परिबद्ध समुच्चय (बाउंडेड सेट): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Collection of mathematical objects of finite size}} Image:Bounded unbounded.svg|right|thumb|एक कलाकार की एक बंधे हु...")
 
No edit summary
Line 1: Line 1:
{{Short description|Collection of mathematical objects of finite size}}
{{Short description|Collection of mathematical objects of finite size}}
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की एक बंधे हुए सेट (ऊपर) और एक असीमित सेट (नीचे) की छाप। नीचे का सेट हमेशा दाईं ओर जारी रहता है।]][[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, एक [[सेट (गणित)]] को ''परिबद्ध'' कहा जाता है यदि यह एक निश्चित अर्थ में, परिमित [[माप (गणित)]] का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे ''अनबाउंड'' कहा जाता है। संबंधित मेट्रिक_(गणित) के बिना सामान्य टोपोलॉजिकल स्पेस में बाउंडेड शब्द का कोई मतलब नहीं है।
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की बंधे हुए सेट (ऊपर) और असीमित सेट (नीचे) की छाप। नीचे का सेट हमेशा दाईं ओर जारी रहता है।]][[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, [[सेट (गणित)]] को ''परिबद्ध'' कहा जाता है यदि यह निश्चित अर्थ में, परिमित [[माप (गणित)]] का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे ''अनबाउंड'' कहा जाता है। संबंधित मेट्रिक_(गणित) के बिना सामान्य टोपोलॉजिकल स्पेस में बाउंडेड शब्द का कोई मतलब नहीं है।


''[[सीमा (टोपोलॉजी)]]'' एक विशिष्ट अवधारणा है: उदाहरण के लिए, अलगाव में एक वृत्त एक सीमाहीन घिरा हुआ सेट है, जबकि [[आधा विमान]] असीमित है फिर भी एक सीमा है।
''[[सीमा (टोपोलॉजी)]]'' विशिष्ट अवधारणा है: उदाहरण के लिए, अलगाव में वृत्त सीमाहीन घिरा हुआ सेट है, जबकि [[आधा विमान]] असीमित है फिर भी सीमा है।


एक परिबद्ध समुच्चय आवश्यक रूप से एक बंद समुच्चय नहीं है और इसके विपरीत भी। उदाहरण के लिए, 2-आयामी वास्तविक स्थान R का एक उपसमुच्चय ''S''<sup>2</sup> दो परवलयिक वक्रों द्वारा बाधित x<sup>2</sup>+1 और x<sup>2</sup> - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा बंद है लेकिन परिबद्ध नहीं है (इसलिए असंबद्ध)।
एक परिबद्ध समुच्चय आवश्यक रूप से बंद समुच्चय नहीं है और इसके विपरीत भी। उदाहरण के लिए, 2-आयामी वास्तविक स्थान R का उपसमुच्चय ''S''<sup>2</sup> दो परवलयिक वक्रों द्वारा बाधित x<sup>2</sup>+1 और x<sup>2</sup> - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा बंद है लेकिन परिबद्ध नहीं है (इसलिए असंबद्ध)।


== वास्तविक संख्याओं में परिभाषा ==
== वास्तविक संख्याओं में परिभाषा ==
[[File:Illustration of supremum.svg|thumb|upright=1.6|ऊपरी सीमा और उसके सर्वोच्च के साथ एक वास्तविक सेट।]][[वास्तविक संख्या]]ओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि कुछ वास्तविक संख्या k मौजूद हो (जरूरी नहीं कि S में हो) जैसे कि S में सभी s के लिए k ≥ s हो। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। शर्तें नीचे से परिबद्ध और 'निचली सीमा' को समान रूप से परिभाषित किया गया है।
[[File:Illustration of supremum.svg|thumb|upright=1.6|ऊपरी सीमा और उसके सर्वोच्च के साथ वास्तविक सेट।]][[वास्तविक संख्या]]ओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि कुछ वास्तविक संख्या k मौजूद हो (जरूरी नहीं कि S में हो) जैसे कि S में सभी s के लिए k ≥ s हो। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। शर्तें नीचे से परिबद्ध और 'निचली सीमा' को समान रूप से परिभाषित किया गया है।


एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक सेट परिबद्ध होता है यदि वह एक [[अंतराल (गणित)]] में समाहित हो।
एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का सेट परिबद्ध होता है यदि वह [[अंतराल (गणित)]] में समाहित हो।


== [[मीट्रिक स्थान]] में परिभाषा ==
== [[मीट्रिक स्थान]] में परिभाषा ==


मीट्रिक स्पेस (एम, डी) का एक उपसमुच्चय एस 'परिबद्ध' है यदि वहां आर > 0 मौजूद है जैसे कि एस में सभी एस और टी के लिए, हमारे पास डी (एस, टी) < आर है। मीट्रिक स्पेस (एम, डी) एक घिरा हुआ मीट्रिक स्थान है (या डी एक घिरा हुआ मीट्रिक है) यदि एम स्वयं के [[सबसेट]] के रूप में घिरा हुआ है।
मीट्रिक स्पेस (एम, डी) का उपसमुच्चय एस 'परिबद्ध' है यदि वहां आर > 0 मौजूद है जैसे कि एस में सभी एस और टी के लिए, हमारे पास डी (एस, टी) < आर है। मीट्रिक स्पेस (एम, डी) घिरा हुआ मीट्रिक स्थान है (या डी घिरा हुआ मीट्रिक है) यदि एम स्वयं के [[सबसेट]] के रूप में घिरा हुआ है।


*[[पूर्ण सीमाबद्धता]] का तात्पर्य सीमाबद्धता से है। 'आर' के उपसमुच्चय के लिए<sup>n</sup>दोनों समतुल्य हैं।
*[[पूर्ण सीमाबद्धता]] का तात्पर्य सीमाबद्धता से है। 'आर' के उपसमुच्चय के लिए<sup>n</sup>दोनों समतुल्य हैं।
*[[पूर्ण मीट्रिक स्थान]] [[ सघन स्थान ]] है अगर और केवल तभी जब यह पूर्ण मेट्रिक स्पेस हो और पूरी तरह से घिरा हुआ हो।
*[[पूर्ण मीट्रिक स्थान]] [[ सघन स्थान ]] है अगर और केवल तभी जब यह पूर्ण मेट्रिक स्पेस हो और पूरी तरह से घिरा हुआ हो।
*[[ यूक्लिडियन स्थान ]] 'आर' का एक उपसमुच्चय<sup>n</sup> सघन है यदि और केवल यदि यह बंद सेट और परिबद्ध है। इसे हेइन-बोरेल प्रमेय|[[हेन-बोरेल प्रमेय]] भी कहा जाता है।
*[[ यूक्लिडियन स्थान ]] 'आर' का उपसमुच्चय<sup>n</sup> सघन है यदि और केवल यदि यह बंद सेट और परिबद्ध है। इसे हेइन-बोरेल प्रमेय|[[हेन-बोरेल प्रमेय]] भी कहा जाता है।


