मोटिविक सह-समरूपता: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Invariant of algebraic varieties and of more general schemes}}
{{short description|Invariant of algebraic varieties and of more general schemes}}
'''मोटिविक सह-समरूपता''' [[बीजगणितीय विविधता]] और सामान्य योजनाओं के अपरिवर्तनीय है। यह उद्देश्यों से संबंधित एक प्रकार की सह-समरूपता है जिसमे विशेष रूप में बीजगणितीय चक्रों का [[चाउ रिंग|चाउ सिद्धांत]] सम्मिलित है। बीजगणितीय ज्यामिति और [[संख्या सिद्धांत]] की कुछ समस्याओ से मोटिविक सह-समरूपता को समझा जा सकता है।
'''मोटिविक सह-समरूपता''' [[बीजगणितीय विविधता]] और सामान्य विविधताओं के अपरिवर्तनीय है। यह मोटिविक सह-समरूपता से संबंधित एक प्रकार की सह-समरूपता है जिसमे विशेष रूप में बीजगणितीय चक्रों का [[चाउ रिंग|चाउ सिद्धांत]] सम्मिलित है। बीजगणितीय ज्यामिति और [[संख्या सिद्धांत]] की कुछ समस्याओ से मोटिविक सह-समरूपता को समझा जा सकता है।


