समष्टि प्रक्षेप्य समतल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
गणित में, जटिल प्रक्षेप्य तल को आमतौर पर P से दर्शाया जाता है<sup>2</sup>(सी), द्वि-आयामी [[जटिल प्रक्षेप्य स्थान]] है। यह जटिल आयाम 2 का एक जटिल मैनिफोल्ड है, जिसे तीन जटिल निर्देशांकों द्वारा वर्णित किया गया है
गणित में, '''समष्टि प्रक्षेप्य समतल''', जिसे सामान्यतः '''P'''<sup>2</sup>('''C'''), कहा जाता है, द्वि-आयामी समष्टि प्रक्षेप्य स्थान है। यह समष्टि आयाम 2 का एक समष्टि मैनिफोल्ड है, जिसे तीन समष्टि निर्देशांकों द्वारा वर्णित किया गया है


:<math>(Z_1,Z_2,Z_3) \in \mathbf{C}^3,\qquad (Z_1,Z_2,Z_3)\neq (0,0,0)</math>
:<math>(Z_1,Z_2,Z_3) \in \mathbf{C}^3,\qquad (Z_1,Z_2,Z_3)\neq (0,0,0)                                                                                                            
हालाँकि, समग्र पुनर्स्केलिंग द्वारा भिन्न त्रिगुणों की पहचान की जाती है:
                                                                                                                                            </math>
चूँकि, समग्र पुनर्स्केलिंग द्वारा भिन्न त्रिगुणों की पहचान की जाती है:


:<math>(Z_1,Z_2,Z_3) \equiv (\lambda Z_1,\lambda Z_2, \lambda Z_3);\quad \lambda\in \mathbf{C},\qquad \lambda \neq 0.</math>
:<math>(Z_1,Z_2,Z_3) \equiv (\lambda Z_1,\lambda Z_2, \lambda Z_3);\quad \lambda\in \mathbf{C},\qquad \lambda \neq 0.</math>
Line 8: Line 9:


==टोपोलॉजी==
==टोपोलॉजी==
जटिल प्रक्षेप्य तल की बेट्टी संख्याएँ हैं
समष्टि प्रक्षेप्य समतल की बेट्टी संख्याएँ हैं


:1, 0, 1, 0, 1, 0, 0, ....
:1, 0, 1, 0, 1, 0, 0, ....


मध्य आयाम 2 को समतल में स्थित जटिल प्रक्षेप्य रेखा, या [[रीमैन क्षेत्र]] के समरूपता वर्ग द्वारा ध्यान में रखा जाता है। जटिल प्रक्षेप्य तल के गैर-तुच्छ समरूप समूह हैं <math>\pi_2=\pi_5=\mathbb{Z}</math>. मौलिक समूह तुच्छ है और अन्य सभी उच्च समरूप समूह 5-गोले, यानी मरोड़ वाले हैं।
मध्य आयाम 2 को समसमतल में स्थित समष्टि प्रक्षेप्य रेखा, या [[रीमैन क्षेत्र]] के समरूपता वर्ग द्वारा ध्यान में रखा जाता है। समष्टि प्रक्षेप्य समतल के गैर-सामान्य समरूप समूह हैं <math>\pi_2=\pi_5=\mathbb{Z}                                                                                                                        
 
                                                                                                                                                                                                                                      </math>. मौलिक समूह सामान्य है और अन्य सभी उच्च समरूप समूह 5-गोले, अथार्त टोर्सन वाले हैं।


==बीजगणितीय ज्यामिति==
==बीजगणितीय ज्यामिति==
[[द्विवार्षिक ज्यामिति]] में, एक जटिल [[तर्कसंगत सतह]] कोई भी [[बीजगणितीय सतह]] होती है जो जटिल प्रक्षेप्य तल के द्विवार्षिक रूप से समतुल्य होती है। यह ज्ञात है कि किसी भी गैर-विलक्षण तर्कसंगत विविधता को विमान से परिवर्तनों को उड़ाने और उनके व्युत्क्रम ('उड़ाने') के अनुक्रम से प्राप्त किया जाता है, जो एक बहुत ही विशेष प्रकार का होना चाहिए। एक विशेष मामले के रूप में, पी में एक गैर-एकवचन जटिल [[ द्विघात |द्विघात]] <sup>3</sup>को समतल से दो बिंदुओं को वक्रों तक उड़ाकर, और फिर इन दो बिंदुओं के माध्यम से रेखा को नीचे उड़ाकर प्राप्त किया जाता है; इस परिवर्तन का व्युत्क्रम चतुर्भुज Q पर एक बिंदु P लेकर, उसे उड़ाकर और 'P' में एक सामान्य तल पर प्रक्षेपित करके देखा जा सकता है।<sup>3</sup>P से होकर रेखाएँ खींचकर।
द्विवार्षिक ज्यामिति में, एक समष्टि तर्कसंगत सतह कोई भी बीजगणितीय सतह होती है जो समष्टि प्रक्षेप्य समतल के द्विवार्षिक रूप से समतुल्य होती है। यह ज्ञात है कि किसी भी गैर-विलक्षण तर्कसंगत विविधता को स्थान से परिवर्तनों को उड़ाने और उनके व्युत्क्रम ('उड़ाने') के अनुक्रम से प्राप्त किया जाता है, जो एक बहुत ही विशेष प्रकार का होना चाहिए। एक विशेष स्थिति के रूप में, '''P'''<sup>3</sup> में एक गैर-एकवचन समष्टि चतुर्भुज को दो बिंदुओं को वक्रों तक उड़ाकर, और फिर इन दो बिंदुओं के माध्यम से रेखा को नीचे उड़ाकर प्राप्त किया जाता है; इस परिवर्तन का व्युत्क्रम चतुर्भुज Q पर एक बिंदु P लेकर, उसे उड़ाकर, और P के माध्यम से रेखाएँ खींचकर '''P'''<sup>3</sup> में एक सामान्य समतल पर प्रक्षेपित करके देखा जा सकता है।


