क्रांतिक चाल: Difference between revisions

From Vigyanwiki
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Disputed|date=January 2015}} [[ठोस यांत्रिकी]] में, [[रोटरडायनामिक्स]] के क्षेत्र में, महत्वपूर्ण गति सैद्धांतिक [[कोणीय वेग]] है जो घूमने वाली वस्तु की [[प्राकृतिक आवृत्ति]] को उत्तेजित करती है, जैसे शाफ्ट, प संचालक शक्ति, अग्रग पेंच या गियर इत्यादि है। जैसे-जैसे घूर्णन की गति वस्तु की प्राकृतिक आवृत्ति के पास पहुँचती है, वस्तु सम्बंधित होने लगती है, जो नाटकीय रूप से प्रणाली [[कंपन]] को बढ़ाती है। परिणामी प्रतिध्वनि अभिविन्यास की ध्यान दिए बिना होती है। जब घूर्णी गति प्राकृतिक कंपन के संख्यात्मक मान के बराबर होती है, तो उस गति को क्रांतिक गति कहा जाता है।
[[ठोस यांत्रिकी]] में, [[रोटरडायनामिक्स]] के क्षेत्र में, '''क्रांतिक चाल''' सैद्धांतिक [[कोणीय वेग]] है जो घूमने वाली वस्तु की [[प्राकृतिक आवृत्ति]] को उत्तेजित करती है, जैसे शाफ्ट, नोदक, अग्रग पेंच या गियर इत्यादि है। जैसे-जैसे घूर्णन की गति वस्तु की प्राकृतिक आवृत्ति के पास पहुँचती है, वस्तु सम्बंधित होने लगती है, जो नाटकीय रूप से प्रणाली [[कंपन]] को बढ़ाती है। परिणामी प्रतिध्वनि अभिविन्यास की ध्यान दिए बिना होती है। जब घूर्णी गति प्राकृतिक कंपन के संख्यात्मक मान के बराबर होती है, तो उस गति को जटिल गति कहा जाता है।


==शाफ्ट की क्रांतिक गति==
==शाफ्ट की क्रांतिक चाल==
सभी घूर्णन शाफ्ट, बाहरी भार की अनुपस्थिति में भी, घूर्णन के दौरान विक्षेपित होंगे। घूमने वाली वस्तु का असंतुलित द्रव्यमान विक्षेपण का कारण बनता है जो कुछ गति पर गुंजयमान कंपन उत्पन्न करेगा, जिसे क्रांतिक गति के रूप में जाना जाता है। विक्षेपण का परिमाण निम्नलिखित पर निर्भर करता है:
सभी घूर्णन शाफ्ट, बाहरी भार की अनुपस्थिति में भी, घूर्णन के दौरान विक्षेपित होंगे। घूमने वाली वस्तु का असंतुलित द्रव्यमान विक्षेपण का कारण बनता है जो कुछ गति पर अनुनादी कंपन उत्पन्न करेगा, जिसे क्रांतिक चाल के रूप में जाना जाता है। विक्षेपण का परिमाण निम्नलिखित पर निर्भर करता है:
* शाफ्ट की कठोरता और उसका समर्थन
* शाफ्ट की कठोरता और उसका समर्थन
* शाफ्ट और संलग्न भागों का कुल द्रव्यमान
* शाफ्ट और संलग्न भागों का कुल द्रव्यमान
Line 8: Line 8:
* प्रणाली में भिगोना की मात्रा
* प्रणाली में भिगोना की मात्रा


सामान्य तौर पर, शोर और कंपन के परिणाम से बचने के लिए, घूर्णन शाफ्ट की महत्वपूर्ण गति की गणना करना आवश्यक है, जैसे फैन शाफ्ट इत्यादि है।
सामान्य तौर पर, रव और कंपन के परिणाम से बचने के लिए, घूर्णन शाफ्ट की क्रांतिक चाल की गणना करना आवश्यक है, जैसे फैन शाफ्ट इत्यादि है।


== गंभीर गति समीकरण ==
== क्रांतिक चाल समीकरण ==
कम्पन स्ट्रिंग (तार) और अन्य प्रत्यास्थ संरचनाओं की तरह, शाफ्ट और बीम अलग-अलग मोड आकार में कंपन कर सकते हैं, इसी प्राकृतिक आवृत्तियों के साथ होता है। पहला कंपन मोड सबसे कम प्राकृतिक आवृत्ति से मिलता है। कंपन के उच्च प्रकार उच्च प्राकृतिक आवृत्तियों के अनुरूप होते हैं| अधिकांशतः घूर्णन शाफ्ट पर विचार करते समय, केवल पहली प्राकृतिक आवृत्ति की आवश्यकता होती है।
कम्पन स्ट्रिंग (तार) और अन्य प्रत्यास्थ संरचनाओं की तरह, शाफ्ट और बीम अलग-अलग मोड आकार में कंपन कर सकते हैं, इसी प्राकृतिक आवृत्तियों के साथ होता है। पहला कंपन मोड सबसे कम प्राकृतिक आवृत्ति से मिलता है। कंपन के उच्च प्रकार उच्च प्राकृतिक आवृत्तियों के अनुरूप होते हैं। अधिकांशतः घूर्णन शाफ्ट पर विचार करते समय, केवल पहली प्राकृतिक आवृत्ति की आवश्यकता होती है।


