गाऊसी समाकल (गॉसियन इंटीग्रल): Difference between revisions
No edit summary |
(→स्रोत) |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Integral of the Gaussian function, equal to sqrt(π)}} | {{Short description|Integral of the Gaussian function, equal to sqrt(π)}} | ||
{{hatnote|सांख्यिकी और भौतिकी के इस अभिन्न अंग को संख्यात्मक एकीकरण की एक विधि [[गाऊसी चतुर्भुज]] के साथ अस्पष्ट नहीं किया जाना चाहिए।}} | {{hatnote|सांख्यिकी और भौतिकी के इस अभिन्न अंग को संख्यात्मक एकीकरण की एक विधि [[गाऊसी चतुर्भुज]] के साथ अस्पष्ट नहीं किया जाना चाहिए।}} | ||
Line 9: | Line 8: | ||
[[अब्राहम डी मोइवरे]] ने मूल रूप से इस प्रकार के इंटीग्रल की खोज 1733 में की थी, जबकि गॉस ने स्पष्ट इंटीग्रल को 1809 में प्रकाशित किया था।<ref name="The Evolution of the Normal Distribution">{{cite web |url=https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf |title=सामान्य वितरण का विकास|work=MAA.org |first=Saul|last=Stahl|date=April 2006|access-date=May 25, 2018}}</ref> जिसे इंटीग्रल में अनुप्रयोगों की विस्तृत श्रृंखला है। उदाहरण के लिए इन चरों में थोड़े से परिवर्तन के साथ इसका उपयोग [[सामान्य वितरण]] के [[सामान्यीकरण स्थिरांक]] की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ समान अभिन्न अंग [[त्रुटि फ़ंक्शन|त्रुटि]] फलन और सामान्य वितरण के संचयी वितरण फलन दोनों से निकटता से संबंधित है। भौतिकी में इस प्रकार का अभिन्न अंग प्रायः दिखाई देता है, उदाहरण के लिए, [[क्वांटम यांत्रिकी]] में, हार्मोनिक ऑसिलेटर की जमीनी स्थिति की संभाव्यता घनत्व का पता लगाने के लिए इस इंटीग्रल का उपयोग पथ इंटीग्रल सूत्रीकरण में, हार्मोनिक ऑसिलेटर के प्रोपेगेटर को खोजने के लिए और [[सांख्यिकीय यांत्रिकी]] में, इसके [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)|विभाजन फलन (सांख्यिकीय यांत्रिकी)]] को खोजने के लिए भी किया जाता है। | [[अब्राहम डी मोइवरे]] ने मूल रूप से इस प्रकार के इंटीग्रल की खोज 1733 में की थी, जबकि गॉस ने स्पष्ट इंटीग्रल को 1809 में प्रकाशित किया था।<ref name="The Evolution of the Normal Distribution">{{cite web |url=https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/stahl96.pdf |title=सामान्य वितरण का विकास|work=MAA.org |first=Saul|last=Stahl|date=April 2006|access-date=May 25, 2018}}</ref> जिसे इंटीग्रल में अनुप्रयोगों की विस्तृत श्रृंखला है। उदाहरण के लिए इन चरों में थोड़े से परिवर्तन के साथ इसका उपयोग [[सामान्य वितरण]] के [[सामान्यीकरण स्थिरांक]] की गणना करने के लिए किया जाता है। परिमित सीमाओं के साथ समान अभिन्न अंग [[त्रुटि फ़ंक्शन|त्रुटि]] फलन और सामान्य वितरण के संचयी वितरण फलन दोनों से निकटता से संबंधित है। भौतिकी में इस प्रकार का अभिन्न अंग प्रायः दिखाई देता है, उदाहरण के लिए, [[क्वांटम यांत्रिकी]] में, हार्मोनिक ऑसिलेटर की जमीनी स्थिति की संभाव्यता घनत्व का पता लगाने के लिए इस इंटीग्रल का उपयोग पथ इंटीग्रल सूत्रीकरण में, हार्मोनिक ऑसिलेटर के प्रोपेगेटर को खोजने के लिए और [[सांख्यिकीय यांत्रिकी]] में, इसके [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)|विभाजन फलन (सांख्यिकीय यांत्रिकी)]] को खोजने के लिए भी किया जाता है। | ||
चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि [[जोखिम एल्गोरिथ्म|रिस्क एल्गोरिथ्म]] द्वारा सिद्ध किया जा सकता है,<ref>{{cite journal |first=G. W. |last=Cherry |title=Integration in Finite Terms with Special Functions: the Error Function |journal=Journal of Symbolic Computation |volume=1 |issue=3 |year=1985 |pages=283–302 |doi=10.1016/S0747-7171(85)80037-7 |doi-access=free }}</ref> गॉसियन इंटीग्रल को [[ बहुचरीय कलन |बहुचरीय कलन]] के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है | चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि [[जोखिम एल्गोरिथ्म|रिस्क एल्गोरिथ्म]] द्वारा सिद्ध किया जा सकता है,<ref>{{cite journal |first=G. W. |last=Cherry |title=Integration in Finite Terms with Special Functions: the Error Function |journal=Journal of Symbolic Computation |volume=1 |issue=3 |year=1985 |pages=283–302 |doi=10.1016/S0747-7171(85)80037-7 |doi-access=free }}</ref> गॉसियन इंटीग्रल को [[ बहुचरीय कलन |बहुचरीय कलन]] के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है<math display="block">\int e^{-x^2}\,dx,</math> | ||
<math display="block">\int e^{-x^2}\,dx,</math> | |||
किंतु निश्चित अभिन्न | किंतु निश्चित अभिन्न | ||
<math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx</math> | <math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx</math> | ||
Line 36: | Line 34: | ||
&= \pi \left(e^0 - e^{-\infty}\right) \\[6pt] | &= \pi \left(e^0 - e^{-\infty}\right) \\[6pt] | ||
&=\pi, | &=\pi, | ||
\end{align}</math>जहां {{mvar|r}} का कारक जैकोबियन निर्धारक है जो ध्रुवीय निर्देशांक में परिवर्तन के कारण प्रकट होता है ({{math|''r'' ''dr'' ''dθ''}} समतल पर मानक माप है, जिसे ध्रुवीय निर्देशांक विकीबुक्स: कैलकुलस/ध्रुवीय एकीकरण या सामान्यीकरण में व्यक्त किया गया है), और प्रतिस्थापन में {{math|1=''s'' = −''r''<sup>2</sup>}} लेना सम्मिलित है | \end{align}</math>जहां {{mvar|r}} का कारक जैकोबियन निर्धारक है जो ध्रुवीय निर्देशांक में परिवर्तन के कारण प्रकट होता है ({{math|''r'' ''dr'' ''dθ''}} समतल पर मानक माप है, जिसे ध्रुवीय निर्देशांक विकीबुक्स: कैलकुलस/ध्रुवीय एकीकरण या सामान्यीकरण में व्यक्त किया गया है), और प्रतिस्थापन में {{math|1=''s'' = −''r''<sup>2</sup>}} लेना सम्मिलित है इसलिए {{math|1=''ds'' = −2''r'' ''dr''}}इन उत्पत्ति का संयोजन | ||
<math display="block">\left ( \int_{-\infty}^\infty e^{-x^2}\,dx \right )^2=\pi,</math> | <math display="block">\left ( \int_{-\infty}^\infty e^{-x^2}\,dx \right )^2=\pi,</math> | ||
Line 44: | Line 42: | ||
====संपूर्ण प्रमाण==== | ====संपूर्ण प्रमाण==== | ||
अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से | अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से प्रारंभ करते हैं: | ||