==मोटिविक सजातीय और सह-समरूपता==
==मोटिविक सजातीय और सह-समरूपता==


माना कि X क्षेत्र k पर परिमित प्रकार की एक विविधता है। बीजगणितीय ज्यामिति का मुख्य लक्ष्य X के चाउ समूहों की गणना करना है क्योंकि वे X की सभी उप-विविधिताओ के विषय में अधिक जानकारी देते हैं। X के चाउ समूहों के सांस्थितिक में बोरेल-मूर सजातीय के कुछ औपचारिक गुण हैं, लेकिन कुछ विशेषताएँ लुप्त हैं उदाहरण के लिए X की एक विवृत उपविविधता Z के लिए चाउ समूहों का एक समुचित अनुक्रम स्थानीयकरण अनुक्रम है:
माना कि X क्षेत्र k पर परिमित प्रकार की एक विविधता है। बीजगणितीय ज्यामिति का मुख्य लक्ष्य X के चाउ समूहों की गणना करना है क्योंकि वे X की सभी उप-विविधिताओ के विषय में अधिक जानकारी देते हैं। X के चाउ समूहों के सांस्थितिक में बोरेल-मूर सजातीय के कुछ औपचारिक गुण होते हैं, लेकिन कुछ विशेषताएँ लुप्त होती हैं उदाहरण के लिए X की एक विवृत उपविविधता Z के लिए चाउ समूहों का एक समुचित अनुक्रम स्थानीयकरण अनुक्रम है:
:<math>CH_i(Z) \rightarrow CH_i(X) \rightarrow CH_i(X-Z) \rightarrow 0,</math>
:<math>CH_i(Z) \rightarrow CH_i(X) \rightarrow CH_i(X-Z) \rightarrow 0,</math>
जबकि सांस्थितिक में यह एक लंबे समुचित अनुक्रम का भाग है। इस समस्या का समाधान चाउ समूहों को एक बड़े समूह (बोरेल-मूर) मोटिविक सजातीय समूहों (जिन्हें पहले [[स्पेंसर बलोच]] द्वारा उच्च चाउ समूह कहा जाता था) में सामान्यीकृत करके किया गया था।<ref>Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.</ref>अर्थात्, क्षेत्र k, पूर्णांक i और j पर परिमित प्रकार की प्रत्येक विविधता X के लिए हमारे पास एक एबेलियन समूह ''H<sub>i</sub>''(''X'','''Z'''(''j'')) है, जिसमें सामान्य चाउ समूह विशेष रूप से सम्मिलित है:
जबकि सांस्थितिक में यह एक लंबे समुचित अनुक्रम का भाग है। इस समस्या का समाधान चाउ समूहों को एक बड़े समूह (बोरेल-मूर) मोटिविक सजातीय समूहों (जिन्हें पहले [[स्पेंसर बलोच]] द्वारा उच्च चाउ समूह कहा जाता था) में सामान्यीकृत करके किया गया था।<ref>Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.</ref>अर्थात्, क्षेत्र k पूर्णांक i और j पर परिमित प्रकार की प्रत्येक विविधता X के लिए हमारे पास एक एबेलियन समूह ''H<sub>i</sub>''(''X'','''Z'''(''j'')) है, जिसमें सामान्य चाउ समूह विशेष रूप से सम्मिलित है:
:<math> CH_i(X) \cong H_{2i}(X,\mathbf{Z}(i)).</math>
:<math> CH_i(X) \cong H_{2i}(X,\mathbf{Z}(i)).</math>
विविधता X की एक विवृत उप-विविधता Z मे मोटिविक सजातीय समूहों के लिए एक लंबा समुचित स्थानीयकरण अनुक्रम है, जो चाउ समूहों के लिए स्थानीयकरण अनुक्रम के साथ समाप्त होता है:
विविधता X की एक विवृत उप-विविधता Z मे मोटिविक सजातीय समूहों के लिए एक लंबा समुचित स्थानीयकरण अनुक्रम है, जो चाउ समूहों के लिए स्थानीयकरण अनुक्रम के साथ समाप्त होता है:
:<math>\cdots\rightarrow H_{2i+1}(X-Z,\mathbf{Z}(i))\rightarrow H_{2i}(Z,\mathbf{Z}(i))\rightarrow H_{2i}(X,\mathbf{Z}(i))\rightarrow H_{2i}(X-Z,\mathbf{Z}(i))\rightarrow 0.</math>
:<math>\cdots\rightarrow H_{2i+1}(X-Z,\mathbf{Z}(i))\rightarrow H_{2i}(Z,\mathbf{Z}(i))\rightarrow H_{2i}(X,\mathbf{Z}(i))\rightarrow H_{2i}(X-Z,\mathbf{Z}(i))\rightarrow 0.</math>
वास्तव में यह वोवोडस्की मोटिविक सह-समरूपता, कॉम्पैक्ट सपोर्ट के साथ मोटिविक सह-समरूपता, बोरेल-मूर मोटिविक सजातीय (जैसा कि ऊपर) और विवृत समर्थन के साथ मोटिविक सजातीय द्वारा निर्मित चार सिद्धांतों के समूह में से एक है। इन सिद्धांतों में सांस्थितिक में संबंधित सिद्धांतों के कई औपचारिक गुण हैं। उदाहरण के लिए मोटिविक सह-समरूपता समूह ''H<sup>i</sup>''(X,'''Z'''(''j'')) एक क्षेत्र पर परिमित प्रकार की प्रत्येक विविधता X के लिए एक बिगग्रेडेड सिद्धांत बनाते हैं:
वास्तव में यह वोवोडस्की मोटिविक सह-समरूपता संक्षिप्त समर्थन के साथ मोटिविक सह-समरूपता, बोरेल-मूर मोटिविक सजातीय (जैसा कि ऊपर) और विवृत समर्थन के साथ मोटिविक सजातीय द्वारा निर्मित चार सिद्धांतों के समूह में से एक है। इन सिद्धांतों में सांस्थितिक में संबंधित सिद्धांतों के कई औपचारिक गुण हैं। उदाहरण के लिए मोटिविक सह-समरूपता समूह ''H<sup>i</sup>''(X,'''Z'''(''j'')) एक क्षेत्र पर परिमित प्रकार की प्रत्येक विविधता X के लिए एक बिगग्रेडेड सिद्धांत बनाते हैं:
:<math>H^i(X,\mathbf{Z}(j))\cong H_{2n-i}(X,\mathbf{Z}(n-j)).</math>
:<math>H^i(X,\mathbf{Z}(j))\cong H_{2n-i}(X,\mathbf{Z}(n-j)).</math>
विशेष रूप से कोडिमेंशन-आई चक्रों का चाउ समूह ''CH<sup>i</sup>''(''X''), ''H''<sup>2''i''</sup>(''X'','''Z'''(''i'')) के समरूपी होता है जब X, k पर समतल होता है।
विशेष रूप से कोडिमेंशन-आई चक्रों का चाउ समूह ''CH<sup>i</sup>''(''X''), ''H''<sup>2''i''</sup>(''X'','''Z'''(''i'')) के समरूपी होता है जब X, k पर समतल होता है।
Line 24: Line 24:
बलोच, [[स्टीफ़न लिक्टेनबाम]], [[एरिक फ्रीडलैंडर]], [[आंद्रेई सुसलिन]] और लेविन द्वारा एक क्षेत्र पर प्रत्येक समतल विविधता X के लिए मोटिविक सह-समरूपता से लेकर बीजगणितीय K-सिद्धांत तक एक स्पेक्ट्रम अनुक्रम है, जो सांस्थितिक में अतियाह-हिर्ज़ेब्रुच स्पेक्ट्रम अनुक्रम के अनुरूप है:
बलोच, [[स्टीफ़न लिक्टेनबाम]], [[एरिक फ्रीडलैंडर]], [[आंद्रेई सुसलिन]] और लेविन द्वारा एक क्षेत्र पर प्रत्येक समतल विविधता X के लिए मोटिविक सह-समरूपता से लेकर बीजगणितीय K-सिद्धांत तक एक स्पेक्ट्रम अनुक्रम है, जो सांस्थितिक में अतियाह-हिर्ज़ेब्रुच स्पेक्ट्रम अनुक्रम के अनुरूप है:
:<math>E_2^{pq}=H^p(X,\mathbf{Z}(-q/2)) \Rightarrow K_{-p-q}(X).</math>
:<math>E_2^{pq}=H^p(X,\mathbf{Z}(-q/2)) \Rightarrow K_{-p-q}(X).</math>
सांस्थितिक की तरह, परिमेय के साथ [[टेंसर उत्पाद]] के बाद स्पेक्ट्रम अनुक्रम समाप्त हो जाता है।<ref>Levine, K-theory and motivic cohomology of schemes I, eq. (2.9) and Theorem 14.7.</ref> किसी क्षेत्र (आवश्यक नहीं कि समतल) पर परिमित प्रकार की अपेक्षाकृत योजनाओं के लिए मोटिविक सजातीय से जी-सिद्धांत (सदिश समूहो के अतिरिक्त सुसंगत शीव्स का k-सिद्धांत) तक एक अनुरूप स्पेक्ट्रमी अनुक्रम होता है।
सांस्थितिक की तरह, परिमेय के साथ [[टेंसर उत्पाद|प्रदिश उत्पाद]] के बाद स्पेक्ट्रम अनुक्रम समाप्त हो जाता है।<ref>Levine, K-theory and motivic cohomology of schemes I, eq. (2.9) and Theorem 14.7.</ref> किसी क्षेत्र (आवश्यक नहीं कि समतल) पर परिमित प्रकार की अपेक्षाकृत विविधताओ के लिए मोटिविक सजातीय से जी-सिद्धांत (सदिश समूहो के अतिरिक्त सुसंगत शीव्स का k-सिद्धांत) तक एक अनुरूप स्पेक्ट्रमी अनुक्रम होता है।


