स्टोचैस्टिक सिमुलेशन: Difference between revisions

From Vigyanwiki
(Created page with "एक स्टोकेस्टिक सिमुलेशन एक ऐसी प्रणाली का अनुकरण है जिसमें चर...")
 
No edit summary
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
एक [[स्टोकेस्टिक]] [[सिमुलेशन]] एक ऐसी [[प्रणाली]] का अनुकरण है जिसमें चर होते हैं जो व्यक्तिगत संभावनाओं के साथ स्टोकेस्टिक | स्टोचैस्टिक (यादृच्छिक रूप से) बदल सकते हैं।<ref name="sim-pro-ek">DLOUHÝ, M.; FÁBRY, J.; KUNCOVÁ, M.. Simulace pro ekonomy. Praha : VŠE, 2005.</ref>
स्टोचैस्टिक सिमुलेशन '''[[स्टोकेस्टिक|(प्रसंभाव्य]] [[सिमुलेशन|अनुरूपण)]]''' एक ऐसी [[प्रणाली]] का अनुरूपण है जिसमे ऐसे चर (गणित) होते हैं जो अलग-अलग संभावनाओं के साथ यादृच्छिक रूप से परिवर्तित हो सकते हैं।<ref name="sim-pro-ek">DLOUHÝ, M.; FÁBRY, J.; KUNCOVÁ, M.. Simulace pro ekonomy. Praha : VŠE, 2005.</ref>
इन यादृच्छिक चरों की प्राप्ति (संभावना) उत्पन्न होती है और सिस्टम के एक मॉडल में डाली जाती है। मॉडल के आउटपुट रिकॉर्ड किए जाते हैं, और फिर प्रक्रिया को यादृच्छिक मानों के एक नए सेट के साथ दोहराया जाता है। पर्याप्त मात्रा में डेटा एकत्र होने तक इन चरणों को दोहराया जाता है। अंत में, आउटपुट का [[वितरण (गणित)]] सबसे संभावित अनुमानों के साथ-साथ उम्मीदों का एक ढांचा दिखाता है कि वेरिएबल्स के मूल्यों की कम या ज्यादा गिरावट की संभावना क्या है।<ref name="sim-pro-ek" />


अक्सर मॉडल में डाले गए रैंडम वैरिएबल कंप्यूटर पर [[यादृच्छिक संख्या पीढ़ी]] (RNG) के साथ बनाए जाते हैं। यादृच्छिक संख्या जनरेटर के U(0,1) [[समान वितरण (निरंतर)]] आउटपुट तब प्रायिकता वितरण के साथ यादृच्छिक चर में परिवर्तित हो जाते हैं जो सिस्टम मॉडल में उपयोग किए जाते हैं।<ref name= Dekking, F.M. फ्रेडरिक मिशेल, 1946-2005 >{{Cite book | title = संभाव्यता और सांख्यिकी का एक आधुनिक परिचय: क्यों और कैसे को समझना| last=Dekking | first = Frederik Michel |date=2005|publisher=Springer| isbn = 1-85233-896-2 | oclc=783259968}}</ref>
जब इन यादृच्छिक चरों का प्रत्यक्षीकरण उत्पन्न होता है तब प्रणाली के एक मॉडल में प्रयुक्त किया जाता है और मॉडल के आउटपुट को रिकॉर्ड किया जाता हैं। इस प्रक्रिया को पुनः यादृच्छिक मानों के नए समूह के साथ दोहराया जाता है। पर्याप्त मात्रा में आंकड़ा एकत्र होने तक इन चरणों को दोहराया जाता है। अंत में आउटपुट का [[वितरण (गणित)]] सबसे अधिक संभावित अनुमानों के साथ-साथ अपेक्षाओं के संबंध में एक सूची को प्रदर्शित किया जाता है कि चर के अपेक्षाकृत कम या अधिक संभावित मानों की सीमा क्या है।<ref name="sim-pro-ek" />
 
प्रायः मॉडल में प्रयुक्त किए गए यादृच्छिक चर कंप्यूटर पर एक [[यादृच्छिक संख्या पीढ़ी|यादृच्छिक संख्या]] (आरएनजी) के साथ बनाए जाते हैं। जिससे यादृच्छिक संख्या U(0,1) के समान वितरण आउटपुट को यादृच्छिक चर में परिवर्तित कर दिया जाता है जो कि प्रणाली मॉडल में उपयोग किए जाने वाले संभाव्यता वितरण के समान होते है।


== व्युत्पत्ति ==
== व्युत्पत्ति ==
स्टोकेस्टिक मूल रूप से अनुमान से संबंधित था; ग्रीक स्टोखस्टिकोस से अनुमान लगाने में सक्षम, अनुमान लगाना: स्टोखज़ेस्थई अनुमान से; स्टोखोस से अनुमान, लक्ष्य, लक्ष्य, निशान। बेतरतीब ढंग से निर्धारित की भावना पहली बार 1934 में जर्मन स्टोचैस्टिक से दर्ज की गई थी।<ref>stochastic. (n.d.). Online Etymology Dictionary. Retrieved January 23, 2014, from Dictionary.com website: http://dictionary.reference.com/browse/stochastic</ref>
प्रसंभाव्य अनुरूपण का मूल अर्थ "अनुमान से संबंधित" था। ग्रीक शब्द "स्टोखस्टिकोस" का अर्थ अनुमान लगाने में सक्षम और अनुमान लगाने से था। शब्द "स्टोखज़ेस्थई" का अर्थ भी अनुमान से था। और शब्द "स्टोखोस" का अर्थ अनुमान उद्देश्य, लक्ष्य, चिन्ह से था। यादृच्छिक रूप से निर्धारित संभावनाओ को पहली बार 1934 में जर्मन प्रसंभाव्य मे प्रस्तुत किया गया था।
 


== असतत-घटना सिमुलेशन ==
== असतत-घटना अनुरूपण ==


स्टोकेस्टिक सिमुलेशन में अगली घटना का निर्धारण करने के लिए, मॉडल की स्थिति में सभी संभावित परिवर्तनों की दरों की गणना की जाती है, और फिर एक सरणी में क्रमबद्ध किया जाता है। अगला, सरणी का संचयी योग लिया जाता है, और अंतिम सेल में संख्या R होती है, जहाँ R कुल घटना दर है। यह संचयी सरणी अब एक असतत संचयी वितरण है, और एक यादृच्छिक संख्या z~U(0,R) चुनकर और पहली घटना को चुनकर अगली घटना को चुनने के लिए इस्तेमाल किया जा सकता है, जैसे कि z उस घटना से जुड़ी दर से कम है .
प्रसंभाव्य अनुरूपण में अगली घटना का निर्धारण करने के लिए मॉडल की स्थिति में सभी संभावित परिवर्तनों की दरों की गणना की जाती है और फिर एक सरणी में क्रमबद्ध किया जाता है। अगली सरणी का संचयी योग लिया जाता है और अंतिम सेल में संख्या R होती है, जहाँ R कुल घटना दर है। यह संचयी सरणी अब एक असतत संचयी वितरण है और यादृच्छिक संख्या z~U(0,R) और पहली घटना को चयमित करके अगली घटना को चुनने के लिए प्रयोग किया जा सकता है जैसे कि z उस घटना से सम्बद्ध दर से अपेक्षाकृत कम है।


=== संभाव्यता वितरण ===
=== संभाव्यता वितरण ===
यादृच्छिक चर के संभावित परिणाम का वर्णन करने के लिए प्रायिकता वितरण का उपयोग किया जाता है।
यादृच्छिक चर के संभावित परिणाम का वर्णन करने के लिए प्रायिकता वितरण का उपयोग किया जाता है जो परिणामों को सीमित करता है जहां चर केवल असतत मान प्राप्त कर सकता है।<ref name="ASM2">Rachev, Svetlozar T. Stoyanov, Stoyan V. Fabozzi, Frank J., "Chapter 1 Concepts of Probability" in Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization : The Ideal Risk, Uncertainty, and Performance Measures, Hoboken, NJ, USA: Wiley, 2008</ref>
 
परिणामों को सीमित करता है जहां चर केवल असतत मान ले सकता है।<ref name="ASM2">Rachev, Svetlozar T. Stoyanov, Stoyan V. Fabozzi, Frank J., "Chapter 1 Concepts of Probability" in Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization : The Ideal Risk, Uncertainty, and Performance Measures, Hoboken, NJ, USA: Wiley, 2008</ref>
 


==== बरनौली वितरण ====
==== बरनौली वितरण ====
{{main|Bernoulli distribution}}
{{main|बरनौली वितरण}}
 
एक यादृच्छिक चर एक्स बर्नौली वितरण है | बर्नौली-पैरामीटर पी के साथ वितरित किया गया है यदि इसके दो संभावित परिणाम हैं जो आमतौर पर 1 (सफलता या डिफ़ॉल्ट) या 0 (विफलता या उत्तरजीविता) को एन्कोड किया गया है।<ref>{{Cite book|last1=Rachev|first1=Svetlozar T.| last2=Stoyanov|first2=Stoyan V.|last3=Fabozzi|first3=Frank J.|date=2011-04-14|title=वित्तीय जोखिम उपायों के लिए एक संभावना मेट्रिक्स दृष्टिकोण|doi=10.1002/9781444392715|isbn=9781444392715}}</ref> जहां सफलता और असफलता की संभावनाएं हैं <math>P(X = 1) = p</math> और <math>P(X = 0) = 1 - p</math> कहाँ <math>0 \leq p \leq 1</math>.


एक यादृच्छिक संख्या जनरेटर द्वारा किए गए यू (0,1) समान वितरण से बर्नौली वितरण के साथ एक यादृच्छिक चर एक्स का उत्पादन करने के लिए, हम परिभाषित करते हैं
एक यादृच्छिक चर X बर्नौली वितरण है। बर्नौली-पैरामीटर P के साथ वितरित किया गया है यदि इसके दो संभावित परिणाम हैं जो सामान्यतः 1 (सफलता या डिफ़ॉल्ट) और 0 (विफलता या उत्तरजीविता) को कूटबद्ध किया गया है। वित्तीय जोखिम उपायों के लिए संभावना आव्यूह दृष्टिकोण जहां सफलता और असफलता की संभावनाएं हैं एक यादृच्छिक संख्या जनरेटर द्वारा किए गए U (0,1) समान वितरण से बर्नौली वितरण के साथ यादृच्छिक चर X का उत्पादन करने के लिए हम परिभाषित करते हैं:
<math display="block">X = \begin{cases} 1, & \text{if } 0 \leq U < p \\ 0, & \text{if } 1 \geq U \geq p \end{cases} </math>
इस तरह की संभावना के लिए <math>P(X = 1) = P(0 \leq U < p) = p</math> और <math>P(X = 0) = P(1 \geq U \geq p) = 1 - p</math><रेफरी नाम = कवरेज, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 />


===== उदाहरण: सिक्के का उछाल =====
===== उदाहरण: सिक्का उछालना =====
परिभाषित करना
'''परिभाषित:'''<math display="block">
<math display="block">
X = \begin{cases}
X = \begin{cases}
1 & \text{if heads comes up} \\
1 & \text{if heads comes up} \\
Line 35: Line 27:
\end{cases}
\end{cases}
</math>
</math>
एक निष्पक्ष सिक्के के लिए, दोनों प्राप्ति समान रूप से होने की संभावना है। हम इस यादृच्छिक चर X की प्रतीति a से उत्पन्न कर सकते हैं <math>U(1,0)</math> एक यादृच्छिक संख्या जनरेटर (आरएनजी) द्वारा प्रदान किया गया समान वितरण <math>X = 1</math> यदि RNG 0 और 0.5 के बीच का मान आउटपुट करता है और <math>X = 0</math> यदि RNG 0.5 और 1 के बीच का मान आउटपुट करता है।
 
<math display="block">\begin{align}
 
एक निष्पक्ष सिक्के के लिए, दोनों प्राप्ति समान रूप से होने की संभावना है। यदि गैर-इकाई वलय 0, 0.5 या <math>X = 1</math> के बीच का मान आउटपुट करता है, तो हम यादृच्छिक संख्या निर्माता द्वारा प्रदान किए गए <math>U(1,0)</math> समान वितरण से इस यादृच्छिक चर X की प्राप्ति उत्पन्न कर सकते हैं। <math>X = 0</math> यदि गैर-इकाई वलय 0.5 और 1 के बीच का मान आउटपुट करती है।
तब:<math display="block">\begin{align}
  P (X = 1) &= P(0 \leq U  <  1/2) = 1/2 \\
  P (X = 1) &= P(0 \leq U  <  1/2) = 1/2 \\
  P (X = 0) &= P(1 \geq U \geq 1/2) = 1/2
  P (X = 0) &= P(1 \geq U \geq 1/2) = 1/2
\end{align}</math>
\end{align}</math>इसके अतिरिक्त दो परिणाम चिकित्सा उपचार के समान रूप से सफल होने की संभावना नहीं हो सकते हैं।
बेशक, दो परिणाम समान रूप से संभावित नहीं हो सकते हैं (उदाहरण के लिए चिकित्सा उपचार की सफलता)।<ref name="bernoulli">Bernoulli Distribution, The University of Chicago - Department of Statistics, [online] available at http://galton.uchicago.edu/~eichler/stat22000/Handouts/l12.pdf</ref>
==== द्विपद वितरण ====
 