<math display="block">I(a) = \int_{-a}^a e^{-x^2}dx.</math> | <math display="block">I(a) = \int_{-a}^a e^{-x^2}dx.</math> | ||
यदि अभिन्न | यदि अभिन्न | ||
Line 52: | Line 50: | ||
के साथ मेल खाएगा | के साथ मेल खाएगा | ||
<math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx.</math> | <math display="block">\int_{-\infty}^\infty e^{-x^2}\,dx.</math> | ||
यह देखने के लिए कि यह स्थिति | यह देखने के लिए कि यह स्थिति है, उस पर विचार करें | ||
<math display="block">\int_{-\infty}^\infty \left|e^{-x^2}\right| dx < \int_{-\infty}^{-1} -x e^{-x^2}\, dx + \int_{-1}^1 e^{-x^2}\, dx+ \int_{1}^{\infty} x e^{-x^2}\, dx < \infty .</math> | <math display="block">\int_{-\infty}^\infty \left|e^{-x^2}\right| dx < \int_{-\infty}^{-1} -x e^{-x^2}\, dx + \int_{-1}^1 e^{-x^2}\, dx+ \int_{1}^{\infty} x e^{-x^2}\, dx < \infty .</math> | ||
Line 188: | Line 186: | ||
भी, | भी, | ||
<math display="block">\int x_{k_1}\cdots x_{k_{2N}} \, \exp{\left( -\frac{1}{2} \sum\limits_{i,j=1}^{n}A_{ij} x_i x_j \right)} \, d^nx =\sqrt{\frac{(2\pi)^n}{\det A}} \, \frac{1}{2^N N!} \, \sum_{\sigma \in S_{2N}}(A^{-1})_{k_{\sigma(1)}k_{\sigma(2)}} \cdots (A^{-1})_{k_{\sigma(2N-1)}k_{\sigma(2N)}}</math> | <math display="block">\int x_{k_1}\cdots x_{k_{2N}} \, \exp{\left( -\frac{1}{2} \sum\limits_{i,j=1}^{n}A_{ij} x_i x_j \right)} \, d^nx =\sqrt{\frac{(2\pi)^n}{\det A}} \, \frac{1}{2^N N!} \, \sum_{\sigma \in S_{2N}}(A^{-1})_{k_{\sigma(1)}k_{\sigma(2)}} \cdots (A^{-1})_{k_{\sigma(2N-1)}k_{\sigma(2N)}}</math> | ||
जहां σ {{math|{1, …, 2''N''}<nowiki/>}} का क्रमपरिवर्तन है और दाईं ओर अतिरिक्त कारक | जहां σ {{math|{1, …, 2''N''}<nowiki/>}} का क्रमपरिवर्तन है और दाईं ओर अतिरिक्त कारक ''A''<sup>−1</sup> की N प्रतियों के {{math|{1, …, 2''N''}<nowiki/>}} के सभी संयोजन युग्मों का योग है।<ref name="Central identity explanation" /> | ||
वैकल्पिक रूप से,<ref name="Central identity explanation">{{cite web |title=बहुआयामी गाऊसी इंटीग्रल के लिए संदर्भ|date=March 30, 2012 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/126227 }}</ref> | वैकल्पिक रूप से,<ref name="Central identity explanation">{{cite web |title=बहुआयामी गाऊसी इंटीग्रल के लिए संदर्भ|date=March 30, 2012 |work=[[Stack Exchange]] |url=https://math.stackexchange.com/q/126227 }}</ref> | ||
Line 204: | Line 202: | ||
===एन-आयामी रैखिक पद के साथ=== | ===एन-आयामी रैखिक पद के साथ=== | ||
यदि A फिर से सममित सकारात्मक-निश्चित आव्यूह है, तो (यह मानते हुए कि सभी स्तम्भ सदिश | यदि A फिर से सममित सकारात्मक-निश्चित आव्यूह है, तो (यह मानते हुए कि सभी स्तम्भ सदिश हैं) | ||
<math display="block">\int \exp\left(-\frac{1}{2}\sum_{i,j=1}^{n}A_{ij} x_i x_j+\sum_{i=1}^{n}B_i x_i\right) d^n x | <math display="block">\int \exp\left(-\frac{1}{2}\sum_{i,j=1}^{n}A_{ij} x_i x_j+\sum_{i=1}^{n}B_i x_i\right) d^n x | ||