===मिल्नोर K-सिद्धांत से संबंध===
===मिल्नोर K-सिद्धांत से संबंध===
Line 34: Line 34:
===एटेल सह-समरूपता का मानचित्रण===
===एटेल सह-समरूपता का मानचित्रण===


माना कि X क्षेत्र k पर एक सहज विविधता है और m एक धनात्मक पूर्णांक है जो k का व्युत्क्रम है तब मोटिविक सह-समरूपता से एटेल सह-समरूपता तक एक प्राकृतिक समरूपता का मानचित्रण है:
माना कि X क्षेत्र k पर एक सहज विविधता है और m एक धनात्मक पूर्णांक है जो k का व्युत्क्रम है तब मोटिविक सह-समरूपता से ईटेल सह-समरूपता तक एक प्राकृतिक समरूपता का मानचित्रण है:
:<math>H^i(X,\mathbf{Z}/m(j))\rightarrow H^i_{et}(X,\mathbf{Z}/m(j)),</math>
:<math>H^i(X,\mathbf{Z}/m(j))\rightarrow H^i_{et}(X,\mathbf{Z}/m(j)),</math>
जहां दाईं ओर '''Z'''/''m''(''j'') का अर्थ एताले शीफ़ (μ<sub>''m''</sub>)<sup>⊗''j''</sup> है, जिसमें μ<sub>m</sub> एकता की m<sup>th</sup> घात हैं। यह समतल विविधता के चाउ सिद्धांत से ईटेल सह-समरूपता तक चक्र मानचित्र को सामान्यीकृत करता है। बीजगणितीय ज्यामिति या संख्या सिद्धांत में इसका एक सामान्य लक्ष्य मोटिविक सह-समरूपता की गणना करना है, जबकि एटेल सह-समरूपता को समझना प्रायः सरल होता है। उदाहरण के लिए यदि आधार क्षेत्र k सम्मिश्र संख्या है, तो ईटेल सह-समरूप एकल सहसंयोजी (परिमित गुणांक के साथ) के साथ अनुरूप है। वोएवोडस्की द्वारा सिद्ध किया गया परिणाम, जिसे बेइलिंसन-लिचटेनबाम अनुमान के रूप में जाना जाता है, यह परिणाम कहता है कि कई मोटिविक सह-समरूपता समूह वास्तव में ईटेल सह-समरूपता समूहों के समरूपी हैं। यह मानक अवशेष समरूपता प्रमेय का परिणाम है। अर्थात्, बेइलिंसन-लिचटेनबाम अनुमान (वोएवोडस्की का प्रमेय) कहता है कि क्षेत्र k और m पर एक समतल विविधता X के लिए एक धनात्मक पूर्णांक k में चक्र मानचित्रण व्युत्क्रम होता है:
जहां दाईं ओर '''Z'''/''m''(''j'') का अर्थ एताले शीफ़ (μ<sub>''m''</sub>)<sup>⊗''j''</sup> है, जिसमें μ<sub>m</sub> एकता की m<sup>th</sup> घात हैं। यह समतल विविधता के चाउ सिद्धांत से ईटेल सह-समरूपता तक चक्र मानचित्र को सामान्यीकृत करता है। बीजगणितीय ज्यामिति या संख्या सिद्धांत में इसका एक सामान्य लक्ष्य मोटिविक सह-समरूपता की गणना करना है, जबकि एटेल सह-समरूपता को समझना प्रायः सरल होता है। उदाहरण के लिए यदि आधार क्षेत्र k सम्मिश्र संख्या है, तो ईटेल सह-समरूप एकल सहसंयोजी (परिमित गुणांक के साथ) के साथ अनुरूप है। वोएवोडस्की द्वारा सिद्ध किया गया परिणाम, जिसे बेइलिंसन-लिचटेनबाम अनुमान के रूप में जाना जाता है, यह परिणाम कहता है कि कई मोटिविक सह-समरूपता समूह वास्तव में ईटेल सह-समरूपता समूहों के समरूपी हैं। यह मानक अवशेष समरूपता प्रमेय का परिणाम है। अर्थात्, बेइलिंसन-लिचटेनबाम अनुमान (वोएवोडस्की का प्रमेय) कहता है कि क्षेत्र k और m पर एक समतल विविधता X के लिए एक धनात्मक पूर्णांक k में चक्र मानचित्रण व्युत्क्रम होता है:
Line 57: Line 57:
===L-फलन का मान===
===L-फलन का मान===