==== द्विपद वितरण ====
{{main|द्विपद वितरण}}


{{main|Binomial distribution}}
पैरामीटर n और p के साथ [[द्विपद वितरण]] यादृच्छिक चर Y को n स्वतंत्र और समान रूप से बर्नौली वितरण के योग के रूप में प्राप्त किया जाता है। जहां बर्नौली-वितरित यादृच्छिक चर X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>''n''</sub> हैं।


पैरामीटर n और p के साथ एक [[द्विपद वितरण]] यादृच्छिक चर Y को n स्वतंत्र और समान रूप से बर्नौली वितरण के योग के रूप में प्राप्त किया जाता है | बर्नौली-वितरित यादृच्छिक चर X<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''n''</sub><ref name="ASM2"/>
उदाहरण: एक सिक्के को तीन बार उछाला जाता है। ठीक दो चित आने की प्रायिकता ज्ञात कीजिए।


उदाहरण: एक सिक्के को तीन बार उछाला जाता है। ठीक दो चित आने की प्रायिकता ज्ञात कीजिए।
हल: सिक्के के स्थान को देखकर इस समस्या को हल किया जा सकता है। दो सिर पाने के तीन तरीके हैं।{{block indent| HHH, '''HHT, HTH, THH''', TTH, THT, HTT, TTT}}
नमूना स्थान को देखकर इस समस्या को हल किया जा सकता है। दो सिर पाने के तीन तरीके हैं।
{{block indent| HHH, '''HHT, HTH, THH''', TTH, THT, HTT, TTT}}


उत्तर 3/8 (= 0.375) है।<ref>{{Cite web |url=http://www.elderlab.yorku.ca/~aaron/Stats2022/BinomialDistribution.htm |title=द्विपद वितरण|access-date=2014-01-25 |archive-url=https://web.archive.org/web/20140226112551/http://www.elderlab.yorku.ca/~aaron/Stats2022/BinomialDistribution.htm |archive-date=2014-02-26 |url-status=dead }}</ref>
उत्तर 3/8 (= 0.375) है।<ref>{{Cite web |url=http://www.elderlab.yorku.ca/~aaron/Stats2022/BinomialDistribution.htm |title=द्विपद वितरण|access-date=2014-01-25 |archive-url=https://web.archive.org/web/20140226112551/http://www.elderlab.yorku.ca/~aaron/Stats2022/BinomialDistribution.htm |archive-date=2014-02-26 |url-status=dead }}</ref>
==== पॉसों का वितरण ====
{{main|पॉसों का वितरण}}


 
पॉसों की वितरण प्रक्रिया एक ऐसी प्रक्रिया है जहां समय या स्थान के अंतराल में घटनाएं अनियमित रूप से घटित होती हैं।<ref><रेफरी नाम = डेकिंग, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 /></ref><ref>{{Cite book|title=पोइसन वितरण की पुस्तिका| last = Haight | first = Frank A.|date=1967| publisher=Wiley|oclc=422367440}}</ref> निरंतर दर λ प्रति समय अंतराल के साथ पासा प्रक्रियाओं के लिए प्रायिकता का वितरण निम्नलिखित समीकरण द्वारा दिया गया है।<ref name="ASM2"/><math display="block">P(k \text{ events in interval}) = \frac{\lambda^k e^{-\lambda}}{k!}</math>परिभाषित <math>N(t)</math> समय अंतराल में होने वाली घटनाओं की संख्या के रूप में <math>t</math> है:<math display="block">P(N(t) = k) = \frac{(t\lambda)^{k}}{k!}e^{-t\lambda}</math>यह दिखाया जा सकता है कि घटनाओं के लिए अंतर-आगमन समय एक संचयी वितरण फलन (सीडीएफ) के साथ घातीय वितरण <math>F(t) = 1 - e^{-t\lambda}</math> है। घातीय सीडीएफ का व्युत्क्रम किसके द्वारा दिया जाता है:<math display="block">t = -\frac{1}{\lambda}\ln(u)</math>जहाँ <math>u</math>, <math>U(0,1)</math> के समान रूप से वितरित यादृच्छिक चर है।<ref><ref name="Dekking, F.M. Frederik Michel, 1946–2005"/></ref> जो स्थिर दर के साथ पॉसा प्रक्रिया का अनुकरण करना <math>\lambda</math> घटनाओं की संख्या के लिए <math>N</math> अन्तराल में <math>[t_\text{start},t_\text{end}]</math> होता है। यह निम्नलिखित एल्गोरिथम के साथ किया जा सकता है।<ref>{{Cite web| url=http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-PP-NSPP.pdf|title=पॉसॉन प्रक्रियाएं, और यौगिक (बैच) पॉइसन प्रक्रियाएं|last=Sigman|first=Karl}}</ref>
==== विष वितरण ====
# <math>N = 0</math> और <math>t = t_\text{start}</math> के साथ प्रारम्भ करें।
{{main|Poisson distribution}}
# <math>u</math> से <math>U(0,1)</math> एकसमान वितरण यादृच्छिक चर उत्पन्न करें।
 
# <math>t = t - \ln(u) / \lambda</math> के साथ समय अपडेट करें।
एक पोइसन प्रक्रिया एक ऐसी प्रक्रिया है जहां समय या स्थान के अंतराल में घटनाएं अनियमित रूप से घटित होती हैं। <रेफरी नाम = डेकिंग, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 /><ref>{{Cite book|title=पोइसन वितरण की पुस्तिका| last = Haight | first = Frank A.|date=1967| publisher=Wiley|oclc=422367440}}</ref> निरंतर दर λ प्रति समय अंतराल के साथ पॉइसन प्रक्रियाओं के लिए प्रायिकता वितरण निम्नलिखित समीकरण द्वारा दिया गया है।<ref name="ASM2"/>
# यदि <math>t > t_\text{end}</math>, विवृत है तब चरण 5 प्रारम्भ करें।
<math display="block">P(k \text{ events in interval}) = \frac{\lambda^k e^{-\lambda}}{k!}</math>
परिभाषित <math>N(t)</math> समय अंतराल में होने वाली घटनाओं की संख्या के रूप में <math>t</math>
<math display="block">P(N(t) = k) = \frac{(t\lambda)^{k}}{k!}e^{-t\lambda}</math>
यह दिखाया जा सकता है कि घटनाओं के लिए अंतर-आगमन समय एक संचयी वितरण समारोह (सीडीएफ) के साथ घातीय वितरण है <math>F(t) = 1 - e^{-t\lambda}</math>. घातीय CDF का व्युत्क्रम किसके द्वारा दिया जाता है
<math display="block">t = -\frac{1}{\lambda}\ln(u)</math>
कहाँ <math>u</math> एक <math>U(0,1)</math> समान रूप से वितरित यादृच्छिक चर। <रेफरी नाम = अलंकार, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 />
 
एक स्थिर दर के साथ पॉसों प्रक्रिया का अनुकरण करना <math>\lambda</math> घटनाओं की संख्या के लिए <math>N</math> जो अन्तराल में होता है <math>[t_\text{start},t_\text{end}]</math> निम्नलिखित एल्गोरिथम के साथ किया जा सकता है।<ref>{{Cite web| url=http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-PP-NSPP.pdf|title=पॉसॉन प्रक्रियाएं, और यौगिक (बैच) पॉइसन प्रक्रियाएं|last=Sigman|first=Karl}}</ref>
# के साथ शुरू <math>N = 0</math> और <math>t = t_\text{start}</math>
# यादृच्छिक चर उत्पन्न करें <math>u</math> से <math>U(0,1)</math> वर्दी वितरण
# के साथ समय अपडेट करें <math>t = t - \ln(u) / \lambda</math>
# अगर <math>t > t_\text{end}</math>, फिर रुको। अन्यथा चरण 5 जारी रखें।
# <math>N = N + 1</math>
# <math>N = N + 1</math>
# चरण 2 जारी रखें
# चरण 2 प्रारम्भ रखें।
 
=== तरीके ===


====प्रत्यक्ष और पहली प्रतिक्रिया के तरीके ====
=== प्रकार ===


1977 में [[और गिलेस्पी]] द्वारा प्रकाशित, और संचयी सरणी पर एक रेखीय खोज है। [[गिलेस्पी एल्गोरिथम]] देखें।
====प्रत्यक्ष और प्रथम प्रतिक्रिया के प्रकार ====


गिलेस्पी का स्टोचैस्टिक सिमुलेशन एल्गोरिथम (एसएसए) अनिवार्य रूप से ऐसी प्रणाली में निहित यादृच्छिकता का उचित लेखा-जोखा लेकर एक अच्छी तरह से उत्तेजित रासायनिक प्रतिक्रिया प्रणाली के समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सटीक प्रक्रिया है।<ref name="ssa">Stephen Gilmore, An Introduction to Stochastic Simulation - Stochastic Simulation Algorithms, University of Edinburgh, [online] available at http://www.doc.ic.ac.uk/~jb/conferences/pasta2006/slides/stochastic-simulation-introduction.pdf</ref>
1977 में [[और गिलेस्पी|गिलेस्पी]] द्वारा प्रकाशित संचयी सरणी पर एक रेखीय खोज है। [[गिलेस्पी एल्गोरिथम]] देखें।
यह सख्ती से उसी माइक्रोफिजिकल आधार पर आधारित है जो रासायनिक मास्टर समीकरण को रेखांकित करता है और ओडीई द्वारा गणितीय रूप से प्रस्तुत नियतात्मक प्रतिक्रिया दर समीकरण (आरआरई) की तुलना में सिस्टम के विकास का अधिक यथार्थवादी प्रतिनिधित्व देता है।<ref name="ssa" />


जैसा कि रासायनिक मास्टर समीकरण के साथ होता है, एसएसए अभिकारकों की बड़ी संख्या की सीमा में, बड़े पैमाने पर कार्रवाई के कानून के समान समाधान के लिए अभिसरण करता है।
गिलेस्पी का प्रसंभाव्य अनुरूपण एल्गोरिथम (एसएसए) अनिवार्य रूप से ऐसी प्रणाली में निहित यादृच्छिकता का उपयुक्त विवरण लेकर एक अच्छी तरह से उत्तेजित रासायनिक प्रतिक्रिया प्रणाली के समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए शुद्ध प्रक्रिया है।<ref name="ssa">Stephen Gilmore, An Introduction to Stochastic Simulation - Stochastic Simulation Algorithms, University of Edinburgh, [online] available at http://www.doc.ic.ac.uk/~jb/conferences/pasta2006/slides/stochastic-simulation-introduction.pdf</ref> यह जटिलता से उसी सूक्ष्म भौतिक आधार पर आधारित है जो रासायनिक कुशल समीकरण को रेखांकित करता है और ओडीई द्वारा गणितीय रूप से प्रस्तुत नियतात्मक प्रतिक्रिया दर समीकरण (आरआरई) की तुलना में प्रणाली के विकास का अधिक यथार्थवादी प्रतिनिधित्व देता है।<ref name="ssa" /> जैसा कि रासायनिक कुशल समीकरण के साथ होता है। एसएसए अभिकारकों की बड़ी संख्या की सीमा में बड़े पैमाने पर प्रतिक्रिया के नियम के समान समाधान के लिए अभिसरण करता है।


