2001), "Chapter 103. Beauty and Gaussian Rational Numbers", Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford University Press, pp. 243–246, ISBN 9780195348002.
- ↑ Northshield, Sam (2015), Ford Circles and Spheres, arXiv:1503.00813, Bibcode:2015arXiv150300813N.
बाहरी संबंध
- Ford's Touching Circles at cut-the-knot
- Weisstein, Eric W. "Ford Circle". MathWorld.
- Bonahon, Francis. "Funny Fractions and Ford Circles" (YouTube video). Brady Haran. Archived from the original on 2021-12-21. Retrieved 9 June 2015.