== टोपोलॉजिकल वेक्टर रिक्त स्थान में सीमाबद्धता ==
== टोपोलॉजिकल वेक्टर रिक्त स्थान में सीमाबद्धता ==
{{main|Bounded set (topological vector space)}}
{{main|Bounded set (topological vector space)}}
[[टोपोलॉजिकल वेक्टर स्पेस]] में, परिबद्ध सेटों के लिए एक अलग परिभाषा मौजूद होती है जिसे कभी-कभी [[वॉन न्यूमैन बाउंडेड]]नेस कहा जाता है। यदि टोपोलॉजिकल वेक्टर स्पेस की टोपोलॉजी एक [[मीट्रिक (गणित)]] से प्रेरित होती है जो [[सजातीय मीट्रिक]] है, जैसा कि [[मानक वेक्टर रिक्त स्थान]] के [[मानक (गणित)]] से प्रेरित मीट्रिक के मामले में होता है, तो दोनों परिभाषाएँ मेल खाती हैं।
[[टोपोलॉजिकल वेक्टर स्पेस]] में, परिबद्ध सेटों के लिए अलग परिभाषा मौजूद होती है जिसे कभी-कभी [[वॉन न्यूमैन बाउंडेड]]नेस कहा जाता है। यदि टोपोलॉजिकल वेक्टर स्पेस की टोपोलॉजी [[मीट्रिक (गणित)]] से प्रेरित होती है जो [[सजातीय मीट्रिक]] है, जैसा कि [[मानक वेक्टर रिक्त स्थान]] के [[मानक (गणित)]] से प्रेरित मीट्रिक के मामले में होता है, तो दोनों परिभाषाएँ मेल खाती हैं।


==क्रम सिद्धांत में सीमाबद्धता==
==क्रम सिद्धांत में सीमाबद्धता==


वास्तविक संख्याओं का एक सेट परिबद्ध होता है यदि और केवल तभी जब इसमें ऊपरी और निचली सीमा हो। यह परिभाषा किसी भी आंशिक रूप से ऑर्डर किए गए सेट के सबसेट तक विस्तार योग्य है। ध्यान दें कि सीमाबद्धता की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।
वास्तविक संख्याओं का सेट परिबद्ध होता है यदि और केवल तभी जब इसमें ऊपरी और निचली सीमा हो। यह परिभाषा किसी भी आंशिक रूप से ऑर्डर किए गए सेट के सबसेट तक विस्तार योग्य है। ध्यान दें कि सीमाबद्धता की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।


आंशिक रूप से क्रमबद्ध समुच्चय P के एक उपसमुच्चय S को 'ऊपर से घिरा हुआ' कहा जाता है यदि P में कोई तत्व k है जैसे कि S में सभी s के लिए k ≥ s है। तत्व k को S की 'ऊपरी सीमा' कहा जाता है। की अवधारणाएँ 'नीचे परिबद्ध' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। ([[ऊपरी और निचली सीमाएं]] भी देखें।)
आंशिक रूप से क्रमबद्ध समुच्चय P के उपसमुच्चय S को 'ऊपर से घिरा हुआ' कहा जाता है यदि P में कोई तत्व k है जैसे कि S में सभी s के लिए k ≥ s है। तत्व k को S की 'ऊपरी सीमा' कहा जाता है। की अवधारणाएँ 'नीचे परिबद्ध' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। ([[ऊपरी और निचली सीमाएं]] भी देखें।)


आंशिक रूप से ऑर्डर किए गए सेट P के एक उपसमुच्चय S को 'बाउंडेड' कहा जाता है यदि इसमें ऊपरी और निचली दोनों बाउंड हैं, या समकक्ष, यदि यह क्रम सिद्धांत में अंतराल (गणित)#अंतराल में समाहित है। ध्यान दें कि यह केवल समुच्चय S का गुण नहीं है, बल्कि P के उपसमुच्चय के रूप में समुच्चय S में से एक गुण भी है।
आंशिक रूप से ऑर्डर किए गए सेट P के उपसमुच्चय S को 'बाउंडेड' कहा जाता है यदि इसमें ऊपरी और निचली दोनों बाउंड हैं, या समकक्ष, यदि यह क्रम सिद्धांत में अंतराल (गणित)#अंतराल में समाहित है। ध्यान दें कि यह केवल समुच्चय S का गुण नहीं है, बल्कि P के उपसमुच्चय के रूप में समुच्चय S में से गुण भी है।