==== अगली प्रतिक्रिया विधि ====
==== अगली प्रतिक्रिया विधि ====


गिब्सन और ब्रुक द्वारा 2000 में प्रकाशित।<ref>M A Gibson and J Bruck, ''Efficient exact stochastic simulation of chemical systems with many specias and many channels'', J. Comp Phys., 104:1876–1899, 2000.</ref> यह पहली प्रतिक्रिया पद्धति पर एक सुधार है जहां अप्रयुक्त प्रतिक्रिया समय का पुन: उपयोग किया जाता है। प्रतिक्रियाओं के नमूने को और अधिक कुशल बनाने के लिए, प्रतिक्रिया समय को संग्रहीत करने के लिए अनुक्रमित प्राथमिकता कतार का उपयोग किया जाता है। दूसरी ओर, प्रवृत्तियों की पुनर्गणना को और अधिक कुशल बनाने के लिए, एक निर्भरता ग्राफ का उपयोग किया जाता है। यह निर्भरता ग्राफ बताता है कि किसी विशेष प्रतिक्रिया के बाद कौन सी प्रतिक्रिया की प्रवृत्ति को अपडेट करना है।
इस प्रतिक्रिया को गिब्सन और ब्रुक द्वारा 2000 में प्रकाशित था।<ref>M A Gibson and J Bruck, ''Efficient exact stochastic simulation of chemical systems with many specias and many channels'', J. Comp Phys., 104:1876–1899, 2000.</ref> यह पहली प्रतिक्रिया पद्धति पर एक सुधार है जहां अप्रयुक्त प्रतिक्रिया समय का पुन: उपयोग किया जाता है। प्रतिक्रियाओं के प्रारूप को और अधिक कुशल बनाने के लिए प्रतिक्रिया समय को संग्रहीत करने के लिए अनुक्रमित प्राथमिकता श्रेणी का उपयोग किया जाता है। दूसरी ओर प्रवृत्तियों की पुनर्गणना को और अधिक कुशल बनाने के लिए निर्भरता आरेख का उपयोग किया जाता है। यह निर्भरता आरेख बताता है कि किसी विशेष प्रतिक्रिया के बाद कौन सी प्रतिक्रिया की प्रवृत्ति को अपडेट करना है।


==== अनुकूलित और छँटाई प्रत्यक्ष तरीके ====
==== अनुकूलित और पृथक्करण प्रत्यक्ष प्रकार ====


प्रकाशित 2004<ref>Y. Cao, H. Li, and L. Petzold. ''Efficient formulation of the stochastic simulation algorithm for chemically reacting systems'', J. Chem. Phys, 121(9):4059–4067, 2004.</ref> और 2005। एल्गोरिथम की औसत खोज गहराई को कम करने के लिए ये विधियाँ संचयी सरणी को सॉर्ट करती हैं। पूर्व प्रतिक्रियाओं की फायरिंग आवृत्ति का अनुमान लगाने के लिए एक अनुमान लगाता है, जबकि बाद वाला संचयी सरणी ऑन-द-फ्लाई को सॉर्ट करता है।
प्रायः इस प्रतिक्रिया को 2004<ref>Y. Cao, H. Li, and L. Petzold. ''Efficient formulation of the stochastic simulation algorithm for chemically reacting systems'', J. Chem. Phys, 121(9):4059–4067, 2004.</ref> और 2005 मे प्रकाशित किया गया था। एल्गोरिथम की औसत खोज को अपेक्षाकृत कम करने के लिए ये विधियाँ संचयी सरणी को विभाजित करती हैं। पूर्व प्रतिक्रियाओं की फायरिंग आवृत्ति का अनुमान लगाने के लिए एक अनुमान लगाता है, जबकि बाद वाली संचयी सरणी आवृत्ति को विभाजित करती है।


==== लघुगणक प्रत्यक्ष विधि ====
==== लघुगणक प्रत्यक्ष विधि ====


2006 में प्रकाशित। यह संचयी सरणी पर एक द्विआधारी खोज है, इस प्रकार (लॉग एम) के लिए प्रतिक्रिया नमूनाकरण की सबसे खराब समय जटिलता को कम करता है।
2006 में प्रकाशित यह संचयी सरणी पर बाइनरी खोज है। इस प्रकार O (log M) के लिए प्रतिक्रिया वर्गीकारण का सबसे जोखिम समय जटिलता को अपेक्षाकृत कम करता है।


==== आंशिक-प्रवृत्ति विधियाँ ====
==== आंशिक-प्रवृत्ति विधियाँ ====


2009, 2010 और 2011 में प्रकाशित (रामास्वामी 2009, 2010, 2011)प्रतिक्रियाओं की (बड़ी) संख्या के बजाय, नेटवर्क में प्रजातियों की संख्या के साथ कम्प्यूटेशनल लागत को कम करने के लिए फैक्टर-आउट, आंशिक प्रतिक्रिया प्रवृत्तियों का उपयोग करें। चार प्रकार मौजूद हैं:
2009, 2010 और 2011 में प्रकाशित (रामास्वामी 2009, 2010, 2011) प्रतिक्रियाओं की (बड़ी) संख्या के अतिरिक्त नेटवर्क में प्रजातियों की संख्या के साथ संगणनात्मक लागत को कम करने के लिए तथ्य निकाले और आंशिक प्रतिक्रिया प्रवृत्तियों का उपयोग करें। जिसमे चार प्रकार निम्नलिखित सम्मिलित हैं:
 
* पीडीएम, आंशिक-प्रवृत्ति प्रत्यक्ष विधि। एक कम्प्यूटेशनल लागत है जो प्रतिक्रिया नेटवर्क में विभिन्न प्रजातियों की संख्या के साथ रैखिक रूप से मापती है, नेटवर्क के युग्मन वर्ग से स्वतंत्र (रामास्वामी 2009)।
* एसपीडीएम, सॉर्टिंग आंशिक-प्रवृत्ति प्रत्यक्ष विधि। मल्टी-स्केल रिएक्शन नेटवर्क में कम्प्यूटेशनल लागत के पूर्व-कारक को कम करने के लिए डायनेमिक बबल सॉर्ट का उपयोग करता है, जहां प्रतिक्रिया दर परिमाण के कई आदेशों (रामास्वामी 2009) तक फैली हुई है।
* PSSA-CR, रचना-अस्वीकृति नमूनाकरण के साथ आंशिक-प्रवृत्ति SSA। संरचना-अस्वीकृति नमूनाकरण (स्लीपॉय 2008) का उपयोग करके कमजोर युग्मित नेटवर्क (रामास्वामी 2010) के लिए निरंतर समय (यानी, नेटवर्क आकार से स्वतंत्र) के लिए कम्प्यूटेशनल लागत को कम करता है।
* dPDM, विलंब आंशिक-प्रवृत्ति प्रत्यक्ष विधि। देरी-एसएसए विधि (ब्रैटसन 2005, कै 2007) का आंशिक-प्रवृत्ति संस्करण प्रदान करके समय में देरी (रामास्वामी 2011) करने वाले प्रतिक्रिया नेटवर्क के लिए पीडीएम का विस्तार करता है।
 
आंशिक-प्रवृत्ति विधियों का उपयोग प्राथमिक रासायनिक प्रतिक्रियाओं तक सीमित है, अर्थात, अधिकतम दो अलग-अलग अभिकारकों के साथ प्रतिक्रियाएँ। नेटवर्क आकार में एक रेखीय (प्रतिक्रिया के क्रम में) वृद्धि की कीमत पर, प्रत्येक गैर-प्राथमिक रासायनिक प्रतिक्रिया को समान रूप से प्राथमिक के एक सेट में विघटित किया जा सकता है।


=== अनुमानित तरीके ===
* पीडीएम, आंशिक-प्रवृत्ति प्रत्यक्ष विधि कम्प्यूटेशनल लागत है जो नेटवर्क के युग्मन वर्ग (रामास्वामी 2009) से स्वतंत्र प्रतिक्रिया नेटवर्क में विभिन्न प्रजातियों की संख्या को साथ रैखिकता के साथ मापती है।
* एसपीडीएम, पृथक्करण आंशिक-प्रवृत्ति प्रत्यक्ष विधि बहु अदिश समीकरण नेटवर्क में कम्प्यूटेशनल लागत के पूर्व-कारक को कम करने के लिए गतिशील बबल पृथक्करण विधि का उपयोग करता है। जहां प्रतिक्रिया दर परिमाण के कई अनुक्रम (रामास्वामी 2009) तक विस्तृत होती है।
* पीएसएसए-सीआर, रचना-अस्वीकृति वर्गीकरण के साथ आंशिक-प्रवृत्ति एसएसए संरचना-अस्वीकृति वर्गीकरण (स्लीपॉय 2008) का उपयोग करके दुर्बल युग्मित नेटवर्क (रामास्वामी 2010) के लिए निरंतर समय (अर्थात, नेटवर्क आकार से स्वतंत्र) के लिए कम्प्यूटेशनल लागत को कम करता है।
* डीपीडीएम, विलंब आंशिक-प्रवृत्ति प्रत्यक्ष विधि एसएसए विधि (ब्रैटसन 2005, कै 2007) का आंशिक-प्रवृत्ति संस्करण प्रदान करके समय में (रामास्वामी 2011) करने वाली प्रतिक्रिया नेटवर्क के लिए पीडीएम का विस्तार करती है।


स्टोचैस्टिक सिमुलेशन का एक सामान्य दोष यह है कि बड़ी प्रणालियों के लिए, बहुत सी घटनाएं होती हैं, जिन्हें एक सिमुलेशन में ध्यान में नहीं रखा जा सकता है। निम्नलिखित विधियाँ कुछ सन्निकटन द्वारा नाटकीय रूप से सिमुलेशन गति में सुधार कर सकती हैं।
आंशिक-प्रवृत्ति विधियों का उपयोग प्राथमिक रासायनिक प्रतिक्रियाओं तक सीमित है अर्थात, अधिकतम दो अलग-अलग अभिकारकों के साथ प्रतिक्रियाएँ नेटवर्क आकार में एक रेखीय (प्रतिक्रिया के क्रम में) वृद्धि की कीमत पर प्रत्येक गैर-प्राथमिक रासायनिक प्रतिक्रिया को समान रूप से प्राथमिक अभिक्रिया के समूह में विघटित किया जा सकता है।


====τ छलांग लगाने की विधि====
=== अनुमानित प्रकार ===


चूंकि एसएसए विधि प्रत्येक संक्रमण का ट्रैक रखती है, उच्च समय जटिलता के कारण कुछ अनुप्रयोगों के लिए इसे लागू करना अव्यावहारिक होगा। गिलेस्पी ने एक [[सन्निकटन प्रक्रिया]], [[छलांग लगाने वाले वर्ष]] | ताऊ-लीपिंग विधि प्रस्तावित की, जो सटीकता के न्यूनतम नुकसान के साथ कम्प्यूटेशनल समय को कम करती है।<ref>{{cite journal | last1 = Gillespie | first1 = D.T. | year = 1976 | title = युग्मित रासायनिक प्रतिक्रियाओं के स्टोचैस्टिक समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सामान्य विधि| journal = Journal of Computational Physics | volume = 22 | issue = 4| pages = 403–434 | doi=10.1016/0021-9991(76)90041-3| bibcode = 1976JCoPh..22..403G }}</ref>
प्रसंभाव्य अनुरूपण का एक सामान्य दोष यह है कि इसमे बड़ी प्रणालियों के लिए बहुत सी घटनाएं होती हैं, जिन्हें अनुरूपण में ध्यान में नहीं रखा जा सकता है। निम्नलिखित विधियाँ कुछ सन्निकटन द्वारा प्रभावी रूप से अनुरूपण गति में सुधार कर सकती हैं।
समय में वृद्धिशील कदम उठाने के बजाय, एसएसए विधि के रूप में प्रत्येक समय कदम पर एक्स (टी) का ट्रैक रखने के बजाय, ताऊ-लीपिंग | ताऊ-लीपिंग विधि एक सबइंटरवल से अगले तक छलांग लगाती है, अनुमान लगाती है कि एक के दौरान कितने संक्रमण होते हैं। उपअंतराल दिया। यह माना जाता है कि छलांग का मान, τ, इतना छोटा है कि उपअंतराल [t, t + τ] के साथ संक्रमण दरों के मूल्य में कोई महत्वपूर्ण परिवर्तन नहीं होता है। इस स्थिति को छलांग की स्थिति के रूप में जाना जाता है। ताऊ-लीपिंग|ताऊ-लीपिंग विधि इस प्रकार महत्वपूर्ण सटीकता खोए बिना एक छलांग में कई बदलावों का अनुकरण करने का लाभ उठाती है, जिसके परिणामस्वरूप कम्प्यूटेशनल समय में गति बढ़ जाती है।<ref>H.T. Banks, Anna Broido, Brandi Canter, Kaitlyn Gayvert,Shuhua Hu, Michele Joyner, Kathryn Link, Simulation Algorithms for Continuous Time Markov Chain Models, [online] available at http://www.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr11-17.pdf</ref>