=\int e^{-\frac{1}{2}\vec{x}^\mathsf{T} \mathbf{A} \vec{x}+\vec{B}^\mathsf{T} \vec{x}} d^n x | =\int e^{-\frac{1}{2}\vec{x}^\mathsf{T} \mathbf{A} \vec{x}+\vec{B}^\mathsf{T} \vec{x}} d^n x | ||
Line 258: | Line 256: | ||
* {{MathWorld |title = Gaussian Integral |urlname = GaussianIntegral }} | * {{MathWorld |title = Gaussian Integral |urlname = GaussianIntegral }} | ||
* {{cite book |first=David |last=Griffiths |title=क्वांटम यांत्रिकी का परिचय|edition=2nd }} | * {{cite book |first=David |last=Griffiths |title=क्वांटम यांत्रिकी का परिचय|edition=2nd }} | ||
* {{cite book |last1=Abramowitz |first1=M. |last2=Stegun |first2=I. A. |title = गणितीय कार्यों की पुस्तिका|publisher=Dover Publications | * {{cite book |last1=Abramowitz |first1=M. |last2=Stegun |first2=I. A. |title = गणितीय कार्यों की पुस्तिका|publisher=Dover Publications | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with unsourced statements from August 2015]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 04/07/2023]] | [[Category:Created On 04/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 15:22, 30 August 2023
गॉसियन इंटीग्रल, जिसे यूलर-पॉइसन इंटीग्रल के रूप में भी जाना जाता है, संपूर्ण वास्तविक रेखा पर गॉसियन फलन का इंटीग्रल है। इंटीग्रल का नाम जर्मन गणितज्ञ कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है
चूँकि त्रुटि फलन के लिए कोई प्राथमिक फलन उपस्थित नहीं है, जैसा कि रिस्क एल्गोरिथ्म द्वारा सिद्ध किया जा सकता है,[2] गॉसियन इंटीग्रल को बहुचरीय कलन के विधि के माध्यम से विश्लेषणात्मक रूप से हल किया जा सकता है। अर्थात्, इसके लिए कोई प्रारंभिक अनिश्चित अभिन्न अंग नहीं है
गणना
ध्रुवीय निर्देशांक द्वारा
गॉसियन इंटीग्रल की गणना करने का मानक विधि, जिसका विचार पॉइसन से मिलता है,[3] उस संपत्ति का उपयोग करना है जो:
- एक ओर, कार्टेशियन समन्वय प्रणाली में दोहरे एकीकरण द्वारा, इसका अभिन्न अंग वर्ग है:
- दूसरी ओर, शेल एकीकरण (ध्रुवीय निर्देशांक में दोहरे एकीकरण का स्थिति ) द्वारा, इसके अभिन्न अंग की गणना की जाती है।
इन दोनों गणनाओं की तुलना करने से अभिन्न प्राप्त होता है, चूँकि इसमें सम्मिलित अनुचित अभिन्नों के बारे में ध्यान रखना चाहिए।
संपूर्ण प्रमाण
अनुचित दोहरे इंटीग्रल्स को सही ठहराने और दो अभिव्यक्तियों को बराबर करने के लिए, हम अनुमानित फलन से प्रारंभ करते हैं:
चूँकि सभी वास्तविक संख्याओं के लिए घातीय फलन 0 से अधिक है, तो इससे यह निष्कर्ष निकलता है कि वर्ग के परिवृत्त पर लिया गया समाकलन से कम होना चाहिए, और इसी प्रकार वर्ग के परिवृत्त पर लिया गया समाकलन इससे अधिक होना चाहिए कार्टेशियन निर्देशांक से ध्रुवीय निर्देशांक पर स्विच करके दो डिस्क पर इंटीग्रल की गणना आसानी से की जा सकती है:
एकीकरण,
कार्तीय निर्देशांक द्वारा
एक अलग तकनीक, जो लाप्लास (1812) से चली आ रही है,[3] निम्नलिखित है। होने देना
लाप्लास की विधि से
लाप्लास सन्निकटन में, हम टेलर विस्तार में केवल दूसरे क्रम की नियमो से निपटते हैं, इसलिए हम विचार करते हैं
.
