स्व-उत्प्रेरक समूह: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
'''स्व-उत्प्रेरक समूह''' कई इकाइयों का एक संग्रह है, जिनमें से प्रत्येक को समूह के भीतर अन्य इकाइयों द्वारा उत्प्रेरक रूप से बनाया जा सकता है जैसे कि समग्र रूप से उत्प्रेरक समूह अपने स्वयं के उत्पादन को उत्प्रेरित करने में सक्षम होते है। सामान्यतः इस प्रकार के समूहों को [[कटैलिसीस|उत्प्रेरक समूह]] कहा जाता है। स्व-उत्प्रेरक समूह प्रायः [[आणविक इकाई]] के संदर्भ में परिभाषित किए गए थे, लेकिन वर्तमान में इन्हें समाजशास्त्र, सामाजिक विज्ञान और [[अर्थशास्त्र]] में प्रणालियों के अध्ययन के लिए विस्तारित किया गया है। | |||
'''स्व-उत्प्रेरक समूह''' | |||
स्व-उत्प्रेरक समूहों में | स्व-उत्प्रेरक समूहों में स्वयं को पुनर्निर्मित करने की क्षमता होती है यदि वे दो भौतिक रूप से अलग स्थानों में विभाजित हो जाते हैं। सामान्यतः कंप्यूटर मॉडल बताते हैं कि विभाजित स्व-उत्प्रेरक समूह, कोशिकीय माइटोसिस की तरह, प्रत्येक मूल समूह की सभी प्रतिक्रियाओं को पुन: उत्पन्न करते है। वास्तव में [[ऑटोकैटलिसिस|रासायनिक प्रतिक्रिया]] के सिद्धांतों का उपयोग करके एक छोटा मेटाबोलिज्म बहुत कम उच्च स्तरीय संगठन के साथ स्वयं को दोहरा सकता है। यही कारण है कि रासायनिक प्रतिक्रियाए जटिल विकास के लिए मूलभूत तंत्र के रूप में स्व-उत्प्रेरित होती है। | ||
वॉटसन और [[फ्रांसिस क्रिक]] से पहले | वॉटसन और [[फ्रांसिस क्रिक]] से पहले जीवविज्ञानियों ने सिद्धांत के रूप में मेटाबोलिज्म के कार्य करने के तरीके को स्व-उत्प्रेरक समूह माना था। अर्थात एक प्रोटीन दूसरे प्रोटीन को संश्लेषित करने में सहायता करती है और इसी प्रकार हेलिक्स की खोज के बाद [[आणविक जीव विज्ञान की केंद्रीय हठधर्मिता|आणविक जीव विज्ञान के मूल सिद्धांत]] को प्रस्तुत किया गया था जो [[डीएनए]] को आरएनए में परिवर्तित करता है और [[प्रोटीन]] में अनुवादित होता है। डीएनए और आरएनए की आणविक संरचना एक साथ ही उनके प्रजनन को बनाए रखने वाला मेटाबोलिज्म इतना जटिल माना जाता है कि रसायन विज्ञान के एक विलयन में स्वतः उत्पन्न हो सकता है। | ||
[[जीवन की उत्पत्ति]] के कई मॉडल इस धारणा पर आधारित हैं कि जीवन एक प्रारंभिक आणविक स्व-उत्प्रेरक समूह के विकास के माध्यम से उत्पन्न हुआ | [[जीवन की उत्पत्ति]] के कई मॉडल इस धारणा पर आधारित हैं कि जीवन एक प्रारंभिक आणविक स्व-उत्प्रेरक समूह के विकास के माध्यम से उत्पन्न हुआ है जो समय के साथ विकसित होता है। इनमें से अधिकांश मॉडल जो जटिल प्रणालियों के अध्ययन से विकसित हैं उनका पूर्वानुमान यह है कि जीवन किसी विशेष गुण (जैसे स्व-प्रतिकृति [[आरएनए वर्ल्ड|आरएनए]]) वाले अणु से नहीं बल्कि एक स्व-उत्प्रेरक समूह से उत्पन्न हुआ है। इसका पहला अनुभवजन्य समर्थन लिंकन और जॉयस से आया, जिन्होंने स्व-उत्प्रेरक समूह प्राप्त किए जिसमें "दो आरएनए एंजाइम कुल चार तत्वो से एक दूसरे के संश्लेषण को उत्प्रेरित करते हैं।"<ref>{{cite journal | author = Lincoln TA, Joyce GF | title = आरएनए एंजाइम की स्व-निरंतर प्रतिकृति| journal = Science | volume = 323 | issue = 5918 | pages = 1229–32 |date=February 2009 | pmid = 19131595 | pmc = 2652413 | doi = 10.1126/science.1167856 | bibcode = 2009Sci...323.1229L }}</ref> इसके अतिरिक्त एक विकासवादी प्रक्रिया है जो इनकी जनसंख्या के साथ प्रारम्भ हुई है या स्व-उत्प्रेरक समूहों के [[आनुवंशिक पुनर्संयोजन]] की विकासवादी प्रक्रिया से प्राप्त हुई है। | ||
आधुनिक जीवन में | आधुनिक जीवन में स्व-उत्प्रेरक समूहों के कई लक्षण होते हैं क्योंकि कोई भी विशेष अणु या अणुओं का कोई भी वर्ग स्वयं को दोहराने में सक्षम नहीं होता है। [[स्टुअर्ट कॉफ़मैन]] समूह पर आधारित कई मॉडल हैं, जिनमें स्टुअर्ट कॉफ़मैन मॉडल और अन्य मॉडल सम्मिलित हैं।<ref>Kauffman, Stuart A. (2008) ''Reinventing the Sacred: A New View of Science, Reason, and Religion''. [Basic Books], {{ISBN|0-465-00300-1}}, chapter 5, especially pp. 59–71</ref> | ||
==औपचारिक परिभाषा== | ==औपचारिक परिभाषा== | ||
Line 14: | Line 13: | ||
===परिभाषा=== | ===परिभाषा=== | ||