====τ लीपिंग विधि====


चूंकि एसएसए विधि प्रत्येक संक्रमण का नियंत्रण रखती है क्योकि उच्च समय जटिलता के कारण कुछ अनुप्रयोगों के लिए इसे प्रयुक्त करना अव्यावहारिक होता है। गिलेस्पी ने एक सन्निकटन प्रक्रिया, ताऊ-लीपिंग विधि को प्रस्तावित किया था जो शुद्धता के न्यूनतम कमी के साथ कम्प्यूटेशनल समय को कम करती है।<ref>{{cite journal | last1 = Gillespie | first1 = D.T. | year = 1976 | title = युग्मित रासायनिक प्रतिक्रियाओं के स्टोचैस्टिक समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सामान्य विधि| journal = Journal of Computational Physics | volume = 22 | issue = 4| pages = 403–434 | doi=10.1016/0021-9991(76)90041-3| bibcode = 1976JCoPh..22..403G }}</ref> समय में वृद्धिशील चरण के अतिरिक्त एसएसए विधि के रूप में प्रत्येक समय चरण पर ''X''(''t'') का नियंत्रण रखने के अतिरिक्त ताऊ-लीपिंग विधि एक उप-अंतराल से अगले तक प्रसंभाव्य अनुरूपण करती है और अनुमान लगाती है कि किसी दिए गए उप-अंतराल के समय कितने संक्रमण होते हैं। यह माना जाता है कि प्रसंभाव्य का मान, τ, इतना छोटा है कि उपअंतराल [t, t + τ] के साथ संक्रमण दरों के मान में कोई महत्वपूर्ण परिवर्तन नहीं होता है। इस स्थिति को प्रसंभाव्य की स्थिति के रूप में जाना जाता है। इस प्रकार ताऊ-लीपिंग विधि में महत्वपूर्ण शुद्धता खोए बिना प्रसंभाव्य में कई संक्रमणों का अनुकरण करने का लाभ है। जिसके परिणामस्वरूप कम्प्यूटेशनल समय में गति बढ़ जाती है।<ref>H.T. Banks, Anna Broido, Brandi Canter, Kaitlyn Gayvert,Shuhua Hu, Michele Joyner, Kathryn Link, Simulation Algorithms for Continuous Time Markov Chain Models, [online] available at http://www.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr11-17.pdf</ref>
==== सशर्त अंतर विधि ====
==== सशर्त अंतर विधि ====
यह विधि प्रतिवर्ती प्रक्रिया की विरोधी घटनाओं की केवल शुद्ध दरों को ध्यान में रखते हुए प्रतिवर्ती प्रक्रियाओं (जिसमें यादृच्छिक चलना/प्रसार प्रक्रियाएं शामिल हैं) का अनुमान लगाती है। इस पद्धति का मुख्य लाभ यह है कि इसे मॉडल की पिछली संक्रमण दरों को नई, प्रभावी दरों के साथ बदलकर एक सरल if-स्टेटमेंट के साथ लागू किया जा सकता है। इस प्रकार बदली हुई संक्रमण दर वाले मॉडल को हल किया जा सकता है, उदाहरण के लिए, पारंपरिक एसएसए के साथ।<ref>{{cite journal | last1 = Spill | first1 = F | last2 = Maini | first2 = PK | last3 = Byrne | first3 = HM | year = 2016| title = विरोधी प्रतिक्रियाओं को हटाकर स्टोकेस्टिक प्रक्रियाओं के सिमुलेशन का अनुकूलन| arxiv = 1602.02655| journal = Journal of Chemical Physics | volume = 144 | issue = 8| page = 084105 | doi = 10.1063/1.4942413 | pmid = 26931679 | bibcode = 2016JChPh.144h4105S | s2cid = 13334842 }}</ref>
यह विधि प्रतिवर्ती प्रक्रिया की विरोधी घटनाओं की केवल शुद्ध दरों को ध्यान में रखते हुए प्रतिवर्ती प्रक्रियाओं (जिसमें यादृच्छिक चलना/प्रसार प्रक्रियाएं सम्मिलित हैं) का अनुमान लगाती है। इस पद्धति का मुख्य लाभ यह है कि इसे मॉडल की पिछली संक्रमण दरों को नई, प्रभावी दरों के साथ परिवर्तित करके एक सरल स्थिति के साथ प्रयुक्त किया जा सकता है। इस प्रकार परिवर्तित संक्रमण दर वाले मॉडल को उदाहरण के लिए पारंपरिक एसएसए के साथ हल किया जा सकता है।<ref>{{cite journal | last1 = Spill | first1 = F | last2 = Maini | first2 = PK | last3 = Byrne | first3 = HM | year = 2016| title = विरोधी प्रतिक्रियाओं को हटाकर स्टोकेस्टिक प्रक्रियाओं के सिमुलेशन का अनुकूलन| arxiv = 1602.02655| journal = Journal of Chemical Physics | volume = 144 | issue = 8| page = 084105 | doi = 10.1063/1.4942413 | pmid = 26931679 | bibcode = 2016JChPh.144h4105S | s2cid = 13334842 }}</ref>
 
== [[निरंतर अनुकरण|निरंतर अनुरूपण]] ==
 
जबकि पृथक [[ राज्य अंतरिक्ष |अवस्था समष्टि]] में यह निरंतर समष्टि में विशिष्ट अवस्थाओं (मानों) के बीच स्पष्ट रूप से भिन्न होता है। यह निश्चित निरंतरता के कारण संभव नहीं है। प्रणाली सामान्यतः समय के साथ परिवर्तित होती है, मॉडल के चर भी निरंतर परिवर्तित होते रहते हैं। अवस्था चर के परिवर्तन की दरों को निर्धारित करने वाले [[अंतर समीकरण|अवकल समीकरण]] को देखते हुए निरंतर अनुरूपण समय के साथ प्रणाली का अनुकरण करता है।<ref>Crespo-Márquez, A., R. R. Usano and R. D. Aznar, 1993, "Continuous and Discrete Simulation in a Production Planning System. A Comparative Study"</ref> निरंतर प्रणाली का उदाहरण प्रीडेटर मॉडल या कार्ट-पोल संतुलन मॉडल है।<ref>Louis G. Birta, Gilbert Arbez (2007). Modelling and Simulation, p. 255. Springer.</ref><ref>{{cite web | url=http://anji.sourceforge.net/polebalance.htm | title=Pole Balancing Tutorial}}</ref>
== [[निरंतर अनुकरण]] ==
जबकि डिस्क्रीट [[ राज्य अंतरिक्ष ]] में यह निरंतर स्पेस में विशेष स्टेट्स (मानों) के बीच स्पष्ट रूप से अलग होता है, यह निश्चित निरंतरता के कारण संभव नहीं है। सिस्टम आमतौर पर समय के साथ बदलता है, मॉडल के चर, फिर भी लगातार बदलते रहते हैं। निरंतर अनुकरण इस प्रकार समय के साथ प्रणाली का अनुकरण करता है, राज्य चर के परिवर्तन की दरों को निर्धारित करने वाले [[अंतर समीकरण]] दिए गए हैं।<ref>Crespo-Márquez, A., R. R. Usano and R. D. Aznar, 1993, "Continuous and Discrete Simulation in a Production Planning System. A Comparative Study"</ref>
सतत प्रणाली का उदाहरण शिकारी/शिकार मॉडल है<ref>Louis G. Birta, Gilbert Arbez (2007). Modelling and Simulation, p. 255. Springer.</ref> या कार्ट-पोल संतुलन <ref>{{cite web | url=http://anji.sourceforge.net/polebalance.htm | title=Pole Balancing Tutorial}}</ref>
 
 
=== संभाव्यता वितरण ===
=== संभाव्यता वितरण ===


==== सामान्य वितरण ====
==== सामान्य वितरण ====
{{main|Normal distribution}}
{{main|सामान्य वितरण}}
 
यादृच्छिक चर {{mvar|X}} को मापदंडों के साथ [[सामान्य वितरण]] कहा जाता है {{mvar|μ}} और {{mvar|σ}}, द्वारा संक्षिप्त किया गया {{math|''X'' ∈ ''N''(''μ'', ''σ''<sup>2</sup>)}}, यदि यादृच्छिक चर का घनत्व सूत्र द्वारा दिया गया है <ref name="ASM2"/>
<math display="block">f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} } , \quad x \in \Reals.</math>
कई चीजें वास्तव में सामान्य वितरण हैं, या इसके बहुत करीब हैं। उदाहरण के लिए, ऊंचाई और बुद्धि लगभग सामान्य वितरण हैं; माप त्रुटियों का भी अक्सर सामान्य वितरण होता है।<ref>University of Notre Dame, Normal Distribution, [online] available at http://www3.nd.edu/~rwilliam/stats1/x21.pdf</ref>
 


यादृच्छिक चर {{mvar|X}} को मापदंडों के साथ [[सामान्य वितरण]] कहा जाता है यदि {{math|''X'' ∈ ''N''(''μ'', ''σ''<sup>2</sup>)}} को {{mvar|μ}} और {{mvar|σ}} द्वारा संक्षिप्त किया गया है और यदि यादृच्छिक चर का घनत्व सूत्र द्वारा दिया गया है:<ref name="ASM2"/><math display="block">f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{ -\frac{(x-\mu)^2}{2\sigma^2} } , \quad x \in \Reals.</math>वास्तव में यह सामान्य वितरण हैं या इसके बहुत निकट हैं। उदाहरण के लिए ऊंचाई और बुद्धिमत्ता लगभग सामान्य वितरण हैं माप त्रुटियों का भी प्रायः सामान्य वितरण होता है।<ref>University of Notre Dame, Normal Distribution, [online] available at http://www3.nd.edu/~rwilliam/stats1/x21.pdf</ref>
==== घातीय वितरण ====
==== घातीय वितरण ====
{{main|Exponential distribution}}
{{main|घातांकी रूप से वितरण}}
 
घातीय वितरण एक पोइसन प्रक्रिया में घटनाओं के बीच के समय का वर्णन करता है, अर्थात एक ऐसी प्रक्रिया जिसमें घटनाएं लगातार और स्वतंत्र रूप से एक स्थिर औसत दर पर होती हैं।
 
घातीय वितरण लोकप्रिय है, उदाहरण के लिए, [[ कतार सिद्धांत ]] में जब हम उस समय का मॉडल बनाना चाहते हैं जब तक हमें एक निश्चित घटना होने तक इंतजार करना पड़ता है। उदाहरणों में वह समय शामिल है जब तक कि अगला ग्राहक स्टोर में प्रवेश नहीं करता, वह समय जब तक कि एक निश्चित कंपनी डिफॉल्ट नहीं करती या किसी मशीन में खराबी आने तक का समय।<ref name="ASM2"/>
 


घातीय वितरण एक पासा प्रक्रिया में घटनाओं के बीच के समय का वर्णन करता है, अर्थात ऐसी प्रक्रिया जिसमें घटनाएं निरंतर और स्वतंत्र रूप से स्थिर औसत दर पर होती हैं। घातीय वितरण लोकप्रिय है उदाहरण के लिए [[ कतार सिद्धांत |पंक्ति सिद्धांत]] में जब हम उस समय का मॉडल बनाना चाहते हैं जब तक हमें एक निश्चित घटना होने तक प्रतीक्षा करना पड़ता है। उदाहरणों में वह समय सम्मिलित है जब तक कि अगला ग्राहक भंडारण में प्रवेश नहीं करता है। वह समय जब तक कि एक निश्चित संस्था निर्धारित नहीं करती या किसी मशीन में खराबी आने तक का समय है।<ref name="ASM2" />
==== छात्र का टी-वितरण ====
==== छात्र का टी-वितरण ====
{{main|Student's t-distribution}}
{{main|छात्र का टी-वितरण}}


छात्र के टी-वितरण का उपयोग वित्त में परिसंपत्ति रिटर्न के संभाव्य मॉडल के रूप में किया जाता है। टी-वितरण का घनत्व कार्य निम्नलिखित समीकरण द्वारा दिया गया है:<ref name="ASM2"/>
छात्र के टी-वितरण का उपयोग वित्त में वित्त पुनरावृत्ति के संभाव्य मॉडल के रूप में किया जाता है। टी-वितरण का घनत्व फलन निम्नलिखित समीकरण द्वारा दिया गया है:<ref name="ASM2"/><math display="block">f(t) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{t^2}{\nu} \right)^{-\frac{\nu+1}{2}},</math>जहाँ <math>\nu</math> [[स्वतंत्रता की डिग्री (सांख्यिकी)]] की संख्या है और <math>\Gamma</math> [[गामा समारोह|गामा फलन]] है।
<math display="block">f(t) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{t^2}{\nu} \right)^{-\frac{\nu+1}{2}},</math>
कहाँ <math>\nu</math> [[स्वतंत्रता की डिग्री (सांख्यिकी)]] की संख्या है और <math>\Gamma</math> [[गामा समारोह]] है।