एक 'बाउंडेड पोसेट' पी (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें कम से कम तत्व और [[सबसे बड़ा तत्व]] होता है। ध्यान दें कि सीमाबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और बाइनरी_रिलेशन#पी पर आदेश के प्रतिबंध के साथ एक परिबद्ध स्थिति पी का उपसमुच्चय आवश्यक रूप से एक परिबद्ध स्थिति नहीं है।
एक 'बाउंडेड पोसेट' पी (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें कम से कम तत्व और [[सबसे बड़ा तत्व]] होता है। ध्यान दें कि सीमाबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और बाइनरी_रिलेशन#पी पर आदेश के प्रतिबंध के साथ परिबद्ध स्थिति पी का उपसमुच्चय आवश्यक रूप से परिबद्ध स्थिति नहीं है।


'R' का एक उपसमुच्चय S<sup>n</sup> [[यूक्लिडियन दूरी]] के संबंध में परिबद्ध है यदि और केवल यदि यह 'R' के उपसमुच्चय के रूप में परिबद्ध है<sup>n</sup>उत्पाद ऑर्डर के साथ। हालाँकि, S को 'R' के उपसमुच्चय के रूप में परिबद्ध किया जा सकता है<sup>n</sup>शब्दावली क्रम के साथ, लेकिन यूक्लिडियन दूरी के संबंध में नहीं।
'R' का उपसमुच्चय S<sup>n</sup> [[यूक्लिडियन दूरी]] के संबंध में परिबद्ध है यदि और केवल यदि यह 'R' के उपसमुच्चय के रूप में परिबद्ध है<sup>n</sup>उत्पाद ऑर्डर के साथ। हालाँकि, S को 'R' के उपसमुच्चय के रूप में परिबद्ध किया जा सकता है<sup>n</sup>शब्दावली क्रम के साथ, लेकिन यूक्लिडियन दूरी के संबंध में नहीं।


[[क्रमसूचक संख्या]]ओं के एक वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, तो हमेशा वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस मामले में अनबाउंड का मतलब अपने आप में अनबाउंड नहीं है, बल्कि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।
[[क्रमसूचक संख्या]]ओं के वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, तो हमेशा वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस मामले में अनबाउंड का मतलब अपने आप में अनबाउंड नहीं है, बल्कि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 11:03, 7 July 2023

एक कलाकार की बंधे हुए सेट (ऊपर) और असीमित सेट (नीचे) की छाप। नीचे का सेट हमेशा दाईं ओर जारी रहता है।

गणितीय विश्लेषण और गणित के संबंधित क्षेत्रों में, सेट (गणित) को परिबद्ध कहा जाता है यदि यह निश्चित अर्थ में, परिमित माप (गणित) का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे अनबाउंड कहा जाता है। संबंधित मेट्रिक_(गणित) के बिना सामान्य टोपोलॉजिकल स्पेस में बाउंडेड शब्द का कोई मतलब नहीं है।

सीमा (टोपोलॉजी) विशिष्ट अवधारणा है: उदाहरण के लिए, अलगाव में वृत्त सीमाहीन घिरा हुआ सेट है, जबकि आधा विमान असीमित है फिर भी सीमा है।

एक परिबद्ध समुच्चय आवश्यक रूप से बंद समुच्चय नहीं है और इसके विपरीत भी। उदाहरण के लिए, 2-आयामी वास्तविक स्थान R का उपसमुच्चय S2 दो परवलयिक वक्रों द्वारा बाधित x2+1 और x2 - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा बंद है लेकिन परिबद्ध नहीं है (इसलिए असंबद्ध)।

वास्तविक संख्याओं में परिभाषा

ऊपरी सीमा और उसके सर्वोच्च के साथ वास्तविक सेट।

वास्तविक संख्याओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि कुछ वास्तविक संख्या k मौजूद हो (जरूरी नहीं कि S में हो) जैसे कि S में सभी s के लिए k ≥ s हो। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। शर्तें नीचे से परिबद्ध और 'निचली सीमा' को समान रूप से परिभाषित किया गया है।

एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का सेट परिबद्ध होता है यदि वह अंतराल (गणित) में समाहित हो।