[[अणु]]ओं के एक समूह M को देखते हुए, [[रासायनिक प्रतिक्रिया|रासायनिक प्रतिक्रियाओं]] को | [[अणु]]ओं के एक समूह M को देखते हुए, [[रासायनिक प्रतिक्रिया|रासायनिक प्रतिक्रियाओं]] को सामान्यतः M के उपसमूह r = (A, B) के रूप में परिभाषित किया जा सकता है: <ref>{{cite journal | author = Hordijk W | title = Autocatalytic Sets: From the Origin of Life to the Economy | journal = BioScience | volume = 63 | issue = 11 | pages = 877–881| year = 2013 | doi = 10.1525/bio.2013.63.11.6 | doi-access = free }}</ref> | ||
a<sub>1</sub> + a<sub>2</sub> + ... + a<sub>k</sub> → b<sub>1</sub> + b<sub>2</sub> + ... + b<sub>k</sub> | a<sub>1</sub> + a<sub>2</sub> + ... + a<sub>k</sub> → b<sub>1</sub> + b<sub>2</sub> + ... + b<sub>k</sub> | ||
माना R | माना R अनुमानित प्रतिक्रियाओं का समूह है और युग्म (M, R) प्रतिक्रिया प्रणाली (RS) है। मान लीजिए C एक अणु-प्रतिक्रिया युग्मों का समूह है जो निर्दिष्ट करता है कि कौन से अणु कौन सी प्रतिक्रियाओं को उत्प्रेरित कर सकते हैं: | ||
मान लीजिए C अणु-प्रतिक्रिया युग्मों का समूह है जो निर्दिष्ट करता है कि कौन से अणु कौन सी प्रतिक्रियाओं को उत्प्रेरित कर सकते हैं: | |||
C = {(m, r) | m ∈ M, r ∈ R} | C = {(m, r) | m ∈ M, r ∈ R} | ||
माना कि F ⊆ M [[अणु]]ओं का एक समूह है जो पर्यावरण से स्वतंत्र रूप से उपलब्ध अणुओं की छोटी संख्या और R' ⊆ R प्रतिक्रियाओं का कुछ उपसमूह है। हम प्रतिक्रियाओं के इस उपसमूह के सापेक्ष [[अणु]]ओं के समूह को Cl<sub>R'</sub>(F) के रूप मे परिभाषित करते हैं, जिसमें [[अणु]]ओं समूह और सभी अणु सम्मिलित होते हैं जिन्हें अणु समूह से प्रारम्भ किया जा सकता है और प्रतिक्रियाओं के इस उपसमूह से केवल प्रतिक्रियाओं का उपयोग किया जा सकता है। औपचारिक रूप से Cl<sub>R'</sub>(F) का एक न्यूनतम उपसमूह जैसे कि F ⊆ Cl<sub>R'</sub>(F) और प्रत्येक प्रतिक्रिया r'(A, B) ⊆ R' है: | |||
A ⊆ Cl<sub>R'</sub>(F) ⇒ B ⊆ Cl<sub>R'</sub>(F) | A ⊆ Cl<sub>R'</sub>(F) ⇒ B ⊆ Cl<sub>R'</sub>(F) | ||
एक प्रतिक्रिया प्रणाली (ClR'(F), R') | एक प्रतिक्रिया प्रणाली (ClR'(F), R') स्व-उत्प्रेरक है यदि और केवल यदि प्रत्येक प्रतिक्रिया r'(A, B) ⊆ R' के लिए प्रायः है: | ||
# | # अणु c ⊆ClR'(F) इस प्रकार सम्मिलित है कि (c, r') ⊆ C, | ||
#A ⊆ Cl<sub>R'</sub>(F). | #A ⊆ Cl<sub>R'</sub>(F). | ||
===उदाहरण=== | ===उदाहरण=== | ||
मान लीजिए M = {a, b, c, d, f, g} और F = {a, b} | मान लीजिए M = {a, b, c, d, f, g} और F = {a, b} है तब माना कि समूह R में निम्नलिखित प्रतिक्रियाएँ हो सकती हैं: | ||
a + b | a + b → c + d, catalyzed by g | ||
a + f | a + f → c + b, catalyzed by d | ||
c + b | c + b → g + a, catalyzed by d or f | ||
F = {a, b} से हम {c, d} उत्पन्न कर सकते हैं और | तब F = {a, b} से हम {c, d} को उत्पन्न कर सकते हैं और {c, b} से {g, a} को उत्पन्न कर सकते हैं। इसलिए समूह निम्न अभिक्रिया के बराबर है: | ||
Cl<sub>R'</sub>(F) = {a, b, c, d, g} | Cl<sub>R'</sub>(F) = {a, b, c, d, g} | ||
परिभाषा के अनुसार अधिकतम स्व-उत्प्रेरक उपसमूह R' में दो प्रतिक्रियाएँ सम्मिलित | परिभाषा के अनुसार अधिकतम स्व-उत्प्रेरक उपसमूह R' में दो प्रतिक्रियाएँ सम्मिलित हो सकती है: | ||
a + b | a + b → c + d, catalyzed by g | ||
c + b | c + b → g + a, catalyzed by d | ||
( | उत्प्रेरक (a + f) प्रतिक्रिया R' से संबंधित नहीं है क्योंकि f उत्प्रेरक से संबंधित नहीं है। इसी प्रकार स्व-उत्प्रेरक समूह में (c + b) के लिए प्रतिक्रिया केवल d द्वारा उत्प्रेरित की जा सकती है, f द्वारा उत्प्रेरित नहीं की जा सकती है। | ||
== | ==यादृच्छिक समूह स्व-उत्प्रेरक संभावना== | ||
उपरोक्त मॉडल के अध्ययन से पता चलता है कि यादृच्छिक | उपरोक्त मॉडल के अध्ययन से पता चलता है कि यादृच्छिक समूह कुछ मान्यताओं के अंतर्गत उच्च संभावना के साथ स्व-उत्प्रेरित हो सकता है। इसका तथ्य यह है कि अणुओं की बढ़ती संख्या के साथ, यदि अणु एक क्रम में बढ़ते हैं, तो संभावित प्रतिक्रियाओं और उत्प्रेरकों की संख्या और भी बढ़ जाती है, जिससे RS के एक भाग को स्व-उत्प्रेरक बनाने के लिए स्टोकेस्टिक रूप से पर्याप्त प्रतिक्रियाएं और उत्प्रेरक उत्पन्न होते हैं।<ref>{{cite journal | author = Mossel E, Steel M. | title = यादृच्छिक जैव रासायनिक नेटवर्क और आत्मनिर्भर ऑटोकैटलिसिस की संभावना| journal = Journal of Theoretical Biology | volume = 233 | issue = 3 | pages = 327–336 | year = 2005 | pmid = 15652142| doi = 10.1016/j.jtbi.2004.10.011| bibcode = 2005JThBi.233..327M | citeseerx = 10.1.1.133.9352 }}</ref> एक स्व-उत्प्रेरक समूह इसी कारण से अणुओं की बढ़ती संख्या के साथ अपेक्षाकृत तीव्र अभिक्रिया करता है। ये सैद्धांतिक परिणाम जीवन की प्रारंभिक उत्पत्ति की वैज्ञानिक व्याख्या के लिए स्व-उत्प्रेरक समूह को आकर्षक बनाते हैं। | ||