माना कि X संख्या क्षेत्र पर L-फलन एक सहज प्रक्षेप्य विविधता है। L-फलन के मानों पर बलोच-काटो का पूर्वानुमान कहता है कि एक पूर्णांक बिंदु पर X के L-फलन के समाप्त होने का क्रम एक उपयुक्त मोटिविक सह-समरूपता समूह के क्रम के बराबर है। यह संख्या सिद्धांत की केंद्रीय समस्याओं में से एक है, जिसमें डेलिग्ने और बेइलिंसन के पहले के अनुमान सम्मिलित हैं और बिर्च स्विनर्टन डायर अनुमान की एक विशेष स्थिति है। अधिक समुचित रूप से अनुमान नियामकों के संदर्भ में पूर्णांक बिंदु पर L-फलन के अग्रणी गुणांक और मोटिविक सह-समरूपता पर ऊंचाई युग्मन का पूर्वानुमान सम्मिलित है।
माना कि X संख्या क्षेत्र पर L-फलन एक सहज प्रक्षेप्य विविधता है। L-फलन के मानों पर बलोच-काटो का पूर्वानुमान कहता है कि एक पूर्णांक बिंदु पर X के L-फलन के समाप्त होने का क्रम एक उपयुक्त मोटिविक सह-समरूपता समूह के क्रम के बराबर है। यह संख्या सिद्धांत की केंद्रीय समस्याओं में से एक है, जिसमें डेलिग्ने और बेइलिंसन के पूर्वानुमान सम्मिलित हैं और बिर्च स्विनर्टन डायर अनुमान की विशेष स्थितियां है। अधिक समुचित रूप से अनुमान नियामकों के संदर्भ में पूर्णांक बिंदु पर L-फलन के अग्रणी गुणांक और मोटिविक सह-समरूपता पर ऊंचाई युग्मन का पूर्वानुमान सम्मिलित है।


==इतिहास==
==इतिहास==
{{refimprove section|date=January 2021}}
बीजगणितीय विविधिताओ के लिए चाउ समूहों से अधिक सामान्य मोटिविक सह-समरूपता सिद्धांत के संभावित सामान्यीकरण का पहला स्पष्ट संकेत [[डेनियल क्विलेन]] की बीजगणितीय K-सिद्धांत (1973) की परिभाषा थी जो सदिश समूहों के [[ग्रोथेंडिक समूह]] K-0 को सामान्यीकृत करती थी। 1980 के दशक के प्रारम्भ मे बेइलिंसन और सोले ने देखा कि एडम्स सिद्धांत ने सदिश समूहों के साथ बीजगणितीय K-सिद्धांत को विभाजित कर दिया है और सदिश समूहों को अब तर्कसंगत गुणांको के साथ मोटिविक सह-समरूपता कहा जाता है। बीलिन्सन और लिचटेनबाम ने मोटिविक सह-समरूपता के अस्तित्व और गुणों का पूर्वानुमान करते हुए अनुमान लगाया कि अब उनके सभी अनुमान लगभग सिद्ध हो चुके हैं।
बीजगणितीय विविधिताओ के लिए चाउ समूहों से अधिक सामान्य मोटिविक सह-समरूपता सिद्धांत के संभावित सामान्यीकरण का पहला स्पष्ट संकेत [[डेनियल क्विलेन]] की बीजगणितीय K-सिद्धांत (1973) की परिभाषा थी जो सदिश समूहों के [[ग्रोथेंडिक समूह]] K-0 को सामान्यीकृत करता थी। 1980 के दशक के प्रारम्भ मे बेइलिंसन और सोले ने देखा कि एडम्स सिद्धांत ने सदिश समूहों के साथ बीजगणितीय K-सिद्धांत को विभाजित कर दिया है और सदिश समूहों को अब तर्कसंगत गुणांको के साथ मोटिविक सह-समरूपता कहा जाता है। बीलिन्सन और लिचटेनबाम ने मोटिविक सह-समरूपता के अस्तित्व और गुणों का पूर्वानुमान करते हुए अनुमान लगाया कि अब उनके सभी अनुमान लगभग सिद्ध हो चुके हैं।


बलोच की चाउ समूहों की परिभाषा (1986) क्षेत्र k पर विविधिताओ के लिए मोटिविक सजातीय की पहली समाकलन (तर्कसंगत के विपरीत) परिभाषा थी और इसलिए समतल विविधिताओ की स्थिति में मोटिविक सह-समरूपता X के चाउ समूहों की परिभाषा का एक प्राकृतिक सामान्यीकरण है, जिसमें एफ़िन समष्टि के साथ X के उत्पाद पर बीजगणितीय मानचित्रण सम्मिलित हैं जो अपेक्षित आयाम (संकेतन पहचान के रूप में देखे गए) के समूहों से प्राप्त होते हैं।
बलोच की चाउ समूहों की परिभाषा (1986) क्षेत्र k पर विविधिताओ के लिए मोटिविक सजातीय की पहली समाकलन (तर्कसंगत के विपरीत) परिभाषा थी और इसलिए समतल विविधिताओ की स्थिति में मोटिविक सह-समरूपता X के चाउ समूहों की परिभाषा का एक प्राकृतिक सामान्यीकरण है, जिसमें एफ़िन समष्टि के साथ X के उत्पाद पर बीजगणितीय मानचित्रण सम्मिलित हैं जो अपेक्षित आयाम (संकेतन पहचान के रूप में देखे गए) के समूहों से प्राप्त होता है।