एन के बड़े मूल्यों के लिए, छात्र का टी-वितरण|टी-वितरण मानक सामान्य वितरण से महत्वपूर्ण रूप से भिन्न नहीं होता है। आमतौर पर, मान n > 30 के लिए, छात्र का t-वितरण|t-वितरण मानक सामान्य वितरण के बराबर माना जाता है।
N के बड़े मानों के लिए, टी-वितरण मानक सामान्य वितरण से महत्वपूर्ण रूप से भिन्न नहीं होता है। सामान्यतः मान n> 30 के लिए टी-वितरण को मानक सामान्य वितरण के बराबर माना जाता है।


==== अन्य वितरण ====
==== अन्य वितरण ====
* [[सामान्यीकृत चरम मूल्य वितरण]]
* [[सामान्यीकृत चरम मूल्य वितरण|सामान्यीकृत चरम मान वितरण]]
 
== संयुक्त सिमुलेशन ==
पूरी तरह से अलग दुनिया के विचारों के उपयोग से अक्सर एक और एक ही प्रणाली का मॉडल बनाना संभव होता है। किसी समस्या के असतत घटना अनुकरण के साथ-साथ इसके निरंतर घटना अनुकरण (निरंतर प्रवाह को बाधित करने वाली असतत घटनाओं के साथ निरंतर अनुकरण) अंततः एक ही उत्तर की ओर ले जा सकते हैं। हालांकि कभी-कभी, तकनीकें एक प्रणाली के बारे में विभिन्न सवालों के जवाब दे सकती हैं। यदि हमें आवश्यक रूप से सभी प्रश्नों का उत्तर देने की आवश्यकता है, या यदि हमें यह नहीं पता है कि मॉडल का उपयोग किस उद्देश्य के लिए किया जा रहा है, तो संयुक्त सतत/विच्छेद पद्धति को लागू करना सुविधाजनक है।<ref name="cellier">Francois E. Cellier, Combined Continuous/Discrete Simulation Applications, Techniques, and Tools</ref> इसी तरह की तकनीकें समय और स्थान पर निर्भर तरीके से एक असतत, स्टोकेस्टिक विवरण से नियतात्मक, सातत्य विवरण में बदल सकती हैं।<ref name="spill">{{cite journal | last1 = Spill | first1 = F. |display-authors=etal | year = 2015| title = Hybrid approaches for multiple-species stochastic reaction–diffusion models | journal = Journal of Computational Physics | volume = 299 | pages = 429–445 | doi = 10.1016/j.jcp.2015.07.002 | pmid = 26478601 | pmc = 4554296 | arxiv = 1507.07992 | bibcode = 2015JCoPh.299..429S }}</ref> इस तकनीक का उपयोग पारंपरिक गिलेस्पी एल्गोरिथम की तुलना में अनुकरण करने के लिए बहुत तेज होने के साथ-साथ छोटी प्रतिलिपि संख्याओं के कारण शोर को पकड़ने में सक्षम बनाता है। इसके अलावा, नियतात्मक सातत्य विवरण का उपयोग मनमाने ढंग से बड़े सिस्टम के सिमुलेशन को सक्षम बनाता है।
 
== मोंटे कार्लो सिमुलेशन ==
[[मोंटे कार्लो विधि]] एक आकलन प्रक्रिया है। मुख्य विचार यह है कि यदि किसी यादृच्छिक चर के औसत मूल्य को जानना आवश्यक है और इसका वितरण नहीं बताया जा सकता है, और यदि वितरण से नमूने लेना संभव है, तो हम स्वतंत्र रूप से और औसत से नमूने लेकर इसका अनुमान लगा सकते हैं। उन्हें। यदि पर्याप्त नमूने हैं, तो बड़ी संख्या का कानून कहता है कि औसत सही मूल्य के करीब होना चाहिए। केंद्रीय सीमा प्रमेय कहता है कि औसत का वास्तविक मूल्य के आसपास गॉसियन वितरण है।<ref name="mc">Cosma Rohilla Shalizi, Monte Carlo, and Other Kinds of Stochastic Simulation, [online] available at http://bactra.org/notebooks/monte-carlo.html</ref>
एक सरल उदाहरण के रूप में, मान लीजिए कि हमें एक जटिल, अनियमित रूपरेखा वाली आकृति का क्षेत्रफल मापने की आवश्यकता है। मोंटे कार्लो दृष्टिकोण आकार के चारों ओर एक वर्ग बनाना और वर्ग को मापना है। फिर हम वर्ग में डार्ट्स को यथासंभव समान रूप से फेंकते हैं। आकार पर गिरने वाले डार्ट्स का अंश वर्ग के क्षेत्रफल के आकार के क्षेत्रफल का अनुपात देता है। वास्तव में, इस रूप में लगभग किसी भी अभिन्न समस्या, या किसी भी औसत समस्या को डालना संभव है। यह बताने के लिए एक अच्छा तरीका होना आवश्यक है कि क्या आप रूपरेखा के अंदर हैं, और यह पता लगाने का एक अच्छा तरीका है कि कितने डार्ट फेंके जाएं। अंतिम लेकिन कम से कम, हमें डार्ट्स को समान रूप से फेंकने की आवश्यकता है, अर्थात, एक अच्छे यादृच्छिक संख्या जनरेटर का उपयोग करके।<ref name="mc"/>


== संयुक्त अनुरूपण ==
सामान्यतः विभिन्न विचारों के उपयोग से प्रायः एक और प्रणाली का मॉडल बनाना संभव होता है। किसी समस्या के असतत घटना अनुकरण के साथ-साथ इसके निरंतर घटना अनुकरण (निरंतर प्रवाह को बाधित करने वाली असतत घटनाओं के साथ निरंतर अनुकरण) अंततः एक ही उत्तर की ओर ले जा सकते हैं। हालांकि कभी-कभी, तकनीकें एक प्रणाली के विषय में विभिन्न सवालों के जवाब दे सकती हैं। यदि हमें आवश्यक रूप से सभी प्रश्नों का उत्तर देने की आवश्यकता है या यदि हमें यह नहीं पता है कि मॉडल का उपयोग किस उद्देश्य के लिए किया जा रहा है तो संयुक्त सतत/विच्छेद पद्धति को प्रयुक्त करना सुविधाजनक होता है।<ref name="cellier">Francois E. Cellier, Combined Continuous/Discrete Simulation Applications, Techniques, and Tools</ref> इसी प्रकार की तकनीकें असतत प्रसंभाव्य विवरण से समय और स्थान पर निर्भर तरीके से नियतात्मक, सातत्य विवरण में परिवर्तित हो सकती हैं।<ref name="spill">{{cite journal | last1 = Spill | first1 = F. |display-authors=etal | year = 2015| title = Hybrid approaches for multiple-species stochastic reaction–diffusion models | journal = Journal of Computational Physics | volume = 299 | pages = 429–445 | doi = 10.1016/j.jcp.2015.07.002 | pmid = 26478601 | pmc = 4554296 | arxiv = 1507.07992 | bibcode = 2015JCoPh.299..429S }}</ref> इस तकनीक का उपयोग पारंपरिक गिलेस्पी एल्गोरिथम की तुलना में अनुकरण करने के लिए बहुत तीव्र होने के साथ-साथ छोटी प्रतिलिपि संख्याओं के कारण ध्वनि को नियंत्रित करने में सक्षम बनाता है। इसके अतिरिक्त नियतात्मक सातत्य विवरण का उपयोग अपेक्षाकृत रूप से बड़ी प्रणाली के अनुरूपण को सक्षम बनाता है।


== मोंटे कार्लो अनुरूपण ==
[[मोंटे कार्लो विधि]] एक आकलन प्रक्रिया है। मुख्य विचार यह है कि यदि किसी यादृच्छिक चर के औसत मान को जानना आवश्यक है और इसका वितरण नहीं बताया जा सकता है और यदि वितरण से प्रारूप लेना संभव है तो हम स्वतंत्र रूप से और औसत से प्रारूप लेकर इसका अनुमान लगा सकते हैं। यदि पर्याप्त प्रारूप हैं तो बड़ी संख्या का नियम कहता है कि औसत सही मान के निकट होना चाहिए। केंद्रीय सीमा प्रमेय कहता है कि औसत के सही मान के आसपास गॉसियन वितरण होता है।<ref name="mc">Cosma Rohilla Shalizi, Monte Carlo, and Other Kinds of Stochastic Simulation, [online] available at http://bactra.org/notebooks/monte-carlo.html</ref>


=== आवेदन ===
एक सरल उदाहरण के रूप में, मान लीजिए कि हमें जटिल अनियमित रूपरेखा वाली आकृति का क्षेत्रफल मापने की आवश्यकता है। मोंटे कार्लो दृष्टिकोण आकार के चारों ओर एक वर्ग बनाना और वर्ग को मापना है। फिर हम वर्ग में पासा को यथासंभव समान रूप से फेंकते हैं। आकार पर गिरने वाले बिन्दु का अंश वर्ग के क्षेत्रफल के आकार के क्षेत्रफल का अनुपात देता है। वास्तव में, लगभग किसी भी अभिन्न समस्या या किसी भी औसत समस्या को इस रूप में प्रदर्शित करना संभव है। यह बताने के लिए एक अच्छा तरीका होना आवश्यक है कि क्या आप रूपरेखा के अंदर हैं और यह पता लगाने का एक अच्छा तरीका है कि कितने पासा फेंके जाएं और अंतिम लेकिन कम से कम पासा को समान रूप से फेंकने की आवश्यकता नहीं है अर्थात एक अच्छे यादृच्छिक संख्या निर्माण का उपयोग करना आवश्यक होता है।<ref name="mc" />
मोंटे कार्लो पद्धति के उपयोग की व्यापक संभावनाएँ हैं:<ref name="sim-pro-ek" />* यादृच्छिक चर (जैसे पासा) की पीढ़ी का उपयोग करते हुए सांख्यिकीय प्रयोग
=== अनुप्रयोग ===
* [[नमूनाकरण विधि]]
मोंटे कार्लो पद्धति के उपयोग की व्यापक संभावनाएँ हैं:<ref name="sim-pro-ek" />
* गणित (जैसे संख्यात्मक एकीकरण, एकाधिक इंटीग्रल)
* [[नमूनाकरण विधि|प्रतिचयन विधि]]
*यादृच्छिक चर (जैसे पासा) के उत्पादन का उपयोग करते हुए सांख्यिकीय प्रयोग
* गणित (जैसे संख्यात्मक एकीकरण, एकाधिक समाकलन)
* [[स्थिरता अभियांत्रिकी]]
* [[स्थिरता अभियांत्रिकी]]
* [[परियोजना प्रबंधन]] (सिक्ससिग्मा)
* [[परियोजना प्रबंधन]] (सिक्ससिग्मा)
* [[प्रायोगिक कण भौतिकी]]
* [[प्रायोगिक कण भौतिकी]]
* सिमुलेशन
* अनुरूपण
* [[जोखिम मापन]]/[[जोखिम प्रबंधन]] (जैसे पोर्टफोलियो मूल्य अनुमान)
* [[जोखिम मापन]] या [[जोखिम प्रबंधन]] (जैसे जानकारी संग्रह मान अनुमान)
* [[अर्थशास्त्र]] (उदाहरण के लिए सबसे उपयुक्त मांग वक्र खोजना)
* [[अर्थशास्त्र]] (उदाहरण के लिए सबसे उपयुक्त मांग वक्र खोजना)
* [[प्रक्रिया सिमुलेशन]]
* [[प्रक्रिया सिमुलेशन|प्रक्रिया अनुरूपण]]
* [[गतिविधि अनुसंधान]]
* [[गतिविधि अनुसंधान]]


== यादृच्छिक संख्या जनरेटर ==
== यादृच्छिक संख्या उत्पादन ==
{{Main|Random number generation}}
{{Main|यादृच्छिक संख्या उत्पादन}}
 
सिमुलेशन प्रयोगों (मोंटे कार्लो सहित) के लिए यादृच्छिक संख्या (चर के मान के रूप में) उत्पन्न करना आवश्यक है। समस्या यह है कि कंप्यूटर अत्यधिक नियतत्ववाद मशीन है - मूल रूप से, प्रत्येक प्रक्रिया के पीछे हमेशा एक एल्गोरिथ्म होता है, एक नियतत्ववाद संगणना इनपुट को आउटपुट में बदलती है; इसलिए परिभाषित अंतराल या सेट पर समान रूप से फैली हुई यादृच्छिक संख्या उत्पन्न करना आसान नहीं है।<ref name="sim-pro-ek" />