==औपचारिक सीमाएँ== | ==औपचारिक सीमाएँ== | ||
औपचारिक रूप से | औपचारिक रूप से अणुओं को अव्यवस्थित इकाइयों के अतिरिक्त कुछ भी मानना जटिल है, क्योंकि संभावित प्रतिक्रियाओं (और अणुओं) का समूह अनंत हो सकता है। इसलिए डीएनए, आरएनए या प्रोटीन को मॉडल करने के लिए अपेक्षाकृत आवश्यक [[ पॉलीमर |बहुलक]] की व्युत्पत्ति अभी तक संभव नहीं है। आधुनिक आरएनए के अध्ययन भी इसी समस्या से ग्रस्त हैं। | ||
==भाषा संबंधी दृष्टिकोण== | |||
उपरोक्त परिभाषा के विपरीत जो कृत्रिम रसायन विज्ञान के क्षेत्र पर प्रयुक्त होती है, स्व-उत्प्रेरक समूह की कोई सर्वसम्मत धारणा वर्तमान मे सम्मिलित नहीं है। जबकि ऊपर उत्प्रेरक की धारणा माध्यमिक है, जहां संपूर्ण समूह को अपने उत्पादन को उत्प्रेरित करना होता है। यह अन्य परिभाषाओं में प्राथमिक है जो "स्व-उत्प्रेरक समूह" शब्द को अपेक्षाकृत अलग महत्व देता है। जहां प्रत्येक प्रतिक्रिया (या कार्य, परिवर्तन) की मध्यस्थता एक उत्प्रेरक द्वारा प्रदर्शित होती है। जिसके परिणामस्वरूप संबंधित प्रतिक्रिया की मध्यस्थता करते समय प्रत्येक उत्प्रेरक अपनी प्रतिक्रिया को भी दर्शाता है, जिससे स्व-निरूपण प्रणाली बनती है, जो दो कारणों से उत्प्रेरित होती है। सबसे पहले वास्तविक मेटाबोलिज्म इस तरीके से संरचित होता है। दूसरा स्व-निरूपण प्रणालियों को स्व-वर्णन प्रणालियों की दिशा में एक मध्यवर्ती माना जा सकता है। संरचनात्मक और प्राकृतिक ऐतिहासिक दृष्टिकोण दोनों से कोई भी एसीएस प्रतिक्रिया को औपचारिक परिभाषा में मूल अवधारणा के रूप में पहचान सकता है, जबकि दूसरी प्रणाली का प्रतिबिंब पहले से ही एक स्पष्ट प्रस्तुति में लाया जाता है, क्योंकि उत्प्रेरक उनके द्वारा प्रेरित प्रतिक्रिया का प्रतिनिधित्व करते हैं। एसीएस साहित्य में दोनों अवधारणाएं सम्मिलित होती हैं, लेकिन दोनों अवधारणाओ को अलग-अलग महत्व दिया गया है। | |||
दूसरी ओर से वर्गीकरण को पूरा करने के लिए सामान्यीकृत स्व-पुनरुत्पादन प्रणालियाँ स्व-उत्प्रेरक समूहों से आगे बढ़ती हैं। जो किसी भी अव्यवस्थित इकाइयों को अब परिवर्तन नहीं करतीं है। औपचारिक रूप से एक सामान्यीकृत स्व-पुनरुत्पादन प्रणाली में दो तत्व u और c सम्मिलित हैं, साथ में उनके विवरण Desc(u) और Desc(c) निम्नलिखित परिभाषा के साथ उत्पन्न होते हैं: | |||
किसी भी विवरण | u: Desc(X) -> X | ||
c: Desc(X) -> Desc(X) | |||
जहां 'u' "यूनिवर्सल (सार्वभौमिक)" तत्व है, जो उपयुक्त विवरण से अपने डोमेन में एक समूह को निर्मित करता है जबकि 'c' किसी भी विवरण के लिए एक प्रारूपित तत्व है। सामान्यतः 'u' और 'c' कई उपसमूह या उत्प्रेरकों में विभाजित हो सकते हैं। | |||
ध्यान दें कि प्रारूपित तत्व 'c' आवश्यक है क्योंकि यद्यपि यूनिवर्सल तत्व u किसी भी विवरण का निर्माण करने में सक्षम हो सकता है। साथ ही वह विवरण जिस पर आधारित होगा, वह सामान्यतः परिणाम से अधिक लंबा होता है, जिससे पूर्ण स्व-उत्प्रेरण असंभव हो जाता है। | |||
इस अंतिम अवधारणा को स्व-पुनरुत्पादन ऑटोमेटा पर [[जॉन वॉन न्यूमैन]] के कार्य के लिए उत्तरदाई माना जा सकता है, जहां वह हस्तक्षेप से बचने के लिए किसी भी गैर-तुच्छ (सामान्यीकृत) स्व-पुनरुत्पादन प्रणाली के लिए आवश्यक विवरण रखता है। वॉन न्यूमैन ने मॉडल रसायन विज्ञान के लिए भी ऐसी प्रणाली को डिजाइन करने की योजना बनाई है। | |||
स्व-उत्प्रेरक समूह | ==गैर-ऑटोनोमस स्व-उत्प्रेरक समूह== | ||
संभवतः | स्व-उत्प्रेरक समूह पर लगभग सभी लेख इस विषय को छोड़ देते हैं कि समूह को ऑटोनोमस माना जा सकता है या नहीं माना जा सकता है। प्रायः समूह को ऑटोनोमस मान लिया जाता है। संभवतः उपरोक्त संदर्भ में ऑटोनोमस प्रतिकृति और जीवन की प्रारंभिक उत्पत्ति पर महत्व दिया गया है। लेकिन स्व-उत्प्रेरक समूह की अवधारणा वास्तव में अधिक सामान्य है और विभिन्न तकनीकी क्षेत्रों में व्यावहारिक उपयोग में है, जैसे जहां ऑटोनोमस उपकरण श्रृंखलाओं को प्रयुक्त किया जाता है। स्पष्ट रूप से ऐसे समूह ऑटोनोमस नहीं हैं ये प्रायः मानव अभिकरण की वस्तुएं हैं। | ||