जटिल प्रक्षेप्य तल के द्विवार्षिक ऑटोमोर्फिज्म का समूह [[क्रेमोना समूह]] है।
समष्टि प्रक्षेप्य समतल के द्विवार्षिक ऑटोमोर्फिज्म का समूह [[क्रेमोना समूह]] है।


==विभेदक ज्यामिति==
==विभेदक ज्यामिति==
रीमैनियन मैनिफोल्ड के रूप में, जटिल प्रक्षेप्य तल एक 4-आयामी मैनिफोल्ड है जिसका अनुभागीय वक्रता चौथाई-चुटकी हुई है, लेकिन सख्ती से ऐसा नहीं है। अर्थात्, यह दोनों सीमाएँ प्राप्त कर लेता है और इस प्रकार एक गोला होने से बच जाता है, जैसा कि अन्यथा गोले प्रमेय की आवश्यकता होगी। प्रतिद्वंद्वी सामान्यीकरण वक्रता को 1/4 और 1 के बीच पिन करने के लिए हैं; वैकल्पिक रूप से, 1 और 4 के बीच। पूर्व सामान्यीकरण के संबंध में, जटिल प्रक्षेप्य रेखा द्वारा परिभाषित अंतर्निहित सतह में गाऊसी वक्रता 1 है। बाद के सामान्यीकरण के संबंध में, अंतर्निहित वास्तविक प्रक्षेप्य विमान में गाऊसी वक्रता 1 है।
रीमैनियन मैनिफोल्ड के रूप में, समष्टि प्रक्षेप्य समतल एक 4-आयामी मैनिफोल्ड है जिसका अनुभागीय वक्रता चौथाई-पिंच हुई है, किंतु सख्ती से ऐसा नहीं है। अर्थात्, यह दोनों सीमाएँ प्राप्त कर लेता है और इस प्रकार एक गोला होने से बच जाता है, जैसा कि अन्यथा गोले प्रमेय की आवश्यकता होती है। प्रतिद्वंद्वी सामान्यीकरण वक्रता को 1/4 और 1 के बीच पिन करने के लिए हैं; वैकल्पिक रूप से, 1 और 4 के बीच पूर्व सामान्यीकरण के संबंध में, समष्टि प्रक्षेप्य रेखा द्वारा परिभाषित अंतर्निहित सतह में गाऊसी वक्रता 1 है। बाद के सामान्यीकरण के संबंध में, अंतर्निहित वास्तविक प्रक्षेप्य स्थान में गाऊसी वक्रता 1 है।


[[फ़ुबिनी-अध्ययन मीट्रिक]] पर लेख के n=2 उपधारा में रीमैन और रिक्की टेंसर का एक स्पष्ट प्रदर्शन दिया गया है।
[[फ़ुबिनी-अध्ययन मीट्रिक]] पर लेख के n=2 उपधारा में रीमैन और रिक्की टेंसर का एक स्पष्ट प्रदर्शन दिया गया है।


==यह भी देखें==
==यह भी देखें==
*[[टुकड़े की सतह का]]
*डेल पेज्जो सरफेस
*[[टोरिक ज्यामिति]]
*[[टोरिक ज्यामिति]]
*[[नकली प्रक्षेप्य विमान]]
*फेक [[नकली प्रक्षेप्य विमान|प्रक्षेप्य स्थान]]  


==संदर्भ==
==संदर्भ==
* C. E. Springer (1964) ''Geometry and Analysis of Projective Spaces'', pages 140–3, [[W. H. Freeman and Company]].
* C. E. Springer (1964) ''Geometry and Analysis of Projective Spaces'', pages 140–3, [[W. H. Freeman and Company]].