एक [[रैंडम नंबर जनरेशन]] एक ऐसा उपकरण है जो संख्याओं के अनुक्रम को उत्पन्न करने में सक्षम है जिसे निर्धारणवाद गुणों के साथ आसानी से पहचाना नहीं जा सकता है। इस क्रम को तब स्टोकेस्टिक संख्याओं का अनुक्रम कहा जाता है।<ref name="donald">Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms - chapitre 3 : Random Numbers (Addison-Wesley, Boston, 1998).</ref>
अनुरूपण प्रयोगों (मोंटे कार्लो सहित) के लिए यादृच्छिक संख्या (चर के मान के रूप में) उत्पन्न करना आवश्यक है। समस्या यह है कि कंप्यूटर अत्यधिक नियतात्मक मशीन है मूल रूप से, प्रत्येक प्रक्रिया के पीछे सदैव एक एल्गोरिथ्म होता है, नियतात्मक संगणना जो इनपुट को आउटपुट में परिवर्तित करती है। इसलिए परिभाषित अंतराल या समुच्चय पर समान रूप से विस्तृत यादृच्छिक संख्या उत्पन्न करना आसान नहीं होता है।<ref name="sim-pro-ek" />
एल्गोरिदम आम तौर पर [[छद्म यादृच्छिक संख्या]]ओं पर भरोसा करते हैं, कंप्यूटर जनित संख्याएं वास्तविक यादृच्छिक संख्याओं की नकल करती हैं, एक अहसास उत्पन्न करने के लिए, एक प्रक्रिया का एक संभावित परिणाम।<ref name="hellander">Andreas hellander, Stochastic Simulation and Monte Carlo Methods, [online] available at http://www.it.uu.se/edu/course/homepage/bervet2/MCkompendium/mc.pdf</ref>
यादृच्छिक संख्या प्राप्त करने के तरीके लंबे समय से मौजूद हैं और कई अलग-अलग क्षेत्रों (जैसे [[वीडियो गेम]]) में उपयोग किए जाते हैं। हालाँकि, ये संख्याएँ एक निश्चित पूर्वाग्रह से ग्रस्त हैं। वर्तमान में वास्तव में यादृच्छिक अनुक्रम उत्पन्न करने के लिए अपेक्षित सर्वोत्तम विधियाँ प्राकृतिक विधियाँ हैं जो [[क्वांटम यांत्रिकी]] की यादृच्छिक प्रकृति का लाभ उठाती हैं।<ref name="donald" />


एक यादृच्छिक संख्या निर्माण ऐसा उपकरण है जो संख्याओं के अनुक्रम का उत्पादन करने में सक्षम होता है जिसे नियतात्मक गुणों के साथ आसानी से पहचाना नहीं जा सकता है। इस क्रम को तब प्रसंभाव्य संख्याओं का अनुक्रम कहा जाता है।<ref name="donald">Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms - chapitre 3 : Random Numbers (Addison-Wesley, Boston, 1998).</ref>


एल्गोरिदम सामान्यतः [[छद्म यादृच्छिक संख्या|छद्म यादृच्छिक संख्याओं]] पर विश्वास करते हैं। कंप्यूटर जनित संख्याएं प्रक्रिया के संभावित परिणाम का अनुमान उत्पन्न करने के लिए वास्तविक यादृच्छिक संख्याओं की अपेक्षा करती हैं।<ref name="hellander">Andreas hellander, Stochastic Simulation and Monte Carlo Methods, [online] available at http://www.it.uu.se/edu/course/homepage/bervet2/MCkompendium/mc.pdf</ref> यादृच्छिक संख्या प्राप्त करने के तरीके लंबे समय से उपस्थित हैं और कई अलग-अलग क्षेत्रों (जैसे [[वीडियो गेम]]) में उपयोग किए जाते हैं। हालाँकि ये संख्याएँ एक निश्चित पूर्वाग्रह से ग्रस्त हैं। वर्तमान में यादृच्छिक अनुक्रम उत्पन्न करने के लिए अपेक्षित सर्वोत्तम विधियाँ प्राकृतिक विधियाँ हैं जो [[क्वांटम यांत्रिकी]] की यादृच्छिक प्रकृति का लाभ प्राप्त करती हैं।<ref name="donald" />
== यह भी देखें ==
== यह भी देखें ==


* [[नियतात्मक अनुकरण]]
* [[नियतात्मक अनुकरण|नियतात्मक अनुरूपण]]
* गिलेस्पी एल्गोरिथम
* गिलेस्पी एल्गोरिथम
* [[नेटवर्क सिमुलेशन]]
* [[नेटवर्क सिमुलेशन|नेटवर्क अनुरूपण]]
* [[ नेटवर्क ट्रैफ़िक सिमुलेशन ]]
* [[ नेटवर्क ट्रैफ़िक सिमुलेशन |नेटवर्क यातायात अनुरूपण]]
* [[सिमुलेशन भाषा]]
* [[सिमुलेशन भाषा|अनुरूपण भाषा]]
* कतार सिद्धांत
* क्यूइंग सिद्धांत
* [[विवेक]]
* [[विवेक|असंततकरण त्रुटि]]
* [[हाइब्रिड स्टोकेस्टिक सिमुलेशन]]
* [[हाइब्रिड स्टोकेस्टिक सिमुलेशन|हाइब्रिड प्रसंभाव्य अनुरूपण]]


==संदर्भ==
==संदर्भ==
Line 211: Line 168:
* (Ramaswamy 2010): {{cite journal|author1=R. Ramaswamy |author2=I. F. Sbalzarini | title=A partial-propensity variant of the composition-rejection stochastic simulation algorithm for chemical reaction networks | journal= J. Chem. Phys.| volume= 132| pages= 044102 | year=2010| doi = 10.1063/1.3297948| issue=4| pmid=20113014 | bibcode=2010JChPh.132d4102R | url=http://www.zora.uzh.ch/id/eprint/39866/1/PSSACR.pdf }}
* (Ramaswamy 2010): {{cite journal|author1=R. Ramaswamy |author2=I. F. Sbalzarini | title=A partial-propensity variant of the composition-rejection stochastic simulation algorithm for chemical reaction networks | journal= J. Chem. Phys.| volume= 132| pages= 044102 | year=2010| doi = 10.1063/1.3297948| issue=4| pmid=20113014 | bibcode=2010JChPh.132d4102R | url=http://www.zora.uzh.ch/id/eprint/39866/1/PSSACR.pdf }}
* (Ramaswamy 2011): {{cite journal|author1=R. Ramaswamy |author2=I. F. Sbalzarini | title=A partial-propensity formulation of the stochastic simulation algorithm for chemical reaction networks with delays | journal= J. Chem. Phys.| volume= 134| pages= 014106 | year=2011| doi = 10.1063/1.3521496| pmid=21218996| issue=1 | bibcode=2011JChPh.134a4106R|s2cid=4949530 |url=http://www.zora.uzh.ch/id/eprint/79206/8/1.3521496.pdf }}
* (Ramaswamy 2011): {{cite journal|author1=R. Ramaswamy |author2=I. F. Sbalzarini | title=A partial-propensity formulation of the stochastic simulation algorithm for chemical reaction networks with delays | journal= J. Chem. Phys.| volume= 134| pages= 014106 | year=2011| doi = 10.1063/1.3521496| pmid=21218996| issue=1 | bibcode=2011JChPh.134a4106R|s2cid=4949530 |url=http://www.zora.uzh.ch/id/eprint/79206/8/1.3521496.pdf }}
== बाहरी संबंध ==
== बाहरी संबंध ==
;Software
;Software
Line 222: Line 177:
* [http://stochpy.sourceforge.net StochPy] - Stochastic modelling in Python
* [http://stochpy.sourceforge.net StochPy] - Stochastic modelling in Python
* [https://web.archive.org/web/20130410021427/http://steps.sourceforge.net/STEPS/Home.html STEPS] - STochastic Engine for Pathway Simulation using swig to create Python interface to C/C++ code
* [https://web.archive.org/web/20130410021427/http://steps.sourceforge.net/STEPS/Home.html STEPS] - STochastic Engine for Pathway Simulation using swig to create Python interface to C/C++ code
[[Category: स्टोचैस्टिक सिमुलेशन | स्टोचैस्टिक सिमुलेशन ]] [[Category: स्टचास्तिक प्रोसेसेज़]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:स्टचास्तिक प्रोसेसेज़]]
[[Category:स्टोचैस्टिक सिमुलेशन| स्टोचैस्टिक सिमुलेशन ]]

Latest revision as of 16:27, 30 August 2023

स्टोचैस्टिक सिमुलेशन (प्रसंभाव्य अनुरूपण) एक ऐसी प्रणाली का अनुरूपण है जिसमे ऐसे चर (गणित) होते हैं जो अलग-अलग संभावनाओं के साथ यादृच्छिक रूप से परिवर्तित हो सकते हैं।[1]

जब इन यादृच्छिक चरों का प्रत्यक्षीकरण उत्पन्न होता है तब प्रणाली के एक मॉडल में प्रयुक्त किया जाता है और मॉडल के आउटपुट को रिकॉर्ड किया जाता हैं। इस प्रक्रिया को पुनः यादृच्छिक मानों के नए समूह के साथ दोहराया जाता है। पर्याप्त मात्रा में आंकड़ा एकत्र होने तक इन चरणों को दोहराया जाता है। अंत में आउटपुट का वितरण (गणित) सबसे अधिक संभावित अनुमानों के साथ-साथ अपेक्षाओं के संबंध में एक सूची को प्रदर्शित किया जाता है कि चर के अपेक्षाकृत कम या अधिक संभावित मानों की सीमा क्या है।[1]

प्रायः मॉडल में प्रयुक्त किए गए यादृच्छिक चर कंप्यूटर पर एक यादृच्छिक संख्या (आरएनजी) के साथ बनाए जाते हैं। जिससे यादृच्छिक संख्या U(0,1) के समान वितरण आउटपुट को यादृच्छिक चर में परिवर्तित कर दिया जाता है जो कि प्रणाली मॉडल में उपयोग किए जाने वाले संभाव्यता वितरण के समान होते है।

व्युत्पत्ति

प्रसंभाव्य अनुरूपण का मूल अर्थ "अनुमान से संबंधित" था। ग्रीक शब्द "स्टोखस्टिकोस" का अर्थ अनुमान लगाने में सक्षम और अनुमान लगाने से था। शब्द "स्टोखज़ेस्थई" का अर्थ भी अनुमान से था। और शब्द "स्टोखोस" का अर्थ अनुमान उद्देश्य, लक्ष्य, चिन्ह से था। यादृच्छिक रूप से निर्धारित संभावनाओ को पहली बार 1934 में जर्मन प्रसंभाव्य मे प्रस्तुत किया गया था।

असतत-घटना अनुरूपण

प्रसंभाव्य अनुरूपण में अगली घटना का निर्धारण करने के लिए मॉडल की स्थिति में सभी संभावित परिवर्तनों की दरों की गणना की जाती है और फिर एक सरणी में क्रमबद्ध किया जाता है। अगली सरणी का संचयी योग लिया जाता है और अंतिम सेल में संख्या R होती है, जहाँ R कुल घटना दर है। यह संचयी सरणी अब एक असतत संचयी वितरण है और यादृच्छिक संख्या z~U(0,R) और पहली घटना को चयमित करके अगली घटना को चुनने के लिए प्रयोग किया जा सकता है जैसे कि z उस घटना से सम्बद्ध दर से अपेक्षाकृत कम है।

संभाव्यता वितरण

यादृच्छिक चर के संभावित परिणाम का वर्णन करने के लिए प्रायिकता वितरण का उपयोग किया जाता है जो परिणामों को सीमित करता है जहां चर केवल असतत मान प्राप्त कर सकता है।[2]

बरनौली वितरण

एक यादृच्छिक चर X बर्नौली वितरण है। बर्नौली-पैरामीटर P के साथ वितरित किया गया है यदि इसके दो संभावित परिणाम हैं जो सामान्यतः 1 (सफलता या डिफ़ॉल्ट) और 0 (विफलता या उत्तरजीविता) को कूटबद्ध किया गया है। वित्तीय जोखिम उपायों के लिए संभावना आव्यूह दृष्टिकोण जहां सफलता और असफलता की संभावनाएं हैं एक यादृच्छिक संख्या जनरेटर द्वारा किए गए U (0,1) समान वितरण से बर्नौली वितरण के साथ यादृच्छिक चर X का उत्पादन करने के लिए हम परिभाषित करते हैं:

उदाहरण: सिक्का उछालना

परिभाषित:


एक निष्पक्ष सिक्के के लिए, दोनों प्राप्ति समान रूप से होने की संभावना है। यदि गैर-इकाई वलय 0, 0.5 या के बीच का मान आउटपुट करता है, तो हम यादृच्छिक संख्या निर्माता द्वारा प्रदान किए गए समान वितरण से इस यादृच्छिक चर X की प्राप्ति उत्पन्न कर सकते हैं। यदि गैर-इकाई वलय 0.5 और 1 के बीच का मान आउटपुट करती है। तब:

इसके अतिरिक्त दो परिणाम चिकित्सा उपचार के समान रूप से सफल होने की संभावना नहीं हो सकते हैं।

द्विपद वितरण

पैरामीटर n और p के साथ द्विपद वितरण यादृच्छिक चर Y को n स्वतंत्र और समान रूप से बर्नौली वितरण के योग के रूप में प्राप्त किया जाता है। जहां बर्नौली-वितरित यादृच्छिक चर X1, X2, ..., Xn हैं।

उदाहरण: एक सिक्के को तीन बार उछाला जाता है। ठीक दो चित आने की प्रायिकता ज्ञात कीजिए।

हल: सिक्के के स्थान को देखकर इस समस्या को हल किया जा सकता है। दो सिर पाने के तीन तरीके हैं।

HHH, HHT, HTH, THH, TTH, THT, HTT, TTT

उत्तर 3/8 (= 0.375) है।[3]

पॉसों का वितरण

पॉसों की वितरण प्रक्रिया एक ऐसी प्रक्रिया है जहां समय या स्थान के अंतराल में घटनाएं अनियमित रूप से घटित होती हैं।[4][5] निरंतर दर λ प्रति समय अंतराल के साथ पासा प्रक्रियाओं के लिए प्रायिकता का वितरण निम्नलिखित समीकरण द्वारा दिया गया है।[2]

परिभाषित समय अंतराल में होने वाली घटनाओं की संख्या के रूप में है:
यह दिखाया जा सकता है कि घटनाओं के लिए अंतर-आगमन समय एक संचयी वितरण फलन (सीडीएफ) के साथ घातीय वितरण है। घातीय सीडीएफ का व्युत्क्रम किसके द्वारा दिया जाता है:
जहाँ , के समान रूप से वितरित यादृच्छिक चर है।Cite error: Closing </ref> missing for <ref> tag जो स्थिर दर के साथ पॉसा प्रक्रिया का अनुकरण करना घटनाओं की संख्या के लिए अन्तराल में होता है। यह निम्नलिखित एल्गोरिथम के साथ किया जा सकता है।[6]

  1. और के साथ प्रारम्भ करें।
  2. से एकसमान वितरण यादृच्छिक चर उत्पन्न करें।
  3. के साथ समय अपडेट करें।
  4. यदि , विवृत है तब चरण 5 प्रारम्भ करें।
  5. चरण 2 प्रारम्भ रखें।

प्रकार

प्रत्यक्ष और प्रथम प्रतिक्रिया के प्रकार

1977 में गिलेस्पी द्वारा प्रकाशित संचयी सरणी पर एक रेखीय खोज है। गिलेस्पी एल्गोरिथम देखें।

गिलेस्पी का प्रसंभाव्य अनुरूपण एल्गोरिथम (एसएसए) अनिवार्य रूप से ऐसी प्रणाली में निहित यादृच्छिकता का उपयुक्त विवरण लेकर एक अच्छी तरह से उत्तेजित रासायनिक प्रतिक्रिया प्रणाली के समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए शुद्ध प्रक्रिया है।[7] यह जटिलता से उसी सूक्ष्म भौतिक आधार पर आधारित है जो रासायनिक कुशल समीकरण को रेखांकित करता है और ओडीई द्वारा गणितीय रूप से प्रस्तुत नियतात्मक प्रतिक्रिया दर समीकरण (आरआरई) की तुलना में प्रणाली के विकास का अधिक यथार्थवादी प्रतिनिधित्व देता है।[7] जैसा कि रासायनिक कुशल समीकरण के साथ होता है। एसएसए अभिकारकों की बड़ी संख्या की सीमा में बड़े पैमाने पर प्रतिक्रिया के नियम के समान समाधान के लिए अभिसरण करता है।

अगली प्रतिक्रिया विधि

इस प्रतिक्रिया को गिब्सन और ब्रुक द्वारा 2000 में प्रकाशित था।[8] यह पहली प्रतिक्रिया पद्धति पर एक सुधार है जहां अप्रयुक्त प्रतिक्रिया समय का पुन: उपयोग किया जाता है। प्रतिक्रियाओं के प्रारूप को और अधिक कुशल बनाने के लिए प्रतिक्रिया समय को संग्रहीत करने के लिए अनुक्रमित प्राथमिकता श्रेणी का उपयोग किया जाता है। दूसरी ओर प्रवृत्तियों की पुनर्गणना को और अधिक कुशल बनाने के लिए निर्भरता आरेख का उपयोग किया जाता है। यह निर्भरता आरेख बताता है कि किसी विशेष प्रतिक्रिया के बाद कौन सी प्रतिक्रिया की प्रवृत्ति को अपडेट करना है।

अनुकूलित और पृथक्करण प्रत्यक्ष प्रकार

प्रायः इस प्रतिक्रिया को 2004[9] और 2005 मे प्रकाशित किया गया था। एल्गोरिथम की औसत खोज को अपेक्षाकृत कम करने के लिए ये विधियाँ संचयी सरणी को विभाजित करती हैं। पूर्व प्रतिक्रियाओं की फायरिंग आवृत्ति का अनुमान लगाने के लिए एक अनुमान लगाता है, जबकि बाद वाली संचयी सरणी आवृत्ति को विभाजित करती है।

लघुगणक प्रत्यक्ष विधि

2006 में प्रकाशित यह संचयी सरणी पर बाइनरी खोज है। इस प्रकार O (log M) के लिए प्रतिक्रिया वर्गीकारण का सबसे जोखिम समय जटिलता को अपेक्षाकृत कम करता है।

आंशिक-प्रवृत्ति विधियाँ

2009, 2010 और 2011 में प्रकाशित (रामास्वामी 2009, 2010, 2011) प्रतिक्रियाओं की (बड़ी) संख्या के अतिरिक्त नेटवर्क में प्रजातियों की संख्या के साथ संगणनात्मक लागत को कम करने के लिए तथ्य निकाले और आंशिक प्रतिक्रिया प्रवृत्तियों का उपयोग करें। जिसमे चार प्रकार निम्नलिखित सम्मिलित हैं:

  • पीडीएम, आंशिक-प्रवृत्ति प्रत्यक्ष विधि कम्प्यूटेशनल लागत है जो नेटवर्क के युग्मन वर्ग (रामास्वामी 2009) से स्वतंत्र प्रतिक्रिया नेटवर्क में विभिन्न प्रजातियों की संख्या को साथ रैखिकता के साथ मापती है।
  • एसपीडीएम, पृथक्करण आंशिक-प्रवृत्ति प्रत्यक्ष विधि बहु अदिश समीकरण नेटवर्क में कम्प्यूटेशनल लागत के पूर्व-कारक को कम करने के लिए गतिशील बबल पृथक्करण विधि का उपयोग करता है। जहां प्रतिक्रिया दर परिमाण के कई अनुक्रम (रामास्वामी 2009) तक विस्तृत होती है।
  • पीएसएसए-सीआर, रचना-अस्वीकृति वर्गीकरण के साथ आंशिक-प्रवृत्ति एसएसए संरचना-अस्वीकृति वर्गीकरण (स्लीपॉय 2008) का उपयोग करके दुर्बल युग्मित नेटवर्क (रामास्वामी 2010) के लिए निरंतर समय (अर्थात, नेटवर्क आकार से स्वतंत्र) के लिए कम्प्यूटेशनल लागत को कम करता है।
  • डीपीडीएम, विलंब आंशिक-प्रवृत्ति प्रत्यक्ष विधि एसएसए विधि (ब्रैटसन 2005, कै 2007) का आंशिक-प्रवृत्ति संस्करण प्रदान करके समय में (रामास्वामी 2011) करने वाली प्रतिक्रिया नेटवर्क के लिए पीडीएम का विस्तार करती है।

आंशिक-प्रवृत्ति विधियों का उपयोग प्राथमिक रासायनिक प्रतिक्रियाओं तक सीमित है अर्थात, अधिकतम दो अलग-अलग अभिकारकों के साथ प्रतिक्रियाएँ नेटवर्क आकार में एक रेखीय (प्रतिक्रिया के क्रम में) वृद्धि की कीमत पर प्रत्येक गैर-प्राथमिक रासायनिक प्रतिक्रिया को समान रूप से प्राथमिक अभिक्रिया के समूह में विघटित किया जा सकता है।

अनुमानित प्रकार

प्रसंभाव्य अनुरूपण का एक सामान्य दोष यह है कि इसमे बड़ी प्रणालियों के लिए बहुत सी घटनाएं होती हैं, जिन्हें अनुरूपण में ध्यान में नहीं रखा जा सकता है। निम्नलिखित विधियाँ कुछ सन्निकटन द्वारा प्रभावी रूप से अनुरूपण गति में सुधार कर सकती हैं।

τ लीपिंग विधि

चूंकि एसएसए विधि प्रत्येक संक्रमण का नियंत्रण रखती है क्योकि उच्च समय जटिलता के कारण कुछ अनुप्रयोगों के लिए इसे प्रयुक्त करना अव्यावहारिक होता है। गिलेस्पी ने एक सन्निकटन प्रक्रिया, ताऊ-लीपिंग विधि को प्रस्तावित किया था जो शुद्धता के न्यूनतम कमी के साथ कम्प्यूटेशनल समय को कम करती है।[10] समय में वृद्धिशील चरण के अतिरिक्त एसएसए विधि के रूप में प्रत्येक समय चरण पर X(t) का नियंत्रण रखने के अतिरिक्त ताऊ-लीपिंग विधि एक उप-अंतराल से अगले तक प्रसंभाव्य अनुरूपण करती है और अनुमान लगाती है कि किसी दिए गए उप-अंतराल के समय कितने संक्रमण होते हैं। यह माना जाता है कि प्रसंभाव्य का मान, τ, इतना छोटा है कि उपअंतराल [t, t + τ] के साथ संक्रमण दरों के मान में कोई महत्वपूर्ण परिवर्तन नहीं होता है। इस स्थिति को प्रसंभाव्य की स्थिति के रूप में जाना जाता है। इस प्रकार ताऊ-लीपिंग विधि में महत्वपूर्ण शुद्धता खोए बिना प्रसंभाव्य में कई संक्रमणों का अनुकरण करने का लाभ है। जिसके परिणामस्वरूप कम्प्यूटेशनल समय में गति बढ़ जाती है।[11]

सशर्त अंतर विधि

यह विधि प्रतिवर्ती प्रक्रिया की विरोधी घटनाओं की केवल शुद्ध दरों को ध्यान में रखते हुए प्रतिवर्ती प्रक्रियाओं (जिसमें यादृच्छिक चलना/प्रसार प्रक्रियाएं सम्मिलित हैं) का अनुमान लगाती है। इस पद्धति का मुख्य लाभ यह है कि इसे मॉडल की पिछली संक्रमण दरों को नई, प्रभावी दरों के साथ परिवर्तित करके एक सरल स्थिति के साथ प्रयुक्त किया जा सकता है। इस प्रकार परिवर्तित संक्रमण दर वाले मॉडल को उदाहरण के लिए पारंपरिक एसएसए के साथ हल किया जा सकता है।[12]

निरंतर अनुरूपण

जबकि पृथक अवस्था समष्टि में यह निरंतर समष्टि में विशिष्ट अवस्थाओं (मानों) के बीच स्पष्ट रूप से भिन्न होता है। यह निश्चित निरंतरता के कारण संभव नहीं है। प्रणाली सामान्यतः समय के साथ परिवर्तित होती है, मॉडल के चर भी निरंतर परिवर्तित होते रहते हैं। अवस्था चर के परिवर्तन की दरों को निर्धारित करने वाले अवकल समीकरण को देखते हुए निरंतर अनुरूपण समय के साथ प्रणाली का अनुकरण करता है।[13] निरंतर प्रणाली का उदाहरण प्रीडेटर मॉडल या कार्ट-पोल संतुलन मॉडल है।[14][15]