गैर- | गैर-ऑटोनोमस स्व-उत्प्रेरक समूहों के व्यावहारिक महत्व के उदाहरण पाए जा सकते हैं। जहां कंपाइलर निर्माण के क्षेत्र में और ऑपरेटिंग सिस्टम में संबंधित निर्माणों की स्व-संदर्भित प्रकृति को प्रायः बूटस्ट्रैपिंग के रूप में स्पष्ट रूप से चर्चा की जाती है। | ||
==जीवन के अन्य सिद्धांतों से तुलना== | ==जीवन के अन्य सिद्धांतों से तुलना== | ||
स्व-उत्प्रेरक समूह जीवन के कई | स्व-उत्प्रेरक समूह जीवन के कई सम्मिलित सिद्धांतों में से एक है, जिसमें टिबोर गैंटी का [[केमोटन]], [[मैनफ्रेड ओन]] और [[पीटर शूस्टर]] का [[हाइपरसाइकिल (रसायन विज्ञान)]],<ref>{{cite journal | doi= 10.11007/bf00450633|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle| journal= Naturwissenschaften|volume = 64|issue = 11|pages = 541–565}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. B: the abstract hypercycle| journal= Naturwissenschaften|volume = 65|issue = 1 |pages = 7–41}}</ref><ref>{{cite journal | doi= 10.1007/bf00420631|last1 = Eigen |first1 = M| last2 = Schuster |first2 =P | title = The hypercycle: a principle of natural self-organization. C: the realistic hypercycle| journal= Naturwissenschaften|volume = 65|issue = 7 |pages = 41–369}}</ref> [[रॉबर्ट रोसेन (सैद्धांतिक जीवविज्ञानी)]] और ऑटोपोइज़िस (या आत्म-निर्माण),<ref>{{cite book| last1 = Schrödinger| first1 = Erwin|title = What is Life? |publisher = Cambridge University Press|date = 1944}}</ref> [[हम्बर्टो मटुराना]] और [[फ़्रांसिस्को वेरेला]] के सिद्धान्त सम्मिलित हैं।<ref>{{cite journal | doi= 10.1007/BF02477890 |last1 = Rosen | first1 = R.| date = 1958 |journal = Bull. Math. Biophys.| volume = 20|issue= 4|pages = 317–341|title = The representation of biological systems from the standpoint of the theory of categories}}</ref><ref>{{cite book| last1 = Rosen | first1 = R.| date = 1991| title = Life Itself: a comprehensive inquiry into the nature, origin, and fabrication of life| publisher = Columbia University Press| place= New York}}</ref> इन सभी स्व-उत्प्रेरक समूहों को उनकी मूल प्रेरणा इरविन श्रोडिंगर की पुस्तक व्हाट्स इज़ लाइफ में प्राप्त हुई है।<ref>{{cite book| last1=Maturana |first1 = H. R.|last2 =Varela|first2 = F. |title = Autopoiesis and cognition: the realisation of the living|date=1980|publisher= D. Reidel Publishing Company| place = Dordrecht}}</ref> लेकिन पहली बार में उनमें एक-दूसरे के साथ बहुत कम समानता दिखाई देती है, क्योंकि लेखकों ने एक-दूसरे के साथ संवाद नहीं किया है और उनमे से किसी ने भी किसी ने अपने प्रमुख प्रकाशनों में किसी अन्य सिद्धांत का कोई संदर्भ दिया है। लेकिन प्रकाशन में जितनी समानताएँ स्पष्ट हो सकती हैं, उससे कहीं अधिक समानताओ मे उदाहरण के लिए गंती और रोसेन के बीच वर्तमान तक विभिन्न सिद्धांतों की तुलना करने और उन पर एक साथ चर्चा करने का लगभग कोई प्रयास नहीं हुआ है।<ref>{{cite journal | doi= 10.1016/j.jtbi.2015.05.015|title = Tibor Gánti and Robert Rosen: contrasting approaches to the same problem|last1 =Cornish-Bowden | first1 =A.|journal= J. Theor. Biol. |volume = 381|pages = 6–10|date=2015}}</ref><ref>{{cite journal | doi= 10.1016/j.jtbi.2011.06.033 |title= From ''L’Homme Machine'' to metabolic closure: steps towards understanding life|last1 = Letelier|first1 = J C|last2=Cárdenas |first2 =M L|last3=Cornish-Bowden|first3 =A |journal=J. Theor. Biol. | date = 2011 | volume= 286|issue= 1 | pages= 100–113}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2014.03.002| title=जैविक विकास में समय का पुनर्मूल्यांकन और पैटर्न का निर्माण| journal =BioSystems|volume=123 |pages= 19–26|date= 2014|last=Igamberdiev|first=A.U.}}</ref><ref>{{cite journal | doi= 10.1016/j.biosystems.2019.104063 | ||
|last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A|title =Contrasting theories of life: historical context, current theories. In search of an ideal theory|journal=BioSystems|volume =188|pages=104063|date=2020 | |last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A|title =Contrasting theories of life: historical context, current theories. In search of an ideal theory|journal=BioSystems|volume =188|pages=104063|date=2020}}</ref> | ||