जटिल गति की गणना करने के लिए दो मुख्य विधियों का उपयोग किया जाता है- रेले-रिट्ज विधि और डंकरली की विधि है। दोनों कंपन की पहली प्राकृतिक आवृत्ति के समीप की गणना करते हैं, जिसे घूर्णन की जटिल गति के लगभग बराबर माना जाता है। रेले-रिट्ज पद्धति पर यहां चर्चा की गई है। शाफ्ट के लिए जिसे ''n'' भाग में विभाजित किया गया है, किसी दिए गए बीम के लिए रेड/एस में पहली प्राकृतिक आवृत्ति को अनुमानित किया जा सकता है:
क्रांतिक चाल की गणना करने के लिए दो मुख्य विधियों का उपयोग किया जाता है- रेले-रिट्ज विधि और डंकरली की विधि है। दोनों कंपन की पहली प्राकृतिक आवृत्ति के समीप की गणना करते हैं, जिसे घूर्णन की क्रांतिक चाल के लगभग बराबर माना जाता है। रेले-रिट्ज पद्धति पर यहां चर्चा की गई है। शाफ्ट के लिए जिसे ''n'' भाग में विभाजित किया गया है, किसी दिए गए बीम के लिए रेड/एस में पहली प्राकृतिक आवृत्ति को अनुमानित किया जा सकता है:


:<math>\omega_{1} \approx \sqrt{\frac {g \sum_ {i = 1}^n {w_ {i} y_ {i}}} {\sum_ {i = 1}^n {w_ {i} y_ {i}^2}}}</math>
:<math>\omega_{1} \approx \sqrt{\frac {g \sum_ {i = 1}^n {w_ {i} y_ {i}}} {\sum_ {i = 1}^n {w_ {i} y_ {i}^2}}}</math>
Line 21: Line 21:
जहाँ <math>y_{max}</math> शाफ्ट का अधिकतम स्थिर विक्षेपण है। ये गति रेडियन/सेकेंड में हैं, परन्तु <math>\frac {60} {2*\pi}</math> से गुणा करके इसे प्रति मिनट चक्र में बदला जा सकता है   
जहाँ <math>y_{max}</math> शाफ्ट का अधिकतम स्थिर विक्षेपण है। ये गति रेडियन/सेकेंड में हैं, परन्तु <math>\frac {60} {2*\pi}</math> से गुणा करके इसे प्रति मिनट चक्र में बदला जा सकता है   


कई प्रकार के यूनिफ़ॉर्म-क्रॉस-सेक्शन बीम के लिए स्थिर विक्षेपण पाया जा सकता है विक्षेपण_(इंजीनियरिंग)#बीम_विक्षेपण_के लिए_विभिन्न_भार_और_समर्थन। यदि एक बीम में कई प्रकार के लोडिंग हैं, तो प्रत्येक के लिए विक्षेपण पाया जा सकता है, और फिर अभिव्यक्त किया जा सकता है। यदि शाफ्ट व्यास इसकी लंबाई के साथ बदलता है, तो विक्षेपण गणना अधिक कठिन हो जाती है।
कई प्रकार के समान अनुप्रस्थ परिच्छेद बीम के लिए स्थिर विक्षेपण पाया जा सकता है। यदि बीम में कई प्रकार के भार हैं, तो प्रत्येक के लिए विक्षेपण पाया जा सकता है, और फिर अभिव्यक्त किया जा सकता है। यदि शाफ्ट व्यास इसकी लंबाई के साथ बदलता है, तो विक्षेपण गणना अत्यधिक कठिन हो जाती है।