अंत में वोएवोडस्की (सुसलिन के साथ अपने कार्य पर आगे बढ़ते हुए) ने 2000 में मोटिविक सह-समरूपता की व्युत्पन्न श्रेणियों के साथ चार प्रकार की मोटिविक सजातीय और मोटिविक सह-समरूपता को परिभाषित किया और संबंधित श्रेणियों को हनामुरा और लेविन द्वारा भी परिभाषित किया गया था।
अंत में वोएवोडस्की (सुसलिन के साथ अपने कार्य पर आगे बढ़ते हुए) ने 2000 में मोटिविक सह-समरूपता की व्युत्पन्न श्रेणियों के साथ चार प्रकार की मोटिविक सजातीय और मोटिविक सह-समरूपता को परिभाषित किया और संबंधित श्रेणियों को हनामुरा और लेविन द्वारा भी परिभाषित किया गया था।
Line 77: Line 76:
* {{Citation | author1-first=Vladimir | author1-last=Voevodsky | author1-link=Vladimir Voevodsky | title=On motivic cohomology with '''Z'''/''l'' coefficients | pages=401–438 | journal=Annals of Mathematics | year=2011 | volume=174 | mr=2811603 | doi=10.4007/annals.2011.174.1.11 | arxiv=0805.4430 | s2cid=15583705 }}
* {{Citation | author1-first=Vladimir | author1-last=Voevodsky | author1-link=Vladimir Voevodsky | title=On motivic cohomology with '''Z'''/''l'' coefficients | pages=401–438 | journal=Annals of Mathematics | year=2011 | volume=174 | mr=2811603 | doi=10.4007/annals.2011.174.1.11 | arxiv=0805.4430 | s2cid=15583705 }}
*{{cite web |last1=Levine |first1=Marc |author1-link=Marc Levine (mathematician)|title=WATCH: Motivic Cohomology: past, present and future |url=https://www.youtube.com/watch?v=MYYbD2c58eE |website=youtube.com |publisher=[[International Mathematical Union]] |language=en |format=video |date=July 12, 2022}}
*{{cite web |last1=Levine |first1=Marc |author1-link=Marc Levine (mathematician)|title=WATCH: Motivic Cohomology: past, present and future |url=https://www.youtube.com/watch?v=MYYbD2c58eE |website=youtube.com |publisher=[[International Mathematical Union]] |language=en |format=video |date=July 12, 2022}}
==यह भी देखें==
==यह भी देखें==
* [[स्थानान्तरण के साथ प्रीशीफ]]़
* [[स्थानान्तरण के साथ प्रीशीफ]]़
*ए¹ समरूपता सिद्धांत
*समरूपता सिद्धांत


==बाहरी संबंध==
==बाहरी संबंध==
Line 90: Line 87:
*Wiesława Nizioł, [https://web.archive.org/web/20190928160013/http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_20.pdf p-adic motivic cohomology in arithmetic]
*Wiesława Nizioł, [https://web.archive.org/web/20190928160013/http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_20.pdf p-adic motivic cohomology in arithmetic]


{{DEFAULTSORT:Motivic Cohomology}}[[Category: सहसंगति सिद्धांत]] [[Category: समस्थानिक बीजगणित]] [[Category: बीजगणितीय ज्यामिति की टोपोलॉजिकल विधियाँ]]
{{DEFAULTSORT:Motivic Cohomology}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles needing additional references|Motivic Cohomology]]
[[Category:Created On 08/07/2023]]
[[Category:Articles needing additional references from January 2021|Motivic Cohomology]]
[[Category:CS1 English-language sources (en)|Motivic Cohomology]]
[[Category:Created On 08/07/2023|Motivic Cohomology]]
[[Category:Lua-based templates|Motivic Cohomology]]
[[Category:Machine Translated Page|Motivic Cohomology]]
[[Category:Pages with script errors|Motivic Cohomology]]
[[Category:Templates Vigyan Ready|Motivic Cohomology]]
[[Category:Templates that add a tracking category|Motivic Cohomology]]
[[Category:Templates that generate short descriptions|Motivic Cohomology]]
[[Category:Templates using TemplateData|Motivic Cohomology]]
[[Category:बीजगणितीय ज्यामिति की टोपोलॉजिकल विधियाँ|Motivic Cohomology]]
[[Category:समस्थानिक बीजगणित|Motivic Cohomology]]
[[Category:सहसंगति सिद्धांत|Motivic Cohomology]]

Latest revision as of 15:41, 30 August 2023

मोटिविक सह-समरूपता बीजगणितीय विविधता और सामान्य विविधताओं के अपरिवर्तनीय है। यह मोटिविक सह-समरूपता से संबंधित एक प्रकार की सह-समरूपता है जिसमे विशेष रूप में बीजगणितीय चक्रों का चाउ सिद्धांत सम्मिलित है। बीजगणितीय ज्यामिति और संख्या सिद्धांत की कुछ समस्याओ से मोटिविक सह-समरूपता को समझा जा सकता है।