==अंतिम सार्वभौमिक सामान्य पूर्वज ( | ==अंतिम सार्वभौमिक सामान्य पूर्वज (एलयूसीए)== | ||
कुछ लेखक जीवन की उत्पत्ति के मॉडल की तुलना सभी | कुछ लेखक जीवन की उत्पत्ति के मॉडल की तुलना सभी सम्मिलित जीवन के एलयूसीए से करते हैं।<ref>{{cite journal | pmid=34575021 | doi= 10.3390/life11090872 |pmc=8467930 | title = The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis| last1 =Jheeta | first1 =S.| last2 = Chatzitheodoridis| first2 =E. | last3 = Devine| first3 =Kevin| last4 = Block| first4 = J.|journal = Life |date =2021| volume = 11|issue = 9 |pages = 872 | ||
}}</ref> यह पहचानने में विफलता के कारण हुई एक गंभीर त्रुटि है | }}</ref> यह पहचानने में विफलता के कारण हुई एक गंभीर त्रुटि है जहां (L) अंतिम सामान्य पूर्वजों को संदर्भित करता है, न कि पहले पूर्वजों को जो कि अत्यधिक पुराने है जिनका एलयूसीए की उपस्थिति से पहले बड़ी मात्रा में विकास हुआ था।<ref>{{cite journal | doi= 10.1016/j.jtbi.2017.05.023 | title = लुका से पहले का जीवन|last2=Cárdenas |first2 =M L|last1=Cornish-Bowden|first1 =A| journal = J. Theor. Biol. | volume = 434 | pages=68–74}}</ref> | ||
गिल और फोर्टेरे ने | गिल और फोर्टेरे ने इस विषय को इस प्रकार व्यक्त किया है:<ref>{{cite journal | doi= 10.1017/S1473550415000282 |title = Origin of life: LUCA and extracellular membrane vesicles (EMVs)|journal= Int. J. Astrobiol.|last1 = Gill| first1 =S. |last2 = Forterre| first2 =P. |volume =15| | ||
issue= 1 |pages=7-15| date = 2016}}</ref> | issue= 1 |pages=7-15| date = 2016}}</ref> | ||
"एलयूसीए को पहली कोशिका के साथ भ्रमित नहीं किया जाना चाहिए, क्योकि यह विकास के अधिक लंबे समय का उत्पाद था। जहां "अंतिम" होने का अर्थ है कि एलयूसीए से पहले पुराने "पूर्वजों" का एक लंबा उत्तराधिकार था।" | |||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Created On 19/07/2023]] | [[Category:Created On 19/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कृत्रिम जीवन]] | |||
[[Category:जीवन की उत्पत्ति]] |
Latest revision as of 15:25, 30 August 2023
स्व-उत्प्रेरक समूह कई इकाइयों का एक संग्रह है, जिनमें से प्रत्येक को समूह के भीतर अन्य इकाइयों द्वारा उत्प्रेरक रूप से बनाया जा सकता है जैसे कि समग्र रूप से उत्प्रेरक समूह अपने स्वयं के उत्पादन को उत्प्रेरित करने में सक्षम होते है। सामान्यतः इस प्रकार के समूहों को उत्प्रेरक समूह कहा जाता है। स्व-उत्प्रेरक समूह प्रायः आणविक इकाई के संदर्भ में परिभाषित किए गए थे, लेकिन वर्तमान में इन्हें समाजशास्त्र, सामाजिक विज्ञान और अर्थशास्त्र में प्रणालियों के अध्ययन के लिए विस्तारित किया गया है।
स्व-उत्प्रेरक समूहों में स्वयं को पुनर्निर्मित करने की क्षमता होती है यदि वे दो भौतिक रूप से अलग स्थानों में विभाजित हो जाते हैं। सामान्यतः कंप्यूटर मॉडल बताते हैं कि विभाजित स्व-उत्प्रेरक समूह, कोशिकीय माइटोसिस की तरह, प्रत्येक मूल समूह की सभी प्रतिक्रियाओं को पुन: उत्पन्न करते है। वास्तव में रासायनिक प्रतिक्रिया के सिद्धांतों का उपयोग करके एक छोटा मेटाबोलिज्म बहुत कम उच्च स्तरीय संगठन के साथ स्वयं को दोहरा सकता है। यही कारण है कि रासायनिक प्रतिक्रियाए जटिल विकास के लिए मूलभूत तंत्र के रूप में स्व-उत्प्रेरित होती है।
वॉटसन और फ्रांसिस क्रिक से पहले जीवविज्ञानियों ने सिद्धांत के रूप में मेटाबोलिज्म के कार्य करने के तरीके को स्व-उत्प्रेरक समूह माना था। अर्थात एक प्रोटीन दूसरे प्रोटीन को संश्लेषित करने में सहायता करती है और इसी प्रकार हेलिक्स की खोज के बाद आणविक जीव विज्ञान के मूल सिद्धांत को प्रस्तुत किया गया था जो डीएनए को आरएनए में परिवर्तित करता है और प्रोटीन में अनुवादित होता है। डीएनए और आरएनए की आणविक संरचना एक साथ ही उनके प्रजनन को बनाए रखने वाला मेटाबोलिज्म इतना जटिल माना जाता है कि रसायन विज्ञान के एक विलयन में स्वतः उत्पन्न हो सकता है।