स्थैतिक विक्षेपण शाफ्ट और जड़त्वीय बलों की कठोरता के बीच संबंध को व्यक्त करता है; क्षैतिज रूप से रखे जाने पर इसमें शाफ्ट पर लागू सभी भार शामिल होते हैं।<ref>Technical Bulletin, [http://www.ewp.rpi.edu/hartford/~ernesto/F2013/SRDD/Readings/Kruger-CriticalSpeeds-Shafts.pdf] {{Webarchive|url=https://web.archive.org/web/20170712231422/http://www.ewp.rpi.edu/hartford/~ernesto/F2013/SRDD/Readings/Kruger-CriticalSpeeds-Shafts.pdf |date=2017-07-12 }}, ''Krueger''. Retrieved on 18 June 2015.</ref> हालाँकि, संबंध मान्य है चाहे शाफ्ट का अभिविन्यास कुछ भी हो।
स्थैतिक विक्षेपण शाफ्ट और जड़त्वीय बलों की कठोरता के बीच संबंध को व्यक्त करता है; क्षैतिज रूप से रखे जाने पर इसमें शाफ्ट पर क्रियान्वित सभी भार सम्मिलित होते हैं।<ref>Technical Bulletin, [http://www.ewp.rpi.edu/hartford/~ernesto/F2013/SRDD/Readings/Kruger-CriticalSpeeds-Shafts.pdf] {{Webarchive|url=https://web.archive.org/web/20170712231422/http://www.ewp.rpi.edu/hartford/~ernesto/F2013/SRDD/Readings/Kruger-CriticalSpeeds-Shafts.pdf |date=2017-07-12 }}, ''Krueger''. Retrieved on 18 June 2015.</ref> चूँकि, संबंध मान्य है भले शाफ्ट का अभिविन्यास कुछ भी हो।


क्रांतिक गति शाफ्ट के असंतुलित होने के परिमाण और स्थान, शाफ्ट की लंबाई, इसके व्यास और बियरिंग सपोर्ट के प्रकार पर निर्भर करती है। कई व्यावहारिक अनुप्रयोग अच्छे अभ्यास के रूप में सुझाव देते हैं कि अधिकतम परिचालन गति क्रांतिक गति के 75% से अधिक नहीं होनी चाहिए; हालाँकि, ऐसे मामले हैं जिनमें सही ढंग से काम करने के लिए महत्वपूर्ण गति से ऊपर की गति की आवश्यकता होती है। ऐसे मामलों में, पहली प्राकृतिक आवृत्ति के माध्यम से शाफ्ट को तेजी से बढ़ाना महत्वपूर्ण होता है ताकि बड़े विक्षेपण विकसित न हों।
क्रांतिक चाल शाफ्ट के असंतुलित होने के परिमाण और स्थान, शाफ्ट की लंबाई, इसके व्यास और धारक आधार के प्रकार पर निर्भर करती है। कई व्यावहारिक अनुप्रयोग अच्छे अभ्यास के रूप में सुझाव देते हैं कि अधिकतम परिचालन गति क्रांतिक चाल के 75% से अत्यधिक नहीं होनी चाहिए; चूँकि, ऐसे कथन हैं जिनमें सही प्रकार से कार्य करने के लिए क्रांतिक चाल से ऊपर की गति की आवश्यकता होती है। ऐसे कथनों में, पहली प्राकृतिक आवृत्ति के माध्यम से शाफ्ट को तेजी से बढ़ाना महत्वपूर्ण होता है जिससे बड़े विक्षेपण विकसित न हों।


== यह भी देखें ==
== यह भी देखें ==
Line 37: Line 37:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: मैकेनिकल इंजीनियरिंग]]


[[hu:Kritikus fordulatszám]]
[[hu:Kritikus fordulatszám]]
[[it:Velocità critica flessionale]]
[[it:Velocità critica flessionale]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Webarchive template wayback links]]
[[Category:मैकेनिकल इंजीनियरिंग]]

Latest revision as of 17:20, 29 August 2023

ठोस यांत्रिकी में, रोटरडायनामिक्स के क्षेत्र में, क्रांतिक चाल सैद्धांतिक कोणीय वेग है जो घूमने वाली वस्तु की प्राकृतिक आवृत्ति को उत्तेजित करती है, जैसे शाफ्ट, नोदक, अग्रग पेंच या गियर इत्यादि है। जैसे-जैसे घूर्णन की गति वस्तु की प्राकृतिक आवृत्ति के पास पहुँचती है, वस्तु सम्बंधित होने लगती है, जो नाटकीय रूप से प्रणाली कंपन को बढ़ाती है। परिणामी प्रतिध्वनि अभिविन्यास की ध्यान दिए बिना होती है। जब घूर्णी गति प्राकृतिक कंपन के संख्यात्मक मान के बराबर होती है, तो उस गति को जटिल गति कहा जाता है।

शाफ्ट की क्रांतिक चाल

सभी घूर्णन शाफ्ट, बाहरी भार की अनुपस्थिति में भी, घूर्णन के दौरान विक्षेपित होंगे। घूमने वाली वस्तु का असंतुलित द्रव्यमान विक्षेपण का कारण बनता है जो कुछ गति पर अनुनादी कंपन उत्पन्न करेगा, जिसे क्रांतिक चाल के रूप में जाना जाता है। विक्षेपण का परिमाण निम्नलिखित पर निर्भर करता है:

  • शाफ्ट की कठोरता और उसका समर्थन
  • शाफ्ट और संलग्न भागों का कुल द्रव्यमान
  • घूर्णन अक्ष के संबंध में द्रव्यमान का असंतुलित होना
  • प्रणाली में भिगोना की मात्रा

सामान्य तौर पर, रव और कंपन के परिणाम से बचने के लिए, घूर्णन शाफ्ट की क्रांतिक चाल की गणना करना आवश्यक है, जैसे फैन शाफ्ट इत्यादि है।

क्रांतिक चाल समीकरण

कम्पन स्ट्रिंग (तार) और अन्य प्रत्यास्थ संरचनाओं की तरह, शाफ्ट और बीम अलग-अलग मोड आकार में कंपन कर सकते हैं, इसी प्राकृतिक आवृत्तियों के साथ होता है। पहला कंपन मोड सबसे कम प्राकृतिक आवृत्ति से मिलता है। कंपन के उच्च प्रकार उच्च प्राकृतिक आवृत्तियों के अनुरूप होते हैं। अधिकांशतः घूर्णन शाफ्ट पर विचार करते समय, केवल पहली प्राकृतिक आवृत्ति की आवश्यकता होती है।

क्रांतिक चाल की गणना करने के लिए दो मुख्य विधियों का उपयोग किया जाता है- रेले-रिट्ज विधि और डंकरली की विधि है। दोनों कंपन की पहली प्राकृतिक आवृत्ति के समीप की गणना करते हैं, जिसे घूर्णन की क्रांतिक चाल के लगभग बराबर माना जाता है। रेले-रिट्ज पद्धति पर यहां चर्चा की गई है। शाफ्ट के लिए जिसे n भाग में विभाजित किया गया है, किसी दिए गए बीम के लिए रेड/एस में पहली प्राकृतिक आवृत्ति को अनुमानित किया जा सकता है:

जहां g गुरुत्वाकर्षण का त्वरण है, और प्रत्येक भाग के भार हैं, और प्रत्येक खंड के केंद्र के स्थिर विक्षेपण (केवल गुरुत्वाकर्षण भार के अंतर्गत) हैं। सामान्यतया, यदि n 2 या अत्यधिक है, तो यह विधि पहली प्राकृतिक आवृत्ति को थोड़ा अत्यधिक अनुमानित करती है, आकलन के साथ उच्चतर n होता है। यदि n केवल 1 है, तो यह विधि पहली प्राकृतिक आवृत्ति को कम आंकती है, परन्तु समीकरण सरल हो जाता है:

जहाँ शाफ्ट का अधिकतम स्थिर विक्षेपण है। ये गति रेडियन/सेकेंड में हैं, परन्तु से गुणा करके इसे प्रति मिनट चक्र में बदला जा सकता है

कई प्रकार के समान अनुप्रस्थ परिच्छेद बीम के लिए स्थिर विक्षेपण पाया जा सकता है। यदि बीम में कई प्रकार के भार हैं, तो प्रत्येक के लिए विक्षेपण पाया जा सकता है, और फिर अभिव्यक्त किया जा सकता है। यदि शाफ्ट व्यास इसकी लंबाई के साथ बदलता है, तो विक्षेपण गणना अत्यधिक कठिन हो जाती है।

स्थैतिक विक्षेपण शाफ्ट और जड़त्वीय बलों की कठोरता के बीच संबंध को व्यक्त करता है; क्षैतिज रूप से रखे जाने पर इसमें शाफ्ट पर क्रियान्वित सभी भार सम्मिलित होते हैं।[1] चूँकि, संबंध मान्य है भले शाफ्ट का अभिविन्यास कुछ भी हो।

क्रांतिक चाल शाफ्ट के असंतुलित होने के परिमाण और स्थान, शाफ्ट की लंबाई, इसके व्यास और धारक आधार के प्रकार पर निर्भर करती है। कई व्यावहारिक अनुप्रयोग अच्छे अभ्यास के रूप में सुझाव देते हैं कि अधिकतम परिचालन गति क्रांतिक चाल के 75% से अत्यधिक नहीं होनी चाहिए; चूँकि, ऐसे कथन हैं जिनमें सही प्रकार से कार्य करने के लिए क्रांतिक चाल से ऊपर की गति की आवश्यकता होती है। ऐसे कथनों में, पहली प्राकृतिक आवृत्ति के माध्यम से शाफ्ट को तेजी से बढ़ाना महत्वपूर्ण होता है जिससे बड़े विक्षेपण विकसित न हों।

यह भी देखें

संदर्भ

  1. Technical Bulletin, [1] Archived 2017-07-12 at the Wayback Machine, Krueger. Retrieved on 18 June 2015.