मोटिविक सजातीय और सह-समरूपता

माना कि X क्षेत्र k पर परिमित प्रकार की एक विविधता है। बीजगणितीय ज्यामिति का मुख्य लक्ष्य X के चाउ समूहों की गणना करना है क्योंकि वे X की सभी उप-विविधिताओ के विषय में अधिक जानकारी देते हैं। X के चाउ समूहों के सांस्थितिक में बोरेल-मूर सजातीय के कुछ औपचारिक गुण होते हैं, लेकिन कुछ विशेषताएँ लुप्त होती हैं उदाहरण के लिए X की एक विवृत उपविविधता Z के लिए चाउ समूहों का एक समुचित अनुक्रम स्थानीयकरण अनुक्रम है:

जबकि सांस्थितिक में यह एक लंबे समुचित अनुक्रम का भाग है। इस समस्या का समाधान चाउ समूहों को एक बड़े समूह (बोरेल-मूर) मोटिविक सजातीय समूहों (जिन्हें पहले स्पेंसर बलोच द्वारा उच्च चाउ समूह कहा जाता था) में सामान्यीकृत करके किया गया था।[1]अर्थात्, क्षेत्र k पूर्णांक i और j पर परिमित प्रकार की प्रत्येक विविधता X के लिए हमारे पास एक एबेलियन समूह Hi(X,Z(j)) है, जिसमें सामान्य चाउ समूह विशेष रूप से सम्मिलित है:

विविधता X की एक विवृत उप-विविधता Z मे मोटिविक सजातीय समूहों के लिए एक लंबा समुचित स्थानीयकरण अनुक्रम है, जो चाउ समूहों के लिए स्थानीयकरण अनुक्रम के साथ समाप्त होता है:

वास्तव में यह वोवोडस्की मोटिविक सह-समरूपता संक्षिप्त समर्थन के साथ मोटिविक सह-समरूपता, बोरेल-मूर मोटिविक सजातीय (जैसा कि ऊपर) और विवृत समर्थन के साथ मोटिविक सजातीय द्वारा निर्मित चार सिद्धांतों के समूह में से एक है। इन सिद्धांतों में सांस्थितिक में संबंधित सिद्धांतों के कई औपचारिक गुण हैं। उदाहरण के लिए मोटिविक सह-समरूपता समूह Hi(X,Z(j)) एक क्षेत्र पर परिमित प्रकार की प्रत्येक विविधता X के लिए एक बिगग्रेडेड सिद्धांत बनाते हैं:

विशेष रूप से कोडिमेंशन-आई चक्रों का चाउ समूह CHi(X), H2i(X,Z(i)) के समरूपी होता है जब X, k पर समतल होता है।

मोटिविक सह-समरूपता Hi(X, Z(j)) ज़रिस्की सांस्थितिक में X की सह-समरूपता है जिसमें X पर शीव्स समरूपता Z(j) के एक निश्चित समूह में गुणांक होते हैं। कुछ गुणों को निस्नेविच सांस्थितिक का उपयोग करके सिद्ध करना सरल होता है लेकिन ये समान मोटिविक सह-समरूपता समूह देते है। उदाहरण के लिए j < 0 के लिए Z(0) शून्य है, Z(0) निरंतर शीफ Z है और Z(1), X से Gm[−1] की व्युत्पन्न श्रेणी में समरूपी है।[2] यहां Gm (गुणात्मक समूह) व्युत्क्रमणीय नियमित फलनों की शीफ सह-समरूपता को दर्शाता है और shift [−1] का अर्थ है कि इस शीफ सह-समरूपता को घात 1 की समिश्रता के रूप में देखा जाता है।

मोटिविक सजातीय और सह-समरूपता के चार सिद्धांतों को किसी भी एबेलियन समूह में गुणांक के साथ परिभाषित किया जा सकता है। विभिन्न गुणांक वाले सिद्धांत सार्वभौमिक गुणांक प्रमेय से संबंधित होते हैं, जैसा कि सांस्थितिक में होता है।

अन्य सह-समरूपता सिद्धांतों से संबंध

K-सिद्धांत से संबंध

बलोच, स्टीफ़न लिक्टेनबाम, एरिक फ्रीडलैंडर, आंद्रेई सुसलिन और लेविन द्वारा एक क्षेत्र पर प्रत्येक समतल विविधता X के लिए मोटिविक सह-समरूपता से लेकर बीजगणितीय K-सिद्धांत तक एक स्पेक्ट्रम अनुक्रम है, जो सांस्थितिक में अतियाह-हिर्ज़ेब्रुच स्पेक्ट्रम अनुक्रम के अनुरूप है:

सांस्थितिक की तरह, परिमेय के साथ प्रदिश उत्पाद के बाद स्पेक्ट्रम अनुक्रम समाप्त हो जाता है।[3] किसी क्षेत्र (आवश्यक नहीं कि समतल) पर परिमित प्रकार की अपेक्षाकृत विविधताओ के लिए मोटिविक सजातीय से जी-सिद्धांत (सदिश समूहो के अतिरिक्त सुसंगत शीव्स का k-सिद्धांत) तक एक अनुरूप स्पेक्ट्रमी अनुक्रम होता है।