जीवन की उत्पत्ति के कई मॉडल इस धारणा पर आधारित हैं कि जीवन एक प्रारंभिक आणविक स्व-उत्प्रेरक समूह के विकास के माध्यम से उत्पन्न हुआ है जो समय के साथ विकसित होता है। इनमें से अधिकांश मॉडल जो जटिल प्रणालियों के अध्ययन से विकसित हैं उनका पूर्वानुमान यह है कि जीवन किसी विशेष गुण (जैसे स्व-प्रतिकृति आरएनए) वाले अणु से नहीं बल्कि एक स्व-उत्प्रेरक समूह से उत्पन्न हुआ है। इसका पहला अनुभवजन्य समर्थन लिंकन और जॉयस से आया, जिन्होंने स्व-उत्प्रेरक समूह प्राप्त किए जिसमें "दो आरएनए एंजाइम कुल चार तत्वो से एक दूसरे के संश्लेषण को उत्प्रेरित करते हैं।"[1] इसके अतिरिक्त एक विकासवादी प्रक्रिया है जो इनकी जनसंख्या के साथ प्रारम्भ हुई है या स्व-उत्प्रेरक समूहों के आनुवंशिक पुनर्संयोजन की विकासवादी प्रक्रिया से प्राप्त हुई है।
आधुनिक जीवन में स्व-उत्प्रेरक समूहों के कई लक्षण होते हैं क्योंकि कोई भी विशेष अणु या अणुओं का कोई भी वर्ग स्वयं को दोहराने में सक्षम नहीं होता है। स्टुअर्ट कॉफ़मैन समूह पर आधारित कई मॉडल हैं, जिनमें स्टुअर्ट कॉफ़मैन मॉडल और अन्य मॉडल सम्मिलित हैं।[2]
औपचारिक परिभाषा
परिभाषा
अणुओं के एक समूह M को देखते हुए, रासायनिक प्रतिक्रियाओं को सामान्यतः M के उपसमूह r = (A, B) के रूप में परिभाषित किया जा सकता है: [3]
a1 + a2 + ... + ak → b1 + b2 + ... + bk
माना R अनुमानित प्रतिक्रियाओं का समूह है और युग्म (M, R) प्रतिक्रिया प्रणाली (RS) है। मान लीजिए C एक अणु-प्रतिक्रिया युग्मों का समूह है जो निर्दिष्ट करता है कि कौन से अणु कौन सी प्रतिक्रियाओं को उत्प्रेरित कर सकते हैं:
C = {(m, r) | m ∈ M, r ∈ R}
माना कि F ⊆ M अणुओं का एक समूह है जो पर्यावरण से स्वतंत्र रूप से उपलब्ध अणुओं की छोटी संख्या और R' ⊆ R प्रतिक्रियाओं का कुछ उपसमूह है। हम प्रतिक्रियाओं के इस उपसमूह के सापेक्ष अणुओं के समूह को ClR'(F) के रूप मे परिभाषित करते हैं, जिसमें अणुओं समूह और सभी अणु सम्मिलित होते हैं जिन्हें अणु समूह से प्रारम्भ किया जा सकता है और प्रतिक्रियाओं के इस उपसमूह से केवल प्रतिक्रियाओं का उपयोग किया जा सकता है। औपचारिक रूप से ClR'(F) का एक न्यूनतम उपसमूह जैसे कि F ⊆ ClR'(F) और प्रत्येक प्रतिक्रिया r'(A, B) ⊆ R' है:
A ⊆ ClR'(F) ⇒ B ⊆ ClR'(F)
एक प्रतिक्रिया प्रणाली (ClR'(F), R') स्व-उत्प्रेरक है यदि और केवल यदि प्रत्येक प्रतिक्रिया r'(A, B) ⊆ R' के लिए प्रायः है:
- अणु c ⊆ClR'(F) इस प्रकार सम्मिलित है कि (c, r') ⊆ C,
- A ⊆ ClR'(F).
उदाहरण
मान लीजिए M = {a, b, c, d, f, g} और F = {a, b} है तब माना कि समूह R में निम्नलिखित प्रतिक्रियाएँ हो सकती हैं:
a + b → c + d, catalyzed by g a + f → c + b, catalyzed by d c + b → g + a, catalyzed by d or f
तब F = {a, b} से हम {c, d} को उत्पन्न कर सकते हैं और {c, b} से {g, a} को उत्पन्न कर सकते हैं। इसलिए समूह निम्न अभिक्रिया के बराबर है:
ClR'(F) = {a, b, c, d, g}
परिभाषा के अनुसार अधिकतम स्व-उत्प्रेरक उपसमूह R' में दो प्रतिक्रियाएँ सम्मिलित हो सकती है:
a + b → c + d, catalyzed by g c + b → g + a, catalyzed by d
उत्प्रेरक (a + f) प्रतिक्रिया R' से संबंधित नहीं है क्योंकि f उत्प्रेरक से संबंधित नहीं है। इसी प्रकार स्व-उत्प्रेरक समूह में (c + b) के लिए प्रतिक्रिया केवल d द्वारा उत्प्रेरित की जा सकती है, f द्वारा उत्प्रेरित नहीं की जा सकती है।
यादृच्छिक समूह स्व-उत्प्रेरक संभावना
उपरोक्त मॉडल के अध्ययन से पता चलता है कि यादृच्छिक समूह कुछ मान्यताओं के अंतर्गत उच्च संभावना के साथ स्व-उत्प्रेरित हो सकता है। इसका तथ्य यह है कि अणुओं की बढ़ती संख्या के साथ, यदि अणु एक क्रम में बढ़ते हैं, तो संभावित प्रतिक्रियाओं और उत्प्रेरकों की संख्या और भी बढ़ जाती है, जिससे RS के एक भाग को स्व-उत्प्रेरक बनाने के लिए स्टोकेस्टिक रूप से पर्याप्त प्रतिक्रियाएं और उत्प्रेरक उत्पन्न होते हैं।[4] एक स्व-उत्प्रेरक समूह इसी कारण से अणुओं की बढ़ती संख्या के साथ अपेक्षाकृत तीव्र अभिक्रिया करता है। ये सैद्धांतिक परिणाम जीवन की प्रारंभिक उत्पत्ति की वैज्ञानिक व्याख्या के लिए स्व-उत्प्रेरक समूह को आकर्षक बनाते हैं।
औपचारिक सीमाएँ
औपचारिक रूप से अणुओं को अव्यवस्थित इकाइयों के अतिरिक्त कुछ भी मानना जटिल है, क्योंकि संभावित प्रतिक्रियाओं (और अणुओं) का समूह अनंत हो सकता है। इसलिए डीएनए, आरएनए या प्रोटीन को मॉडल करने के लिए अपेक्षाकृत आवश्यक बहुलक की व्युत्पत्ति अभी तक संभव नहीं है। आधुनिक आरएनए के अध्ययन भी इसी समस्या से ग्रस्त हैं।
भाषा संबंधी दृष्टिकोण