संभाव्यता वितरण

सामान्य वितरण

यादृच्छिक चर X को मापदंडों के साथ सामान्य वितरण कहा जाता है यदि XN(μ, σ2) को μ और σ द्वारा संक्षिप्त किया गया है और यदि यादृच्छिक चर का घनत्व सूत्र द्वारा दिया गया है:[2]

वास्तव में यह सामान्य वितरण हैं या इसके बहुत निकट हैं। उदाहरण के लिए ऊंचाई और बुद्धिमत्ता लगभग सामान्य वितरण हैं माप त्रुटियों का भी प्रायः सामान्य वितरण होता है।[16]

घातीय वितरण

घातीय वितरण एक पासा प्रक्रिया में घटनाओं के बीच के समय का वर्णन करता है, अर्थात ऐसी प्रक्रिया जिसमें घटनाएं निरंतर और स्वतंत्र रूप से स्थिर औसत दर पर होती हैं। घातीय वितरण लोकप्रिय है उदाहरण के लिए पंक्ति सिद्धांत में जब हम उस समय का मॉडल बनाना चाहते हैं जब तक हमें एक निश्चित घटना होने तक प्रतीक्षा करना पड़ता है। उदाहरणों में वह समय सम्मिलित है जब तक कि अगला ग्राहक भंडारण में प्रवेश नहीं करता है। वह समय जब तक कि एक निश्चित संस्था निर्धारित नहीं करती या किसी मशीन में खराबी आने तक का समय है।[2]

छात्र का टी-वितरण

छात्र के टी-वितरण का उपयोग वित्त में वित्त पुनरावृत्ति के संभाव्य मॉडल के रूप में किया जाता है। टी-वितरण का घनत्व फलन निम्नलिखित समीकरण द्वारा दिया गया है:[2]

जहाँ स्वतंत्रता की डिग्री (सांख्यिकी) की संख्या है और गामा फलन है।

N के बड़े मानों के लिए, टी-वितरण मानक सामान्य वितरण से महत्वपूर्ण रूप से भिन्न नहीं होता है। सामान्यतः मान n> 30 के लिए टी-वितरण को मानक सामान्य वितरण के बराबर माना जाता है।

अन्य वितरण

संयुक्त अनुरूपण

सामान्यतः विभिन्न विचारों के उपयोग से प्रायः एक और प्रणाली का मॉडल बनाना संभव होता है। किसी समस्या के असतत घटना अनुकरण के साथ-साथ इसके निरंतर घटना अनुकरण (निरंतर प्रवाह को बाधित करने वाली असतत घटनाओं के साथ निरंतर अनुकरण) अंततः एक ही उत्तर की ओर ले जा सकते हैं। हालांकि कभी-कभी, तकनीकें एक प्रणाली के विषय में विभिन्न सवालों के जवाब दे सकती हैं। यदि हमें आवश्यक रूप से सभी प्रश्नों का उत्तर देने की आवश्यकता है या यदि हमें यह नहीं पता है कि मॉडल का उपयोग किस उद्देश्य के लिए किया जा रहा है तो संयुक्त सतत/विच्छेद पद्धति को प्रयुक्त करना सुविधाजनक होता है।[17] इसी प्रकार की तकनीकें असतत प्रसंभाव्य विवरण से समय और स्थान पर निर्भर तरीके से नियतात्मक, सातत्य विवरण में परिवर्तित हो सकती हैं।[18] इस तकनीक का उपयोग पारंपरिक गिलेस्पी एल्गोरिथम की तुलना में अनुकरण करने के लिए बहुत तीव्र होने के साथ-साथ छोटी प्रतिलिपि संख्याओं के कारण ध्वनि को नियंत्रित करने में सक्षम बनाता है। इसके अतिरिक्त नियतात्मक सातत्य विवरण का उपयोग अपेक्षाकृत रूप से बड़ी प्रणाली के अनुरूपण को सक्षम बनाता है।

मोंटे कार्लो अनुरूपण

मोंटे कार्लो विधि एक आकलन प्रक्रिया है। मुख्य विचार यह है कि यदि किसी यादृच्छिक चर के औसत मान को जानना आवश्यक है और इसका वितरण नहीं बताया जा सकता है और यदि वितरण से प्रारूप लेना संभव है तो हम स्वतंत्र रूप से और औसत से प्रारूप लेकर इसका अनुमान लगा सकते हैं। यदि पर्याप्त प्रारूप हैं तो बड़ी संख्या का नियम कहता है कि औसत सही मान के निकट होना चाहिए। केंद्रीय सीमा प्रमेय कहता है कि औसत के सही मान के आसपास गॉसियन वितरण होता है।[19]

एक सरल उदाहरण के रूप में, मान लीजिए कि हमें जटिल अनियमित रूपरेखा वाली आकृति का क्षेत्रफल मापने की आवश्यकता है। मोंटे कार्लो दृष्टिकोण आकार के चारों ओर एक वर्ग बनाना और वर्ग को मापना है। फिर हम वर्ग में पासा को यथासंभव समान रूप से फेंकते हैं। आकार पर गिरने वाले बिन्दु का अंश वर्ग के क्षेत्रफल के आकार के क्षेत्रफल का अनुपात देता है। वास्तव में, लगभग किसी भी अभिन्न समस्या या किसी भी औसत समस्या को इस रूप में प्रदर्शित करना संभव है। यह बताने के लिए एक अच्छा तरीका होना आवश्यक है कि क्या आप रूपरेखा के अंदर हैं और यह पता लगाने का एक अच्छा तरीका है कि कितने पासा फेंके जाएं और अंतिम लेकिन कम से कम पासा को समान रूप से फेंकने की आवश्यकता नहीं है अर्थात एक अच्छे यादृच्छिक संख्या निर्माण का उपयोग करना आवश्यक होता है।[19]

अनुप्रयोग

मोंटे कार्लो पद्धति के उपयोग की व्यापक संभावनाएँ हैं:[1]

यादृच्छिक संख्या उत्पादन

अनुरूपण प्रयोगों (मोंटे कार्लो सहित) के लिए यादृच्छिक संख्या (चर के मान के रूप में) उत्पन्न करना आवश्यक है। समस्या यह है कि कंप्यूटर अत्यधिक नियतात्मक मशीन है मूल रूप से, प्रत्येक प्रक्रिया के पीछे सदैव एक एल्गोरिथ्म होता है, नियतात्मक संगणना जो इनपुट को आउटपुट में परिवर्तित करती है। इसलिए परिभाषित अंतराल या समुच्चय पर समान रूप से विस्तृत यादृच्छिक संख्या उत्पन्न करना आसान नहीं होता है।[1]

एक यादृच्छिक संख्या निर्माण ऐसा उपकरण है जो संख्याओं के अनुक्रम का उत्पादन करने में सक्षम होता है जिसे नियतात्मक गुणों के साथ आसानी से पहचाना नहीं जा सकता है। इस क्रम को तब प्रसंभाव्य संख्याओं का अनुक्रम कहा जाता है।[20]

एल्गोरिदम सामान्यतः छद्म यादृच्छिक संख्याओं पर विश्वास करते हैं। कंप्यूटर जनित संख्याएं प्रक्रिया के संभावित परिणाम का अनुमान उत्पन्न करने के लिए वास्तविक यादृच्छिक संख्याओं की अपेक्षा करती हैं।[21] यादृच्छिक संख्या प्राप्त करने के तरीके लंबे समय से उपस्थित हैं और कई अलग-अलग क्षेत्रों (जैसे वीडियो गेम) में उपयोग किए जाते हैं। हालाँकि ये संख्याएँ एक निश्चित पूर्वाग्रह से ग्रस्त हैं। वर्तमान में यादृच्छिक अनुक्रम उत्पन्न करने के लिए अपेक्षित सर्वोत्तम विधियाँ प्राकृतिक विधियाँ हैं जो क्वांटम यांत्रिकी की यादृच्छिक प्रकृति का लाभ प्राप्त करती हैं।[20]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 DLOUHÝ, M.; FÁBRY, J.; KUNCOVÁ, M.. Simulace pro ekonomy. Praha : VŠE, 2005.
  2. 2.0 2.1 2.2 2.3 2.4 Rachev, Svetlozar T. Stoyanov, Stoyan V. Fabozzi, Frank J., "Chapter 1 Concepts of Probability" in Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization : The Ideal Risk, Uncertainty, and Performance Measures, Hoboken, NJ, USA: Wiley, 2008
  3. "द्विपद वितरण". Archived from the original on 2014-02-26. Retrieved 2014-01-25.
  4. <रेफरी नाम = डेकिंग, एफ.एम. फ्रेडरिक मिशेल, 1946–2005 />
  5. Haight, Frank A. (1967). पोइसन वितरण की पुस्तिका. Wiley. OCLC 422367440.
  6. Sigman, Karl. "पॉसॉन प्रक्रियाएं, और यौगिक (बैच) पॉइसन प्रक्रियाएं" (PDF).
  7. 7.0 7.1 Stephen Gilmore, An Introduction to Stochastic Simulation - Stochastic Simulation Algorithms, University of Edinburgh, [online] available at http://www.doc.ic.ac.uk/~jb/conferences/pasta2006/slides/stochastic-simulation-introduction.pdf
  8. M A Gibson and J Bruck, Efficient exact stochastic simulation of chemical systems with many specias and many channels, J. Comp Phys., 104:1876–1899, 2000.
  9. Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems, J. Chem. Phys, 121(9):4059–4067, 2004.
  10. Gillespie, D.T. (1976). "युग्मित रासायनिक प्रतिक्रियाओं के स्टोचैस्टिक समय विकास को संख्यात्मक रूप से अनुकरण करने के लिए एक सामान्य विधि". Journal of Computational Physics. 22 (4): 403–434. Bibcode:1976JCoPh..22..403G. doi:10.1016/0021-9991(76)90041-3.
  11. H.T. Banks, Anna Broido, Brandi Canter, Kaitlyn Gayvert,Shuhua Hu, Michele Joyner, Kathryn Link, Simulation Algorithms for Continuous Time Markov Chain Models, [online] available at http://www.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr11-17.pdf
  12. Spill, F; Maini, PK; Byrne, HM (2016). "विरोधी प्रतिक्रियाओं को हटाकर स्टोकेस्टिक प्रक्रियाओं के सिमुलेशन का अनुकूलन". Journal of Chemical Physics. 144 (8): 084105. arXiv:1602.02655. Bibcode:2016JChPh.144h4105S. doi:10.1063/1.4942413. PMID 26931679. S2CID 13334842.
  13. Crespo-Márquez, A., R. R. Usano and R. D. Aznar, 1993, "Continuous and Discrete Simulation in a Production Planning System. A Comparative Study"
  14. Louis G. Birta, Gilbert Arbez (2007). Modelling and Simulation, p. 255. Springer.
  15. "Pole Balancing Tutorial".
  16. University of Notre Dame, Normal Distribution, [online] available at http://www3.nd.edu/~rwilliam/stats1/x21.pdf
  17. Francois E. Cellier, Combined Continuous/Discrete Simulation Applications, Techniques, and Tools
  18. Spill, F.; et al. (2015). "Hybrid approaches for multiple-species stochastic reaction–diffusion models". Journal of Computational Physics. 299: 429–445. arXiv:1507.07992. Bibcode:2015JCoPh.299..429S. doi:10.1016/j.jcp.2015.07.002. PMC 4554296. PMID 26478601.
  19. 19.0 19.1 Cosma Rohilla Shalizi, Monte Carlo, and Other Kinds of Stochastic Simulation, [online] available at http://bactra.org/notebooks/monte-carlo.html
  20. 20.0 20.1 Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms - chapitre 3 : Random Numbers (Addison-Wesley, Boston, 1998).
  21. Andreas hellander, Stochastic Simulation and Monte Carlo Methods, [online] available at http://www.it.uu.se/edu/course/homepage/bervet2/MCkompendium/mc.pdf

बाहरी संबंध

Software
  • cayenne - Fast, easy to use Python package for stochastic simulations. Implementations of direct, tau-leaping, and tau-adaptive algorithms.
  • StochSS - StochSS: Stochastic Simulation Service - A Cloud Computing Framework for Modeling and Simulation of Stochastic Biochemical Systems.
  • ResAssure - Stochastic reservoir simulation software - solves fully implicit, dynamic three-phase fluid flow equations for every geological realisation.
  • Cain - Stochastic simulation of chemical kinetics. Direct, next reaction, tau-leaping, hybrid, etc.
  • pSSAlib - C++ implementations of all partial-propensity methods.
  • StochPy - Stochastic modelling in Python
  • STEPS - STochastic Engine for Pathway Simulation using swig to create Python interface to C/C++ code