मिल्नोर K-सिद्धांत से संबंध

मोटिविक सह-समरूपता पहले से ही क्षेत्रों के लिए एक समृद्ध अपरिवर्तनीयता प्रदान करती है। ध्यान दें कि क्षेत्र k एक विविधता स्पेक (k) निर्धारित करता है जिसके लिए मोटिविक सह-समरूपता को परिभाषित किया गया है। हालांकि क्षेत्र k के लिए मोटिविक सह-समरूपता Hi(k, Z(j)) सामान्यतः समझ से बहुत दूर है, जब i = j होता है तो एक विवरण होता है:

जहां KjM(k), k का jth मिल्नोर K-समूह है चूंकि किसी क्षेत्र के मिल्नोर K-सिद्धांत को विकासक और संबंधों द्वारा स्पष्ट रूप से परिभाषित किया गया है।[4] यह k के मोटिविक सह-समरूपता के विभाजन का एक उपयोगी विवरण है।

एटेल सह-समरूपता का मानचित्रण

माना कि X क्षेत्र k पर एक सहज विविधता है और m एक धनात्मक पूर्णांक है जो k का व्युत्क्रम है तब मोटिविक सह-समरूपता से ईटेल सह-समरूपता तक एक प्राकृतिक समरूपता का मानचित्रण है:

जहां दाईं ओर Z/m(j) का अर्थ एताले शीफ़ (μm)j है, जिसमें μm एकता की mth घात हैं। यह समतल विविधता के चाउ सिद्धांत से ईटेल सह-समरूपता तक चक्र मानचित्र को सामान्यीकृत करता है। बीजगणितीय ज्यामिति या संख्या सिद्धांत में इसका एक सामान्य लक्ष्य मोटिविक सह-समरूपता की गणना करना है, जबकि एटेल सह-समरूपता को समझना प्रायः सरल होता है। उदाहरण के लिए यदि आधार क्षेत्र k सम्मिश्र संख्या है, तो ईटेल सह-समरूप एकल सहसंयोजी (परिमित गुणांक के साथ) के साथ अनुरूप है। वोएवोडस्की द्वारा सिद्ध किया गया परिणाम, जिसे बेइलिंसन-लिचटेनबाम अनुमान के रूप में जाना जाता है, यह परिणाम कहता है कि कई मोटिविक सह-समरूपता समूह वास्तव में ईटेल सह-समरूपता समूहों के समरूपी हैं। यह मानक अवशेष समरूपता प्रमेय का परिणाम है। अर्थात्, बेइलिंसन-लिचटेनबाम अनुमान (वोएवोडस्की का प्रमेय) कहता है कि क्षेत्र k और m पर एक समतल विविधता X के लिए एक धनात्मक पूर्णांक k में चक्र मानचित्रण व्युत्क्रम होता है:

सभी j ≥ i के लिए समरूपता j ≥ i - 1 है।[5]

मोटिविक से संबंध

किसी भी क्षेत्र k और क्रमविनिमेय सिद्धांत R के लिए वोएवोडस्की ने एक R-रैखिक त्रिकोणीय श्रेणी को परिभाषित किया है, जिसे R, DM(k, R) में गुणांक के साथ k से अधिक मोटिविक की व्युत्पन्न श्रेणी कहा जाता है। प्रत्येक विविधता यदि X, k के ऊपर है तो दोनों समरूपी होते हैं।

मोटिविक की व्युत्पन्न श्रेणी का एक मूल बिंदु यह है कि चार प्रकार के मोटिविक सजातीय और मोटिविक सह-समरूपता सभी इस श्रेणी में आकारिता के समूह के रूप में उत्पन्न होते हैं। इसका वर्णन करने के लिए पहले ध्यान दें कि सभी पूर्णांक j के लिए DM(k, R) में टेट मोटिविक R(j) हैं, जैसे कि प्रक्षेप्य समष्टि का मोटिविक टेट मोटिविक का प्रत्यक्ष योग है:

जहां MM[1] त्रिकोणीय श्रेणी DM(k, R) में रूपांतरण या "अनुवाद गुणांक" को दर्शाता है। इन शब्दों में मोटिविक सह-समरूपता k के ऊपर परिमित प्रकार की प्रत्येक विविधता X के लिए निम्न समीकरण द्वारा दी गई है:

जब गुणांक R परिमेय संख्याएँ हों तो बेइलिंसन के अनुमान का एक आधुनिक सिद्धांत अनुमाणन लगता है कि DM(k, Q) में संक्षिप्त फलन की उपश्रेणी एबेलियन श्रेणी MM(k) की सीमाबद्ध व्युत्पन्न श्रेणी के बराबर है। विशेष रूप से अनुमान का अर्थ यह है कि समिश्र मोटिविक श्रेणी में मोटिविक सह-समरूपता समूहों को X समूहों के साथ पहचाना जा सकता है।[6] सामान्यतः यह ज्ञात है कि बेइलिंसन का अनुमान बेइलिंसन-सौले अनुमान को दर्शाता है कि Hi(X,Q(j)) के लिए i < 0 शून्य है, जो केवल कुछ स्थितियों में ही ज्ञात है।