उपरोक्त परिभाषा के विपरीत जो कृत्रिम रसायन विज्ञान के क्षेत्र पर प्रयुक्त होती है, स्व-उत्प्रेरक समूह की कोई सर्वसम्मत धारणा वर्तमान मे सम्मिलित नहीं है। जबकि ऊपर उत्प्रेरक की धारणा माध्यमिक है, जहां संपूर्ण समूह को अपने उत्पादन को उत्प्रेरित करना होता है। यह अन्य परिभाषाओं में प्राथमिक है जो "स्व-उत्प्रेरक समूह" शब्द को अपेक्षाकृत अलग महत्व देता है। जहां प्रत्येक प्रतिक्रिया (या कार्य, परिवर्तन) की मध्यस्थता एक उत्प्रेरक द्वारा प्रदर्शित होती है। जिसके परिणामस्वरूप संबंधित प्रतिक्रिया की मध्यस्थता करते समय प्रत्येक उत्प्रेरक अपनी प्रतिक्रिया को भी दर्शाता है, जिससे स्व-निरूपण प्रणाली बनती है, जो दो कारणों से उत्प्रेरित होती है। सबसे पहले वास्तविक मेटाबोलिज्म इस तरीके से संरचित होता है। दूसरा स्व-निरूपण प्रणालियों को स्व-वर्णन प्रणालियों की दिशा में एक मध्यवर्ती माना जा सकता है। संरचनात्मक और प्राकृतिक ऐतिहासिक दृष्टिकोण दोनों से कोई भी एसीएस प्रतिक्रिया को औपचारिक परिभाषा में मूल अवधारणा के रूप में पहचान सकता है, जबकि दूसरी प्रणाली का प्रतिबिंब पहले से ही एक स्पष्ट प्रस्तुति में लाया जाता है, क्योंकि उत्प्रेरक उनके द्वारा प्रेरित प्रतिक्रिया का प्रतिनिधित्व करते हैं। एसीएस साहित्य में दोनों अवधारणाएं सम्मिलित होती हैं, लेकिन दोनों अवधारणाओ को अलग-अलग महत्व दिया गया है।
दूसरी ओर से वर्गीकरण को पूरा करने के लिए सामान्यीकृत स्व-पुनरुत्पादन प्रणालियाँ स्व-उत्प्रेरक समूहों से आगे बढ़ती हैं। जो किसी भी अव्यवस्थित इकाइयों को अब परिवर्तन नहीं करतीं है। औपचारिक रूप से एक सामान्यीकृत स्व-पुनरुत्पादन प्रणाली में दो तत्व u और c सम्मिलित हैं, साथ में उनके विवरण Desc(u) और Desc(c) निम्नलिखित परिभाषा के साथ उत्पन्न होते हैं:
u: Desc(X) -> X c: Desc(X) -> Desc(X)
जहां 'u' "यूनिवर्सल (सार्वभौमिक)" तत्व है, जो उपयुक्त विवरण से अपने डोमेन में एक समूह को निर्मित करता है जबकि 'c' किसी भी विवरण के लिए एक प्रारूपित तत्व है। सामान्यतः 'u' और 'c' कई उपसमूह या उत्प्रेरकों में विभाजित हो सकते हैं।
ध्यान दें कि प्रारूपित तत्व 'c' आवश्यक है क्योंकि यद्यपि यूनिवर्सल तत्व u किसी भी विवरण का निर्माण करने में सक्षम हो सकता है। साथ ही वह विवरण जिस पर आधारित होगा, वह सामान्यतः परिणाम से अधिक लंबा होता है, जिससे पूर्ण स्व-उत्प्रेरण असंभव हो जाता है।
इस अंतिम अवधारणा को स्व-पुनरुत्पादन ऑटोमेटा पर जॉन वॉन न्यूमैन के कार्य के लिए उत्तरदाई माना जा सकता है, जहां वह हस्तक्षेप से बचने के लिए किसी भी गैर-तुच्छ (सामान्यीकृत) स्व-पुनरुत्पादन प्रणाली के लिए आवश्यक विवरण रखता है। वॉन न्यूमैन ने मॉडल रसायन विज्ञान के लिए भी ऐसी प्रणाली को डिजाइन करने की योजना बनाई है।
गैर-ऑटोनोमस स्व-उत्प्रेरक समूह
स्व-उत्प्रेरक समूह पर लगभग सभी लेख इस विषय को छोड़ देते हैं कि समूह को ऑटोनोमस माना जा सकता है या नहीं माना जा सकता है। प्रायः समूह को ऑटोनोमस मान लिया जाता है। संभवतः उपरोक्त संदर्भ में ऑटोनोमस प्रतिकृति और जीवन की प्रारंभिक उत्पत्ति पर महत्व दिया गया है। लेकिन स्व-उत्प्रेरक समूह की अवधारणा वास्तव में अधिक सामान्य है और विभिन्न तकनीकी क्षेत्रों में व्यावहारिक उपयोग में है, जैसे जहां ऑटोनोमस उपकरण श्रृंखलाओं को प्रयुक्त किया जाता है। स्पष्ट रूप से ऐसे समूह ऑटोनोमस नहीं हैं ये प्रायः मानव अभिकरण की वस्तुएं हैं।
गैर-ऑटोनोमस स्व-उत्प्रेरक समूहों के व्यावहारिक महत्व के उदाहरण पाए जा सकते हैं। जहां कंपाइलर निर्माण के क्षेत्र में और ऑपरेटिंग सिस्टम में संबंधित निर्माणों की स्व-संदर्भित प्रकृति को प्रायः बूटस्ट्रैपिंग के रूप में स्पष्ट रूप से चर्चा की जाती है।
जीवन के अन्य सिद्धांतों से तुलना
स्व-उत्प्रेरक समूह जीवन के कई सम्मिलित सिद्धांतों में से एक है, जिसमें टिबोर गैंटी का केमोटन, मैनफ्रेड ओन और पीटर शूस्टर का हाइपरसाइकिल (रसायन विज्ञान),[5][6][7] रॉबर्ट रोसेन (सैद्धांतिक जीवविज्ञानी) और ऑटोपोइज़िस (या आत्म-निर्माण),[8] हम्बर्टो मटुराना और फ़्रांसिस्को वेरेला के सिद्धान्त सम्मिलित हैं।[9][10] इन सभी स्व-उत्प्रेरक समूहों को उनकी मूल प्रेरणा इरविन श्रोडिंगर की पुस्तक व्हाट्स इज़ लाइफ में प्राप्त हुई है।[11] लेकिन पहली बार में उनमें एक-दूसरे के साथ बहुत कम समानता दिखाई देती है, क्योंकि लेखकों ने एक-दूसरे के साथ संवाद नहीं किया है और उनमे से किसी ने भी किसी ने अपने प्रमुख प्रकाशनों में किसी अन्य सिद्धांत का कोई संदर्भ दिया है। लेकिन प्रकाशन में जितनी समानताएँ स्पष्ट हो सकती हैं, उससे कहीं अधिक समानताओ मे उदाहरण के लिए गंती और रोसेन के बीच वर्तमान तक विभिन्न सिद्धांतों की तुलना करने और उन पर एक साथ चर्चा करने का लगभग कोई प्रयास नहीं हुआ है।[12][13][14][15]