वास्तव में, तब से सभी के लिए , हमारे पास स्पष्ट सीमाएँ हैं:
आयतन विधि
मान लीजिए, सकारात्मक स्थिरांक के लिए,
गामा फलन से संबंध
इंटीग्रैंड सम कार्य है,
सामान्यीकरण
गाऊसी फलन का अभिन्न अंग
एक इच्छानुसार गाऊसी फलन का अभिन्न अंग है
एन-आयामी और कार्यात्मक सामान्यीकरण
मान लीजिए A सममित सकारात्मक-निश्चित है (इसलिए उलटा) n × n परिशुद्धता आव्यूह , जो सहप्रसरण आव्यूह का व्युत्क्रम आव्यूह है। तब,
भी,
वैकल्पिक रूप से,[4]
जबकि कार्यात्मक इंटीग्रल्स की कोई कठोर परिभाषा नहीं है (या अधिकत्तर स्थिति में गैर-कठोर कम्प्यूटेशनल भी), हम परिमित-आयामी स्थिति के अनुरूप गाऊसी कार्यात्मक इंटीग्रल को परिभाषित कर सकते हैं। चूँकि, अभी भी समस्या है कि अनंत है और साथ ही, कार्यात्मक निर्धारक भी सामान्य रूप से अनंत होगा। यदि हम केवल अनुपातों पर विचार करें तो इसका ध्यान रखा जा सकता है:
डेविट अंकन में, समीकरण परिमित-आयामी स्थिति के समान दिखता है।
एन-आयामी रैखिक पद के साथ
यदि A फिर से सममित सकारात्मक-निश्चित आव्यूह है, तो (यह मानते हुए कि सभी स्तम्भ सदिश हैं)
समान रूप के समाकलन
जहाँ धनात्मक पूर्णांक है और दोहरे भाज्य को दर्शाता है।इन्हें प्राप्त करने का आसान विधि लाइबनिज इंटीग्रल नियम या निश्चित इंटीग्रल्स का मूल्यांकन करना है।
कोई भी इसे हल करने के लिए भागों द्वारा एकीकृत कर सकता है और पुनरावृत्ति संबंध खोज सकता है।उच्च-क्रम बहुपद
आधार के रैखिक परिवर्तन को प्रयुक्त करने से पता चलता है कि n चर में सजातीय बहुपद के घातांक का अभिन्न अंग केवल SL(n)|SL(n)-बहुपद के अपरिवर्तनीय पर निर्भर हो सकता है। ऐसा ही अपरिवर्तनीय है विभेदक, जिसके शून्य अभिन्न की विलक्षणताओं को चिह्नित करते हैं। चूँकि, अभिन्न अंग अन्य अपरिवर्तनीयों पर भी निर्भर हो सकता है।[5]
अन्य सम बहुपदों के घातांक को श्रृंखला का उपयोग करके संख्यात्मक रूप से हल किया जा सकता है। जब कोई अभिसरण न हो तो इन्हें औपचारिक गणना के रूप में समझा जा सकता है। उदाहरण के लिए, चतुर्थक बहुपद के घातांक के समाकलन का हल है[citation needed]
n + p = 0}0 मॉड 2 की आवश्यकता इसलिए है क्योंकि −∞ से 0 तक का अभिन्न अंग प्रत्येक पद पर (−1)n+p/2 का कारक योगदान देता है, जबकि 0 से +∞ तक का अभिन्न अंग 1/2 के कारक का योगदान देता है। प्रत्येक पद के लिए. ये अभिन्न अंग क्वांटम क्षेत्र सिद्धांत जैसे विषयों में सामने आते हैं।यह भी देखें
- गाऊसी कार्यों के अभिन्नों की सूची
- क्वांटम क्षेत्र सिद्धांत में सामान्य अभिन्न अंग
- सामान्य वितरण
- घातांकीय फलनों के अभिन्नों की सूची
- त्रुटि फ़ंक्शन
- बेरेज़िन अभिन्न
संदर्भ
उद्धरण
- ↑ Stahl, Saul (April 2006). "सामान्य वितरण का विकास" (PDF). MAA.org. Retrieved May 25, 2018.
- ↑ Cherry, G. W. (1985). "Integration in Finite Terms with Special Functions: the Error Function". Journal of Symbolic Computation. 1 (3): 283–302. doi:10.1016/S0747-7171(85)80037-7.
- ↑ 3.0 3.1 "संभाव्यता अभिन्न" (PDF).
- ↑ 4.0 4.1 "बहुआयामी गाऊसी इंटीग्रल के लिए संदर्भ". Stack Exchange. March 30, 2012.
- ↑ Morozov, A.; Shakirove, Sh. (2009). "अभिन्न विभेदकों का परिचय". Journal of High Energy Physics. 2009 (12): 002. arXiv:0903.2595. Bibcode:2009JHEP...12..002M. doi:10.1088/1126-6708/2009/12/002.
स्रोत
- Weisstein, Eric W. "Gaussian Integral". MathWorld.
- Griffiths, David. क्वांटम यांत्रिकी का परिचय (2nd ed.).
- {{cite book |last1=Abramowitz |first1=M. |last2=Stegun |first2=I. A. |title = गणितीय कार्यों की पुस्तिका|publisher=Dover Publications