इसके विपरीत ग्रोथेंडिक के मानक अनुमानों और चाउ समूहों पर मुर्रे के अनुमानों के साथ बेइलिंसन-सोले अनुमान का एक प्रकार DM(k, Q) पर टी-संरचना के रूप में एक एबेलियन श्रेणी MM(k) के अस्तित्व का संकेत देता है।[7] मोटिविक सह-समरूपता के साथ MM(k) में X समूहों की पहचान करने के लिए और अधिक मोटिविक सह-समरूपता की आवश्यकता होती है।

समिश्र संख्याओं के उपक्षेत्र k के लिए समिश्र मोटिविक एबेलियन श्रेणी के लिए एक उम्मीदवार को नोरी द्वारा परिभाषित किया गया है।[8] यदि अपेक्षित गुणों के साथ एक श्रेणी MM(k) सम्मिलित है तो विशेष रूप से MM(k) से Q-सदिश रिक्त समष्टि तक बेट्टी सह-समरूपता गुणांक नोरी की मोटिविक सह-समरूपता श्रेणी के बराबर होता है।

अंकगणितीय ज्यामिति के अनुप्रयोग

L-फलन का मान

माना कि X संख्या क्षेत्र पर L-फलन एक सहज प्रक्षेप्य विविधता है। L-फलन के मानों पर बलोच-काटो का पूर्वानुमान कहता है कि एक पूर्णांक बिंदु पर X के L-फलन के समाप्त होने का क्रम एक उपयुक्त मोटिविक सह-समरूपता समूह के क्रम के बराबर है। यह संख्या सिद्धांत की केंद्रीय समस्याओं में से एक है, जिसमें डेलिग्ने और बेइलिंसन के पूर्वानुमान सम्मिलित हैं और बिर्च स्विनर्टन डायर अनुमान की विशेष स्थितियां है। अधिक समुचित रूप से अनुमान नियामकों के संदर्भ में पूर्णांक बिंदु पर L-फलन के अग्रणी गुणांक और मोटिविक सह-समरूपता पर ऊंचाई युग्मन का पूर्वानुमान सम्मिलित है।

इतिहास

बीजगणितीय विविधिताओ के लिए चाउ समूहों से अधिक सामान्य मोटिविक सह-समरूपता सिद्धांत के संभावित सामान्यीकरण का पहला स्पष्ट संकेत डेनियल क्विलेन की बीजगणितीय K-सिद्धांत (1973) की परिभाषा थी जो सदिश समूहों के ग्रोथेंडिक समूह K-0 को सामान्यीकृत करती थी। 1980 के दशक के प्रारम्भ मे बेइलिंसन और सोले ने देखा कि एडम्स सिद्धांत ने सदिश समूहों के साथ बीजगणितीय K-सिद्धांत को विभाजित कर दिया है और सदिश समूहों को अब तर्कसंगत गुणांको के साथ मोटिविक सह-समरूपता कहा जाता है। बीलिन्सन और लिचटेनबाम ने मोटिविक सह-समरूपता के अस्तित्व और गुणों का पूर्वानुमान करते हुए अनुमान लगाया कि अब उनके सभी अनुमान लगभग सिद्ध हो चुके हैं।

बलोच की चाउ समूहों की परिभाषा (1986) क्षेत्र k पर विविधिताओ के लिए मोटिविक सजातीय की पहली समाकलन (तर्कसंगत के विपरीत) परिभाषा थी और इसलिए समतल विविधिताओ की स्थिति में मोटिविक सह-समरूपता X के चाउ समूहों की परिभाषा का एक प्राकृतिक सामान्यीकरण है, जिसमें एफ़िन समष्टि के साथ X के उत्पाद पर बीजगणितीय मानचित्रण सम्मिलित हैं जो अपेक्षित आयाम (संकेतन पहचान के रूप में देखे गए) के समूहों से प्राप्त होता है।

अंत में वोएवोडस्की (सुसलिन के साथ अपने कार्य पर आगे बढ़ते हुए) ने 2000 में मोटिविक सह-समरूपता की व्युत्पन्न श्रेणियों के साथ चार प्रकार की मोटिविक सजातीय और मोटिविक सह-समरूपता को परिभाषित किया और संबंधित श्रेणियों को हनामुरा और लेविन द्वारा भी परिभाषित किया गया था।

टिप्पणियाँ

  1. Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.
  2. Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Theorem 4.1.
  3. Levine, K-theory and motivic cohomology of schemes I, eq. (2.9) and Theorem 14.7.
  4. Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Theorem 5.1.
  5. Voevodsky, On motivic cohomology with Z/l coefficients, Theorem 6.17.
  6. Jannsen, Motivic sheaves and filtrations on Chow groups, Conjecture 4.1.
  7. Hanamura, Mixed motives and algebraic cycles III, Theorem 3.4.
  8. Nori, Lectures at TIFR; Huber and Müller-Stach, On the relation between Nori motives and Kontsevich periods.

संदर्भ

यह भी देखें

बाहरी संबंध