अंतिम सार्वभौमिक सामान्य पूर्वज (एलयूसीए)
कुछ लेखक जीवन की उत्पत्ति के मॉडल की तुलना सभी सम्मिलित जीवन के एलयूसीए से करते हैं।[16] यह पहचानने में विफलता के कारण हुई एक गंभीर त्रुटि है जहां (L) अंतिम सामान्य पूर्वजों को संदर्भित करता है, न कि पहले पूर्वजों को जो कि अत्यधिक पुराने है जिनका एलयूसीए की उपस्थिति से पहले बड़ी मात्रा में विकास हुआ था।[17]
गिल और फोर्टेरे ने इस विषय को इस प्रकार व्यक्त किया है:[18]
"एलयूसीए को पहली कोशिका के साथ भ्रमित नहीं किया जाना चाहिए, क्योकि यह विकास के अधिक लंबे समय का उत्पाद था। जहां "अंतिम" होने का अर्थ है कि एलयूसीए से पहले पुराने "पूर्वजों" का एक लंबा उत्तराधिकार था।"
संदर्भ
- ↑ Lincoln TA, Joyce GF (February 2009). "आरएनए एंजाइम की स्व-निरंतर प्रतिकृति". Science. 323 (5918): 1229–32. Bibcode:2009Sci...323.1229L. doi:10.1126/science.1167856. PMC 2652413. PMID 19131595.
- ↑ Kauffman, Stuart A. (2008) Reinventing the Sacred: A New View of Science, Reason, and Religion. [Basic Books], ISBN 0-465-00300-1, chapter 5, especially pp. 59–71
- ↑ Hordijk W (2013). "Autocatalytic Sets: From the Origin of Life to the Economy". BioScience. 63 (11): 877–881. doi:10.1525/bio.2013.63.11.6.
- ↑ Mossel E, Steel M. (2005). "यादृच्छिक जैव रासायनिक नेटवर्क और आत्मनिर्भर ऑटोकैटलिसिस की संभावना". Journal of Theoretical Biology. 233 (3): 327–336. Bibcode:2005JThBi.233..327M. CiteSeerX 10.1.1.133.9352. doi:10.1016/j.jtbi.2004.10.011. PMID 15652142.
- ↑ Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. A: emergence of the hypercycle". Naturwissenschaften. 64 (11): 541–565. doi:10.11007/bf00450633.
- ↑ Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. B: the abstract hypercycle". Naturwissenschaften. 65 (1): 7–41. doi:10.1007/bf00420631.
- ↑ Eigen, M; Schuster, P. "The hypercycle: a principle of natural self-organization. C: the realistic hypercycle". Naturwissenschaften. 65 (7): 41–369. doi:10.1007/bf00420631.
- ↑ Schrödinger, Erwin (1944). What is Life?. Cambridge University Press.
- ↑ Rosen, R. (1958). "The representation of biological systems from the standpoint of the theory of categories". Bull. Math. Biophys. 20 (4): 317–341. doi:10.1007/BF02477890.
- ↑ Rosen, R. (1991). Life Itself: a comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.
- ↑ Maturana, H. R.; Varela, F. (1980). Autopoiesis and cognition: the realisation of the living. Dordrecht: D. Reidel Publishing Company.
- ↑ Cornish-Bowden, A. (2015). "Tibor Gánti and Robert Rosen: contrasting approaches to the same problem". J. Theor. Biol. 381: 6–10. doi:10.1016/j.jtbi.2015.05.015.
- ↑ Letelier, J C; Cárdenas, M L; Cornish-Bowden, A (2011). "From L'Homme Machine to metabolic closure: steps towards understanding life". J. Theor. Biol. 286 (1): 100–113. doi:10.1016/j.jtbi.2011.06.033.
- ↑ Igamberdiev, A.U. (2014). "जैविक विकास में समय का पुनर्मूल्यांकन और पैटर्न का निर्माण". BioSystems. 123: 19–26. doi:10.1016/j.biosystems.2014.03.002.
- ↑ Cornish-Bowden, A; Cárdenas, M L (2020). "Contrasting theories of life: historical context, current theories. In search of an ideal theory". BioSystems. 188: 104063. doi:10.1016/j.biosystems.2019.104063.
- ↑ Jheeta, S.; Chatzitheodoridis, E.; Devine, Kevin; Block, J. (2021). "The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis". Life. 11 (9): 872. doi:10.3390/life11090872. PMC 8467930. PMID 34575021.
- ↑ Cornish-Bowden, A; Cárdenas, M L. "लुका से पहले का जीवन". J. Theor. Biol. 434: 68–74. doi:10.1016/j.jtbi.2017.05.023.
- ↑ Gill, S.; Forterre, P. (2016). "Origin of life: LUCA and extracellular membrane vesicles (EMVs)". Int. J. Astrobiol. 15 (1): 7–15. doi:10.1017/S1473550415000282.