{{DEFAULTSORT:Complex Projective Plane}}[[Category: बीजगणितीय सतहें]] [[Category: जटिल सतहें]] [[Category: प्रक्षेप्य ज्यामिति]]
{{DEFAULTSORT:Complex Projective Plane}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 13/07/2023|Complex Projective Plane]]
[[Category:Created On 13/07/2023]]
[[Category:Machine Translated Page|Complex Projective Plane]]
[[Category:जटिल सतहें|Complex Projective Plane]]
[[Category:प्रक्षेप्य ज्यामिति|Complex Projective Plane]]
[[Category:बीजगणितीय सतहें|Complex Projective Plane]]

Latest revision as of 15:58, 30 August 2023

गणित में, समष्टि प्रक्षेप्य समतल, जिसे सामान्यतः P2(C), कहा जाता है, द्वि-आयामी समष्टि प्रक्षेप्य स्थान है। यह समष्टि आयाम 2 का एक समष्टि मैनिफोल्ड है, जिसे तीन समष्टि निर्देशांकों द्वारा वर्णित किया गया है

चूँकि, समग्र पुनर्स्केलिंग द्वारा भिन्न त्रिगुणों की पहचान की जाती है:

अर्थात्, ये प्रक्षेप्य ज्यामिति के पारंपरिक अर्थ में सजातीय निर्देशांक हैं।

टोपोलॉजी

समष्टि प्रक्षेप्य समतल की बेट्टी संख्याएँ हैं

1, 0, 1, 0, 1, 0, 0, ....

मध्य आयाम 2 को समसमतल में स्थित समष्टि प्रक्षेप्य रेखा, या रीमैन क्षेत्र के समरूपता वर्ग द्वारा ध्यान में रखा जाता है। समष्टि प्रक्षेप्य समतल के गैर-सामान्य समरूप समूह हैं . मौलिक समूह सामान्य है और अन्य सभी उच्च समरूप समूह 5-गोले, अथार्त टोर्सन वाले हैं।

बीजगणितीय ज्यामिति

द्विवार्षिक ज्यामिति में, एक समष्टि तर्कसंगत सतह कोई भी बीजगणितीय सतह होती है जो समष्टि प्रक्षेप्य समतल के द्विवार्षिक रूप से समतुल्य होती है। यह ज्ञात है कि किसी भी गैर-विलक्षण तर्कसंगत विविधता को स्थान से परिवर्तनों को उड़ाने और उनके व्युत्क्रम ('उड़ाने') के अनुक्रम से प्राप्त किया जाता है, जो एक बहुत ही विशेष प्रकार का होना चाहिए। एक विशेष स्थिति के रूप में, P3 में एक गैर-एकवचन समष्टि चतुर्भुज को दो बिंदुओं को वक्रों तक उड़ाकर, और फिर इन दो बिंदुओं के माध्यम से रेखा को नीचे उड़ाकर प्राप्त किया जाता है; इस परिवर्तन का व्युत्क्रम चतुर्भुज Q पर एक बिंदु P लेकर, उसे उड़ाकर, और P के माध्यम से रेखाएँ खींचकर P3 में एक सामान्य समतल पर प्रक्षेपित करके देखा जा सकता है।

समष्टि प्रक्षेप्य समतल के द्विवार्षिक ऑटोमोर्फिज्म का समूह क्रेमोना समूह है।

विभेदक ज्यामिति

रीमैनियन मैनिफोल्ड के रूप में, समष्टि प्रक्षेप्य समतल एक 4-आयामी मैनिफोल्ड है जिसका अनुभागीय वक्रता चौथाई-पिंच हुई है, किंतु सख्ती से ऐसा नहीं है। अर्थात्, यह दोनों सीमाएँ प्राप्त कर लेता है और इस प्रकार एक गोला होने से बच जाता है, जैसा कि अन्यथा गोले प्रमेय की आवश्यकता होती है। प्रतिद्वंद्वी सामान्यीकरण वक्रता को 1/4 और 1 के बीच पिन करने के लिए हैं; वैकल्पिक रूप से, 1 और 4 के बीच पूर्व सामान्यीकरण के संबंध में, समष्टि प्रक्षेप्य रेखा द्वारा परिभाषित अंतर्निहित सतह में गाऊसी वक्रता 1 है। बाद के सामान्यीकरण के संबंध में, अंतर्निहित वास्तविक प्रक्षेप्य स्थान में गाऊसी वक्रता 1 है।

फ़ुबिनी-अध्ययन मीट्रिक पर लेख के n=2 उपधारा में रीमैन और रिक्की टेंसर का एक स्पष्ट प्रदर्शन दिया गया है।

यह भी देखें

संदर्भ