मीट्रिक स्थान में परिभाषा

मीट्रिक स्पेस (एम, डी) का उपसमुच्चय एस 'परिबद्ध' है यदि वहां आर > 0 मौजूद है जैसे कि एस में सभी एस और टी के लिए, हमारे पास डी (एस, टी) < आर है। मीट्रिक स्पेस (एम, डी) घिरा हुआ मीट्रिक स्थान है (या डी घिरा हुआ मीट्रिक है) यदि एम स्वयं के सबसेट के रूप में घिरा हुआ है।

टोपोलॉजिकल वेक्टर रिक्त स्थान में सीमाबद्धता

टोपोलॉजिकल वेक्टर स्पेस में, परिबद्ध सेटों के लिए अलग परिभाषा मौजूद होती है जिसे कभी-कभी वॉन न्यूमैन बाउंडेडनेस कहा जाता है। यदि टोपोलॉजिकल वेक्टर स्पेस की टोपोलॉजी मीट्रिक (गणित) से प्रेरित होती है जो सजातीय मीट्रिक है, जैसा कि मानक वेक्टर रिक्त स्थान के मानक (गणित) से प्रेरित मीट्रिक के मामले में होता है, तो दोनों परिभाषाएँ मेल खाती हैं।

क्रम सिद्धांत में सीमाबद्धता

वास्तविक संख्याओं का सेट परिबद्ध होता है यदि और केवल तभी जब इसमें ऊपरी और निचली सीमा हो। यह परिभाषा किसी भी आंशिक रूप से ऑर्डर किए गए सेट के सबसेट तक विस्तार योग्य है। ध्यान दें कि सीमाबद्धता की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।

आंशिक रूप से क्रमबद्ध समुच्चय P के उपसमुच्चय S को 'ऊपर से घिरा हुआ' कहा जाता है यदि P में कोई तत्व k है जैसे कि S में सभी s के लिए k ≥ s है। तत्व k को S की 'ऊपरी सीमा' कहा जाता है। की अवधारणाएँ 'नीचे परिबद्ध' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)

आंशिक रूप से ऑर्डर किए गए सेट P के उपसमुच्चय S को 'बाउंडेड' कहा जाता है यदि इसमें ऊपरी और निचली दोनों बाउंड हैं, या समकक्ष, यदि यह क्रम सिद्धांत में अंतराल (गणित)#अंतराल में समाहित है। ध्यान दें कि यह केवल समुच्चय S का गुण नहीं है, बल्कि P के उपसमुच्चय के रूप में समुच्चय S में से गुण भी है।

एक 'बाउंडेड पोसेट' पी (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें कम से कम तत्व और सबसे बड़ा तत्व होता है। ध्यान दें कि सीमाबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और बाइनरी_रिलेशन#पी पर आदेश के प्रतिबंध के साथ परिबद्ध स्थिति पी का उपसमुच्चय आवश्यक रूप से परिबद्ध स्थिति नहीं है।

'R' का उपसमुच्चय Sn यूक्लिडियन दूरी के संबंध में परिबद्ध है यदि और केवल यदि यह 'R' के उपसमुच्चय के रूप में परिबद्ध हैnउत्पाद ऑर्डर के साथ। हालाँकि, S को 'R' के उपसमुच्चय के रूप में परिबद्ध किया जा सकता हैnशब्दावली क्रम के साथ, लेकिन यूक्लिडियन दूरी के संबंध में नहीं।

क्रमसूचक संख्याओं के वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, तो हमेशा वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस मामले में अनबाउंड का मतलब अपने आप में अनबाउंड नहीं है, बल्कि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।

यह भी देखें

संदर्भ

  • Bartle, Robert G.; Sherbert, Donald R. (1982). Introduction to Real Analysis. New York: John Wiley & Sons. ISBN 0-471-05944-7.
  • Richtmyer, Robert D. (1978). Principles of Advanced Mathematical Physics. New York: Springer. ISBN 0-387-08873-3.